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Math . Slovaca 40 , 1990 , No . 4, 341—357 

LONGEST CIRCUITS IN TRIANGULAR 
AND QUADRANGULAR 3-POLYTOPES WITH 

TWO TYPES OF EDGES 

STANISLAV JENDROE—ROMAN KEKENAK 

ABSTRACT. The paper deals with the longest circuits in triangular and quadran­
gular 3-polytopes with two types of edges. Hamiltonicity and shortness invariants for 
several families of the mentioned 3-polytopes are determined. Three relationships 
among some subfamilies of triangular and quadrangular 3-polytopes are given. 

1. Introduction 

There are many papers studying circuits in varied families of planar 3-con-
nected graphs (or, equivalently, 3-polytopal graphs), see e.g. Ewald and 
others [3], G r u n b a u m [4, 5], G r u n b a u m and Malkev i tch [6], Gri in-
baum and Wal the r [7], H a r a n t and Wal the r [8], J ackson [9], Ju-
covic [14], Owens [16, 17, 18, 19], Zaks [22] and others. In [7], G r u n ­
baum and Wal the r introduced several numbers that measure, in a certain 
sense, the size of the longest circuits in graphs belonging to this family of graphs. 
Let us mention two of these measures. For a graph G let v(G) denote the number 
of vertices of G and h(G) the maximum length of simple circuits in G. For an 
infinite family of graphs «^, the shortness exponent, o(£F) or a and the shortness 
coefficients, Q(3P) or Q, are defined by 

c r ( ^ ) - = l i m i n f ^ M ) 9 
G** \Ogv(G) 

and 

Q(3F) = lim inf , respectively. 
ee* \ogv(G) 

Both (j and Q lie between 0 and 1 inclusive and Q = 0 when a < 1. 

AMS Subject Class i f icat ion (1985): Primary 05C40, 05C45 
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We recall that G is called hamiltonian if v(G) = h(G). The family of graphs 
3F is called hamiltonian provided that all its members are hamiltonian and $F is 
called nonhamiltonian if it contains no hamiltonian graph. 

For an infinite nonhamiltonian family of graphs 3F it is important to consider 
the length coefficient, T(SF) or r, defined by 

r(J^) = hm sup -̂ -—--. 
ceJ i>(G) 

J e n d r o l and Tkac [13] define an edge of the type (a, b; p, q) in a pla­
nar graph to be an edge incident with vertices of valency a and valency b and 
faces with p and q edges. The present paper is devoted to a study of the longest 
circuits in 3-polytopal graphs G having k-gonal faces only, k = 3, 4, and exactly 
two types of edges. Notice that the vertices of such graphs G can have at most 
three different valencies because of the connectedness of G. So let us denote by 
SPk(a, b, c) the family of all 3-polytopal graphs all edges of which are either of 
the type (a, b; k, k) or of the type (b, c; k, k). In the sequel let Sf(a, b, c) = f̂(<7, 
b, c) and J(<z, b, c) = ^(a, b, c). 

The present paper is organized as follows. In Section 2 we shall study the 
longest circuits in simplicial graphs from the families Sf(a, b, c). Section 3 
contains our results showing some relationships between some subfamilies of 
triangular and quadrangular 3-polytopal graphs. Section 4 is devoted to the 
study of the numbers a, Q and r for some subfamilies of quadrangular 3-poly-
topal graphs with exactly two types of edges. In Section 5 we shall discuss some 
open problems. 

2. Hamiltonicity of the family Sf (a, b, c) 

In [13], the first step in the study of the combinatorial structure of graphs to 
Sf (a, b, c) has been made. For all triples (a, b, c) of positive integers it has been 
decided whether the family Sf (a, b, c) is finite or not and for each finite family 
Sf(a, b, c), all polytopes belonging to Sf(a, b, c) have been constructed. This 
result is employed in the sequel. We note that the longest circuits in graphs of 
the families Sf*(a, b, c) dual to those of Sf (a, b, c), have been studied in 
Owens [18, 19] and J end ro i and Mihok [12]. 

The main result of this Section is contained in 
Theorem 2.1. 

