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ON GENERATING AND CONCRETENESS 
IN QUANTUM LOGICS 

VLADIMÍR ROGALEWICZ 

ABSTRACT. States on quantum logics are fully determined by their values on 
the set of generators. Finitely generated concrete logics are finite. There exists 
an infinite logic with a finite set of generators, the sublogics of which are only 
concrete logics. 

We show that states on quantum logics are fully determined by their values 
on the set of generators. Finitely generated concrete (= set representable) logics 
are finite. However, we construct an infinite logic with a finite set of generators, 
the sublogics of which are only concrete logics. 

A (quantum) logic is a partially ordered set L with the least and the greatest 
elements, 0 and 1, and with the orthocomplementation ' : L —> L such that for 
any a,b G L 

(i) a < b & b' < a', 
(ii) (a')' = a, 

(iii) if a < b', then a V 6 exists in L, 
(iv) if a < b, then b = a V (6 A a'). 

A subset M of a logic L is called a sublogic if 

(i) O E M , 
(ii) ae M => a' e M, 

(iii) a,b e M and a < b' (in L) =--> a V b G M. 

A block of L is a maximal Boolean subalgebra of L. Two elements a,b G L are 
said to be compatible if there are three elements c,d,e G L such that c < e', 
d < e', c < d' and a = c V e, b = d\f e. 

A state s on L is a mapping s: L —> (0,1) such that 6(1) = 1, and s(aVb) = 
s(a) -f- s(b) provided a < b'. A state is said to be two-valued if s(L) = {0,1} . 
Let us denote by S(L) the set of all states on L and by S2(L) the set of all 
two-valued states on L . 

A logic L need not have a set representation (consider the lattice of all 
projectors in a Hilbert space). When it has, we call it concrete. There is a simple 
characterization of concrete logics. 
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P r o p o s i t i o n 1. A logic L is concrete if and only if for every pair a, b G L. 
a ^ b there exists a two-valued state s such that s(a) = 1 and s(b) = 0 . 

P r o o f . Follows the s tandard Boolean se t-represen ta t ion technique — see 
e.g. [3] or [6]. 

Let us now s ta te our resul ts. 

P r o p o s i t i o n 2 . Let L be a logic and let G be a subset of L. Then there 
exists the least sublogic of L containing G. 

P r o o f . T h e in tersec t ion of sublogics is again a sublogic. 

D e f i n i t i o n 3 . If G C L, then the least sublogic of L containing G is said 
to be the logic generated by G. 

P r o p o s i t i o n 4 . Let P be the logic generated by the set G C L. Suppose 
s,t G S(P) and s(g) = t(g) for each g £ G. Then s(a) = t(a) for every a G P. 

P r o o f . Deno te L\ = {a G P | if s,t G S(P) and s(g) = t(g) for each 
g G G, then s(a) = t(a)} . Obviously, G C L\ . Since L\ is a sublogic of P, the 
assertion follows from the minimali ty of P. 

P r o p o s i t i o n 5. Let P be a concrete logic generated by a finite set G. Then 
P is finite. 

P r o o f . Suppose P is no t finite. Then , as a consequence of Proposi t ion 1, 
5 2 ( P ) is infinite. Contrariwise, due to Proposi t ion 4, every s ta te on P is fully 
de termined by its values on the elements of the genera t ing set 5 , and thus 
c a r d 5 2 ( L ) < 2 c a r d G . 

It should be noticed tha t the generating in logics follows qui te different pat
terns from the generating in or thomodular lattices ([1], [4]). Our final example 
shows some properties of generating in logics, which may be ra the r unexpected. 

E x a m p l e 6. By means of the Greechie technique ([2], [5]) we construct a 
logic L with the following properties: 

(i) L is infinite, 
(ii) L is finit ly gen ra ted 

(iii) L is not oncrete 
(iv) any proper ubl \ cf L r concrete. 

Consider the hypergr ph in Fig. 1. 
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Fig. 1 

Since it contains no "loops" of order 3, it is a representation of a logic L. Obvi
ously, L is infinite. Let P be the logic generated by the set G= {flo,«i,«2?«3? e}. 
Then 61 = (eV a\)' is an element of P , and, by an induction, also 6,+i = 
(b, V a,(mo<i4))' are elements of P. Hence P = L. We have shown that L is 
an infinite logic with a finite set of generators. According to Proposition 5, L is 
not concrete. 

Let us investigate proper sublogics of L. When a sublogic contains all ele
ments of the set G, it is the whole logic L. It follows that there is only a limited 
number of sublogics of L. In fact, there are six classes of them: 

(Cl) a "horizontal sum" ([3], [5]) of a finite or countable set of Boolean 
algebras 22 ; 

(C2) the logic depicted in Fig. 2a) or its sublogic containing only a finite 
number of blocks; 

(C3) a horizontal sum of a logic from the class (Cl) and a logic from the 
class (C2); 

(C4) a horizontal sum of two logics from the class (C2); 
(C5) the logic depicted in Fig. 2b) or its sublogic containing a finite number 

of pairs of blocks; 
(C6) the logic depicted in Fig. 2c) or its sublogic containing a finite number 

of triads of blocks. 
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(») (b) 

Fig. 2 

It is an easy consequence of Proposition 1 that all these sublogics are concrete. 
As an example we construct a "separating" family of states for the class (C6). 
We denote the atoms in agreement with Fig.l (the element a0 is omitted). 
A state is fully described by its evaluations on all atoms. For the reason of a 
simpler description we denote e = bo • Now the two-valued states required by 
Proposition 1 are given in Tab.l. 

Table 1. "Separating" states for the class (C6). 

a i <-2 Û З ЬĄJ + 1 ЬAJ + 2 ЬĄJ+3 ЬĄJ 

51 1 1 1 0 0 0 0 

52 1 0 0 0 1 0 0 

5 3 1 1 0 0 0 1 0 

54 0 1 1 0 0 0 1 

55 0 0 1 1 0 0 0 

56 0 0 0 1 0 1 0 

57 0 0 0 0 1 0 1 

U 0 0 0 *ч i - si} *.; i - stJ 

i = 0,1,2, 3, 

І = 0,1,2 3, 

Ьj = ! if * = h StJ = 0 otherwise 
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