(i) The family Sf(a, b, c) is hamiltonian for every triple 
(a, b, c)e{(4, 4, c), 3 < c ^ 4; (5, 5, c), 3 < c # 5; (6, 6, c), 3 < c < 5; 
(7, 7, 3); (7, 7, 4)}. 
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(ii) There is an infinite hamiltonian subfamily of the family 5^(8, 8, 3) and 

0(^(8, 8, 3)) < — . 

(iii) The families £f(9, 9, 3) and £f(\0, 10, 3) are nonhamiltonian 

Q(^(9, 9, 3)) < —, Q(<f(\0, 10, 3)) < — and x(<f(\0, 10, 3)) < - . 
28 32 7 

(iv) Let a, b, c be integers such that a>3,b>3,c>3 and at most two of them 
are equal to each other. If (a, b, c)<£{(4, 4, c), 3 < c ^ 4; (5, 5, c), 3 < c ^ 5; 
(6, 6, c), 3 < c < 5; (a, a, 3), 7 < a < 10; (7, 7, 4)}, then <f(a, b, c) is empty. 

The next two theorems will be useful in the proof of Theorem 2.1. 
Theorem 2.2 (Pareek [20], a weaker result in Ewald [1]). Let G be a 

triangular planar nonhamiltonian graph. Then A(G) > 8, where A(G) is a maxim­
um degree of G. 

Theorem 2.3. Every graph G belonging to £f(5, 5, c), 3 < c ^ 5, is 4-connected. 
Proof. Suppose that there is a graph G in 5^(5, 5, c) which is not 4-con­

nected. It can be easily verified that in G every minimal separating set consists 
of three vertices which form a separating triangle C (i.e., there are vertices of G 
both inside and outside of C). We denote by Hx the subgraph consisting of C 
and the edges of G lying in its interior, by H2 the subgraph consisting of C and 
the edges in its exterior. We may assume that v(Hx) < v(H2) and that Hx is 
minimal, that is that no separating triangle C of G has Hf with v(Hf) < v(Hx). 
Let xx, x2 and x3 be vertices of C. At least two of them, e.g. xx and x2 are 5-valent 
in G. It is easy to see that 3 < deg^Cx,) < 4 for any i = 1, 2 andj = 1 , 2 . The 
assumption deg,,^ = deg„xA = 3 for / = 1 or 2 andj, ke{\, 2, 3},j # k, leads 
to a contradiction with the 3-connectedness or the planarity of G, respectively. 
It is sufficient to consider the case deg^x, # deg^x2. Evidently deg„ x3 > 4. 
Since 77, is triangular too, there are vertices y, and y2 in Hx such that the vertices 
xx, x2, yx and x2, x3, y2, respectively form a face. Hx contains only one of the 
edges x,y2 and x2y,, therefore G has an edge yjy2 too. Because deg„ y, = 
= deg6y, > 5, / = 1, 2, the vertices yx, y2 and x3 create a separating triangle C, 
in G. For the subgraph H3 consisting of C, and edges of G lying in its interior 
we have v(H3) < v(Hx), which is a contradiction with the minimality of Hx. D 

The p roof of the Theorem 2.1 in the case (i) for the t r ip le 
(a, b, c) e {(6, 6, c), 3 < c < 5; (7, 7, c), 3 < c < 4} follows 
immedia te ly from Theorem 2.2. By the wel l -known Tut te 
theorem (see, e.g., Ore [15]) every 4-connected planar graph is hamiltonian, 
therefore the family 5^(5, 5, c) for any c > 3, c ^ 5 is hamiltonian too. The 
family ,9 (̂4, 4, c), c > 3, c ^ 4 consists of exactly one graph-c-sided bipyramid 
— which is hamiltonian. 

The propositions of the case (iv) follow from |13|. D 
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The Proof of the Theorem 2.1 in the cases (ii) and (hi). Let 
vk(G) denote the number of k-valent vertices of G. The well-known Euler 
formula applied to triangular graphs leads to the following equality 

X (6-kH(G)=12. (2.0) 
A' > 3 

This equality and v(G) = v^G) + v,.(G) for GeS?(c, c, 3), 8 < c < 10, give 

v(G)=A + (—-vc(G). (2.1) 

3 

Since, in G, edges connecting 3-valent vertices are not allowed, we have 

h(G) < 2vc(G). (2.2) 
From (2.1) and (2.2) it is easy to see that the families 5f(9, 9, 3) and ^(10, 10, 
3) are nonhamiltonian and that 

rOniO, 10,3))= lim sup h-^l < lim _ ^ _ _ _ _ = 6 
Ge//'(I0, 10, 3) v(G) -'.(.(G)-* 7 ,^,x 7 

4 + -vw(G) 

To prove the remaining part of the cases (ii) and (iii) we shall present methods 
based on inductive constructions of the sequences {(/..}, n = 0, 1, 2, ..., of graphs 
with the desired properties. In every case, the graph Gn n = 1, 2, ... is obtained 
by replacing certain parts of Gn_ , by new graphs of a suitable type. 

The construction of a sequence of hamiltonian graphs from 5^(8, 8, 3) starts 
with a graph G0 obtained from graph H in Fig. 2.1 by adding an edge t>,x28 
(numerals in this and further figures denote indices of vertices). To obtain G„ 
from Gn_,, n = 1, 2, ..., we delete from Gn_, the edge xnx13 and place into a 
quadrangle thus vacated a copy of graph H shown in Fig. 2.1; in this we identify 
the vertices x,, x2, x28, x29 of H with the vertices x,4, x,,, x12, x13 of G„ _,, 
respectively and the corresponding edges. The labels of all the vertices of Gn 

except the labels of the vertices of the "last" subgraph H of Gn are deleted. 
Now we show that Gn is hamiltonian if Gn_ , is hamiltonian. A hamiltonian 

circuit in G„_, pases throught the edges . . .x1 0xn , x,,x,2, xi2xi3> xi3xi4, xuxis ••• 
of Gn. In H (and in G0) a hamiltonian circuit passes through the edges x,x,_ ,, 
i= 1,2, ...,29 and x,x29. A hamiltonian circuit in Gn consists of the part of the 
hamiltonian circuit of Gn_ , between x,4 and x,, and a hamiltonian path from x2 

to x, in H. 
The proof of the bound of the shortness coefficient for the family ^ ( 8 , 8, 3) 

is based on a construction of an infinite sequence of nonhamiltonian graphs of 
this class. The construction starts with a graph G0 obtained from the graph H 
in Fig. 2.2 by adding an edge a b. 
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28 

Fig. 2.1 
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To obtain G„, n = 1,2, ..., from Gn _ , each of the quadrangular parts of Gn _ x 

marked dark is replaced by the graph H of Fig. 2.2 in such a way that the 
vertices a and b are identified with the trivalent vertices of the boundary of the 
marked part, the vertices c and d with 8-valent ones respectively, and the 
corresponding boundary edges are identified, too. 

In Gn _ ,, n = 1, 2, . . . there are 3" dark marked quadrangular parts, this means 
that there are at least 3" subgraphs in Gn isomorphic to H. Any two different 
such subgraphs have at most one vertex in common. 

It is easy to verify that Gn belongs to 5^(8, 8, 3) and that for the number of 
vertices v(Gn) of G„, n = 0, 1, ... 

n 

v(Gn) = 4+ 10 X 3* = 5 .3" + I - 1. 
k = 0 

On the other hand every longest circuit of Gn contains at most five trivalent 
vertices from the interior of each copy of H. Therefore 

h(Gn)<v(Gn)-Y= - 1 + 5 . 3 " + 1 

The above considerations yield 

- 3" = 14 . 3 " - - 1 . 

- 1 + 14. 3" 14 

- 1 + 15. 3" 15 
Q(Sf(S, 8, 3)) = lim inf - - ? - < lim 

" - 0 0 v(Gn) "-+00 

To establish an upper bound of shortness coefficient for the family Sf(99 9, 3) (or 
5^(10, 10, 3)) we proceed similarly as above. The graph G0 is obtained from the 
graph H in Fig. 2.3 (or Fig. 2.4) by adding an edge connecting the vertices a 
and b. 

The graph G„, n = 1, 2, ..., results from G„_x by replacing each of the dark 
marked quadrangles of Gn_ , by a copy of H in Fig. 2.3 (or Fig. 2.4) identifying 
the boundaries of the dark marked quadrangle and of H, respectively. Every 
longest circuit of Gn omits at least three vertices (seven vertices, respectively) of 
each copy of H of Gn. Since Gn_] contains T (8", respectively) dark marked 
quadrangles, an easy computation shows that 

V(Gn) = 4 + 24 X T = 4.T+l and h(Gn) < v(Gn) - 3 . T = 25 . T 
k = 0 

for Gne&(99 9, 3) and 
n 

r(G„) = 4 + 28 X 8" = 4.8" + 1, h(G„) < 25.8" for G„e^(10, 10, 3), 
A: = 0 

respectively. 
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So 

Q{SЃ{9, 9, 3)) < — and Q(SЃ(10, 10, 3)) < — . п 

28 32 

3. Relationship among some families of triangular 
and quadrangular 3-polytopal graphs 

Almost all considerations in the sequel use the notion of the radial graph r(G) 
of a given planar graph G (see J u c o v i c [14], Ore [15]). Given a planar 
graph G we associate with G (with vertex-set V(G), edge-set E(G) and face-set 
F(G)) a graph r(G) so that V(r(G)) = V(G) u F(G); e = xyeE(r(G)) if and only 
if xe V(G), yeF(G) and x is a vertex of the face y or xeF(G), ye V(G) and y 
is a vertex of the face x. As every edge ge E(G) is incident with two vertices and 
with two faces of G, g determines a quadrangular face of r(G). So for every 
graph G, r(G) is a quadrangular graph whose vertex-set V(r(G)) is partitioned 
into two disjoint sets. The valencies of vertices in one set are those of the vertices 
of V(G), the valencies of the other second are equal to those of the faces from 
F(G). 

Theorem 3.1 ( J e n d r o l , J u c o v i c and T r e n k l e r [11]). If He 21(3, 3, c), 
then H is the radial graph of a c-gonal pyramid or of a triangular 3-polytopal graph 
G belonging to £f(c, c, 3). • 

It is easy to see that for every triangular 3-polytopal graph G the radial graph 
H = r(G) of the graph G is a quadrangular one with the property that at least 
one of the end-vertices of any edge e of H is trivalent. If G does not contain 
trivalent vertices, then every edge of r(G) has exactly one endvertex trivalent. 

Theorem 3.2. If H is a quadrangular 3-polytopal graph in which every edge has 
exactly one trivalent vertex, then there is a triangular 3-polytopal graph G without 
trivalent vertices such that 

H — r(G) and vk(H) = vk(G) for every k, k ^ 3. 

Proof. For given H we shall construct a triangular 3-polytopal graph G. 
The vertex-set V(G) of G consists of the vertices of H having valencies > 3 in 
H. Two vertices x and y of G are connected by an edge provided that there is 
in H a face a incident to the vertices x and y. Let y be a k-valent vertex of H, 
k > 3. Let x0, x2, ..., xk_x be trivalent vertices of H adjacent to y such that the 
vertices xi9 y, xi+ , are incident to the same face /?,, i = 0, 1, ..., k — 1. Let y be 
the fourth vertex of the face /?,. (Indices are taken modulo k.) By the assumption 
of the theorem deg^y, > 3 and the vertices y, xi+]9 y + , are incident to a face 
fc. Therefore G also contains the edges yy, yy + , and yy, + ,. These edges form 
a triangular face in G. This means that every face of G is a triangle and there 
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is an unambiguous correspondence between the vertices of V(G) and the non-
trivalent vertices of H and between the faces of F(G) and the trivalent vertices 
of H9 respectively. Obviously H = r(G). G is clearly a 3-polytopal triangula-
tion. • 

Corollary 3.2. To every graph He£(a9 3, b)9 a ^ 3 ^ b9 there is a triangular 
3-polytopal graph G with vertices of valencies a and b only and such that 
H = r(G). D 

Theorem 3.3. For every triangular graph G 

h(r(G)) = 2h(G). 

P r o o f For the purpose of the proof let af denote a face of F(G) and a 
vertex of V(r(G)) associated to a,- in r(G). The indices below are taken modulo 
k. 

First we show that h(r(G)) < 2h(G).. Obviously r(G) is the bipartite graph 
with a vertex-set V(r(G)) = V(G) u F(G). Let x, and a{ denote the member of 
V(G) and F(G)9 respectively. Let C = x09 a09 x]9 a]9xl9 ..., xk_,, ak_]9 xk = x0 

be a longest circuit in r(G). Since G is triangular one, the vertices xf and xi+ , are 
incident to the face at in G. Therefore the vertices x, and xi+] are adjacent in G9 

this means that C = x0, xl9 ...9 xk = x0 is a circuit of the length k in G. 
Let C = x0, e0, x]9 e]9 x29 ...9 xh_]9 eh_]9 xh = x0 be the longest circuit in G 

with h = /*(G) and e, = xfxi+,. Let E(C) be a set of edges of C9 E(a) be a set 
of edges incident to the face a and F(e) be a couple of faces incident to the edge 
e in G9 respectively. If a vertex x and a face a are incident in G9 then the 
corresponding vertices x and a of r(G) are adjacent. Let (p be a mapping which 
maps every edge e to a face belonging to F(e). If the mapping <p from E(C) to 
iF(G) is an injection, then the sequence x0, <p(e0), xl9 <p(e,), x2... xh_ ,, <p(e/?_,), 
JKO forms a circuit of the length 2/z in r(G). To finish the proof it is sufficient to 
show that the mapping can always be chosen in such a way that cp is an injection. 
The following two facts are evident 

F(e,-)nF(e,) = 0 for jt{i - 1, /, / + 1}, (3.1) 

|F(e , )nF(e / + , ) |< 1 for every i = 0, 1, ..., h - 1. (3.2) 

If for every / = 0, 1, ..., h - 1 F(e;) n F(e /+ ,) = 0, then the required mapping (p 
can be easily chosen. If this is not true, it is sufficient to suppose 
F(e0) n F(e,) # 0. In this case cp is defined as follows 

^(e0) = - r(e0)nF(e,). 

Let Ff == {<p(er), t = 0, 1, ..., / - 1}, then we put ^(e,) = aeF(e ;) - Fi9 a arbi­
trary. (We can do it because F(e,) — Ff is always nonempty.) In the opposite case 
there is a minimum i0 such that F(e,o) — FiQ = 0. Let F(e7o) = {a]9 a2}9 then there 
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must be indicesj, / < l0 such that F(e,) n F(Qj) = {ax} and FXe,) n F(QX) = {a2}\ 
however, (3.1) and (3.2) imply j = / = i0 — 1, which is a contradiction. • 

4. The longest circuits in the families 2(a, b, c) 

Basic combinatorial properties of graphs of the families 2(a, b, c) have been 
investigated in Jendrof and Jucovic [10]. In the sequel we shall consider 
only triples (a, b, c) for which the families 2(a, b, c) are nonempty. 

Theorem 4.1. (i) In the family ,=2(3, 3, c), c > 4, there is a unique hamiltonian 
graph — a radial graph of a c-sided pyramid M (c). 

(ii) the family 2,(3, 3, c) — {M(c)}> 4 < c < 4, contains a unique nonhamiU 
tonian graph. 

(iii) For every graph He 2(3, 3, c) — {M(e)}, 6 < c < 7, there is 

h(H) = 8 + 2 (- - 1} vc(H) and 

Q(2(3, 3, c)) = r(2(3, 3, c)) = - , a(2(3, 3, c)) = 1. 

oo • 2 
(iv) Q(2(3, 3, 8)) < — and r(J(3, 3, 8)) = - . 

45 3 

(v) Q(2(3, 3, 9)) < — and r(J(3, 3, 9)) < - . 
42 3 

(vi) , W , 3 , , 0 ) ) ^ and ^ ( 3 , 3 , > 0 ) ) ^ . 

(vii) For every c > 10 the family 2(3, 3, c) — {M(c)} is empty. 

Proof. It is easy to see that the graph M(c) — a radial graph of a c-sided 
pyramid — is hamiltonian. By Theorem 3.1 and Corollary 3.2 there is for every 
graph HE2(3, 3, c) - {M(c)} a graph Getf(3, 3, c) such that H = r(G). 
Letf(M) denote the number of faces of a planar graph M. Since G is triangular 
we have 

v(G) = v3(G) + vc(G) = 4 + ^ - iyc(G) (4.1) 

and f(G) = 4 + 2 ^ - - l)vc(G). (4.2) 
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By Theorems 3.2 and 3.3, (4.1) and (4.2) there is 

h(H) = 2h(G) < 2v(G) = 8 + l(- - \\vc(G) = 8 + 2W- - \\vc(H) (4.3) 

and v(H) = v(G) +f(G) = 8 + (c - 3) vc(G) = 8 + 3(c - 3) vc(H). 

From (4.3) and (4.4) it follows that all graphs belonging to the family 
2 

.2(3, 3, c) — {M(c)} are nonhamiltonian and that r(J(3, 3, c)) < -. This finishes 
3 

the proof in the ease (i). 
By Theorem 2.1 the families 5^(6, 6, 3) and 5^(7, 7, 3) are hamiltonian. For 

every graph He 1(3, 3, c), 6 < c < 7, the Theorems 3.1 and 3.3 imply 

h(H) = 2h(G) = 2v(G) = 8 + 2(- - \)vc(G) = 8 + l(- - \)vc(H). 

The inequalities for Q(21(3, 3, c)), 8 < c < 10, are obtained by using Theo­
rems 3.1 and 3.3, the relations (4.1), (4.2), (4.3) and (4.4) and sequences of 
triangular nonhamiltonian graphs belonging to ^(c , c, 3) which were used in the 
proof of the Theorem 2.1 (ii) and (iii). For the cases (ii) and (vii) see [10]. • 

Lemma 4.1. For a ^ b # c # a the family 2L(a, b, c) is nonhamiltonian. 
Proof. Every graph H belonging to «2(a, b, c) is bipartite. Its one co­

loured class of vertices consists of all vertices of the valencies a and c, while its 
other class contains all b-valent vertices of H. This implies 

ava(H) + cvc(H) = bvb(H). (4.5) 

The E u 1 e r polyhedral formula for the quadrangular graph P gives 

X (4-k)vk(P) = S. (4.6) 
k> 3 

For H belonging to the family l(a, b, c) the equality (4.6) provides 

(4 - a) va(H) + (4-b) vb(H) + (4 - c) vc(H) = 8. (4.7) 

An assumption of hamiltonicity of H implies 

va(H) + vc(H) = vb(H). (4.8) 

From (4.5), (4.7) and (4.8) it is easy to obtain a contradiction. • 
Theorem 4.2. (i) The family 21(4, 3, c), c > 5, is nonhamiltonian. 
(ii) The family 21(4, 3, 5) contains exactly four graphs. 

(iii) For every graph He 21(4, 3, c), 6 < c < 7 there is 

h(H)= \2 + (c-4)vc(H) and 
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rj(j2(4, 3, c)) = r(J(4, 3, e)) = - , <r(j2(4, 3, e)) = 1. 
3 

2 
(iv) For every e > 8 there is r(=2(4, 3, e)) = - . 

3 
P r o o f By Corollary 3.2 for every graph He J(4, 3, e) there exists a trian­

gular graph G with vertices of valencies 4 and c only and such that H = r(G). 
For G from (2.0) we can easily obtain 

f(G) = 8 + (c - 4) iv(G) and t>(G) = 6 + - (c - 4) iv(G). 
2 

Since /*(#) = 2h(G) < 2v(G) = 12 + (c - 4) ur(/7) (4.9) 

and t;(#) = t?(G) +f(G) = 12 + - (e - 4) vc(H) 
2 

2 
we can easily obtain r(J(4, 3, e)) < - . 

3 
By Theorem 2.2 all triangular planar graphs with maximum degree < 7 are 

hamiltonian. therefore for 6 < e < 7 there is an equality in (4.9). The equality 
for £), <J and r can now be easily obtained. The case (iii) is exhausted. 

To prove the equation in (iv) it is sufficient to construct an infinite sequence 
of triangular hamiltonian graphs Gn with 4-valent and e-valent vertices only. A 
construction of such sequence begins with a graph G0 of a e-sided bipyramid. 
Let G„_}, n = 1, 2, ... be a triangular hamiltonian graph with the required 
property. Choose three 4-valent vertices x, y, z in such a way that the distance 
between x and z is two and y is a vertex adjacent to both of them. Let w be a 
vertex of Gn _} adjacent to y, w 7-= x, z. We add e — 4 new vertices z,, z2, ..., z, _ 4 

in the edge yvv and join them with the vertices x and z. A graph Gn thus obtained 
has two e-valent vertices and e — 2 4-valent vertices more than the graph G„_}. 
It can be verified that Gn is hamiltonian provided that Gn _ , is. The cases (i) and 
(ii) follow from Lemma 4.1 and [10], respectively. • 

Theorem 4.3. (i) The family 1(5* 3, e), e > 6, is nonhamiltonian. 
(ii) For every graph He 2(5, 3, e), 6 < c < 7, 

h(H) = 24 + 2(e - 5) vc(H) and 

Q(2(59 3, c)) = r(J(5, 3, c)) - - , rr(J(5, 3, c)) = 1 
3 

2 
(in) For every e > 12, r(J(5, 3, e)) = - . 

3 

352 



Proof. The proof in the cases (i) and (ii) is similar to the proof of the 
parts (i) and (iii) of the previous Theorem 4.2. We omit it. The equality 

2 
r(J(5, 3, c)) = - can be obtained by using (2.0), Theorems 3.2 and 3.3, Coroll-

3 
ary 3.2 and the fact that the family ^ ( 5 , 5, c), c > 12, is hamiltonian. • 

Theorem 4.4. (i) In the family =2(3, 4, 4) there is an infinite hamiltonian 
subfamily and an infinite nonhamiltonian subfamily. 

(ii) o(i?(3, 4, 4)) = 1 

(iii) The family =2(3, 4, C), c > 5, is nonhamiltonian and 

1(5(3,4, c))=l. 

Proof. A construction of an infinite sequence of hamiltonian graphs 
starts with a graph G0'm Fig. 4.1. A circuit C0 = uu w2,..., w7, u0 ,, u01, u0 0, u0 3, 
..., u0 8, w8, w9, Wj is a hamiltonian circuit in G0. 

V " ^ " 0 , 1 

\ 

\ Uf» o Лз 
"0,4 r \ U 0 , 8 \ 0 f 2 

Лз 
"0,4 r 

s^yiX 
yЧ7 /Ч.5 

/"õTГ u 5 
\" 6 

U 3 L 

u 5 
\" 6 

Fig. 4.1 

To obtain a graph Gn from the graph Gn _ 1 we delete from (/„ _ j the vertex 
u n _ x 0 (and edges incident with it) and fill an 8-gon un_]U un_U3, un_U4, ..., 
un _,̂  8, w„_, 2, thus vacated in the manner as shown in Fig. 4.2. 

A hamiltonian circuit Cn of Gn is obtained from the hamiltonian circuit Cn _ x 

of Gn_ , by replacing its part w„_ lt 2, w B _ I i 0 , K_ lt 3 by the path w„_ K 2 , w„, „ w„,2, 
W " , Os W « , 3 5 . - . 5

 WA?, 8 5 U n - \ , 3 -
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To prove the existence of an infinite nonhamiltonian subfamily of the family 
j.?(3, 4, 4) it is sufficient to consider the family of all 4-regular 3-polytopal graphs 
with triangular and quadrangular faces only. For every graph G from this family 
there is v(G) # / (G) , therefore the graph r(G)e£(3, 4, 4) and it is nonhamil­
tonian (see, e.g., Jucovic [14]). 

Fig. 4.2 

The proof that cr(i2(3, 4, 4)) = 1 may be found in Ewald [2]. The family 
=2(3, 4, c), c > 5 is nonhamiltonian by Lemma 4.1. In order to prove the second 
part of (iii) it is sufficient to construct an infinite sequence {Gn} of 4-regular 
3-polytopal graphs with triangular and c-gonal faces only. It can be verified that 
r(Gn) _ J2(3, 4, c) and/(G„) = v(Gn) + 2. 

Since the graph r(Gn) is bipartite, the vertices of the one colour class of r(Gn) 
correspond to the vertices of Gn and the vertices of the second correspond to the 
faces of Gn. Therefore it is sufficient to show that in Gn there exists an alternating 
sequence Cn of vertices and faces of Gn9 x0, a09 x,, a,, x2, ..., xm9 am9 x0 such that 
m = v(Gn)9 a, 7-= aj9 x, 7-= x7 if / ¥" j and af is incident to xf and x, + ,, am is incident 
to xm and x0 for every i = 0, 1, ..., m. 

The sequence Cn specifies a circuit Cn in r(Gn) of the length h(r(Gn)) = 2v(Gn). 
Since v(r(Gn)) = v(Gn) +f(Gn) = 2v(Gn) + 2 we have r(j2(3, 4, c)) = 1 for every 
c > 5. The construction of a required sequence Gn begins with a graph of c-sided 
antiprisma in Fig. 4.3 taken as G0. to obtain the graph Gn we delete the edge 
*/,-i,iyw-i,2 of G/f_, and add c — 3 new vertices x„ ,, ..., x,7, £_3 into the edge 
*,.-i.iy„-Li and c-3 new vertices y,,, ...,y,7,r_3 into the edge xn _ K 2y„ _ K 2 

and connect by an edge the couples of vertices x„ _ , , and yn ,; x„ c _ 3 and yn _ , 2, 
for every / = 1, 2, ..., c — 3 the couples x/7 , and y,7 ,, for every / = 1, 2, ..., c — 4 
the couples xn , and y/7 / + , , respectively. See Fig. 4.4. 
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У«-I, 

У n - l Д n-1,2 

y n - l , 3 

y n - l , 2 
Fig. 4.4 

To find a required sequence Cn in Gn is easy and is left to the reader. • 
Theorem 4.5. (i) The family .2(3, 5, c), c > 5 is nonhamiltonian. 

( ) É>(J(3, 5, 5 ) ) < - . 

(ІІІ) r(c2(3, 5, c)) < - for every c > 6. 

Proof. Nonhamiltonicity of the family J(3, 5, c) for c > 6 follows from 
Lemma 4.1. The proof of nonhamiltonicity of the family .2(3, 5, 5) is based on 
the fact that no graph H from .2(3, 5, 5) contains an edge with both end-vertices 
trivalent. This and (4.6) implies 

h{H) < 2v5{H) < v{H) = v3{H) + v5{H) = 2v5{H) + 8. 

To prove the case (ii) consider 5-regular polyhedral graphs G containing 
triangles and pentagons only. (For an existence of an infinite family of such 
graphs see J u c o v i c [14] or T r e n k l e r [21]). Clearly r(G)e=2(3, 5, 5). De­
note by fk{P) the number of k-gonal faces of a 3-polytopal graph P. Using the 
Euler polyhedral formula we have 
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f(G) = 20 + 6f5(G) and v(G) = 12 + 4f5{G). 

Since v(r(G)) = v(G) +f(G) = 32 + 10f(G) and 

h(r(G)) < 2v(G) = 24 + 8/5(G), 

we can easily obtain the proposition of (ii). 
For every graph tf 6*2(3, 5, c), c > 6, there is 

3i;3(tf) + ctv(tf) = 5i;5(tf) and 

h(H) < 2min{t>3(tf) + vc(H\ v5(H)} 

because of the biparticity of tf. The relation (4.6) implies 

t;3(tf)-t;5(tf) + (4-c) i ; , ( t f) = 8. 

These three relations lead to 

h(tf) < 24 + 4(e - 3K(tf ) 

and v(H) < 32 + 5(c - 3) vc(H)9 

4 
from which we easily obtain r(o2(3, 5, c)) < - . • 

5. Remarks 

The results presented leave many open questions, in particular for families of 
quadrangular 3-polytopal graphs with exactly two types of edges. Some of them 
concern the cases of the families of triangular graphs S?(a, a, 3), 8 < a < 10, too. 
We believe (in agreement with the conjecture of Gr i i nbaum and Wal-
ther [7]) that in all these cases the shortness exponentis equal to 1; more 
precisely we state 

Conjecture 1. a(6f(a, a, 3)) = cr(J(3, 3, c)) = 1 for every c, 8 < c < 10. 
The following question would be interesting: What is the minimum number 

c0 such that o(2L(a, 3, c0)) < 1, 4 < a < 5? 
Theorem 4.2 (and Theorem 4.3 if a = 5) implies c0 > 8. A similar question 

can be posed for the families J(3, b, c) 4 < b < 5. 
Conjecture 2. cr(J(3, b, c)) = 1 for any c < 7 and 4 < b < 5. 
We should like to remind the reader that many problems concerning short­

ness parameters for various families of 3-polytopal graphs formulated by 
Gr i inbaum and Wal the r [7] are still open. 
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