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(Communicated by Tibor Katrinak ) 

ABSTRACT. It is proved that for every nearly idempotent plain algebra A with 
at least two idempotent elements there exists an idempotent plain algebra B such 
that the varieties V(A) and V(B) are categorically equivalent; furthermore,, ex
cept for some cases when A has three or four elements, the full idempotent reduct 
of A is plain. These facts lead also to a classification, up to term equivalence, of 
nearly idempotent plain algebras with at least two idempotent elements. 

Introduct ion 

An algebra A is called plain (or strictly simple) if A is finite, simple, and A 
has no nontrivial proper subalgebras. Recently K. A. K e a r n e s [3] has found 
a short, elementary proof for the result in [10] that plain idempotent algebras 
generate minimal varieties. In fact, the proof is given for a more general class of 
algebras that are called in [3] nearly idempotent plain algebras. By definition, a 
plain algebra A is nearly idempotent if A has at least one idempotent element, 
and the automorphism group of A acts transitively on the set of non-ideiiipotent 
elements of A . 

Our aim is to study how far nearly idempotent plain algebras are from idem-
potent plain algebras. If A is a nearly idempotent plain algebra with a single 
idempotent element 0, then clearly 0 is the only fixed point of each nonidentity 
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automorphism of A . Furthermore, since the automorphisms of A act tran
sitively on A \ {0}, therefore every unary term operation of A is either the 
constant with value 0 or a permutation of A fixing 0. Hence A is one kind of 
so called term minimal algebras discussed in detail in [11]. 

In this paper, we restrict our attention to nearly idempotent plain algebras 
with at least two idempotent elements. We show that these algebras are indeed 
very close to idempotent plain algebras. Firstly, it turns out that for every nearly 
idempotent plain algebra A with at least two idempotent elements there exists 
an idempotent plain algebra B such that the varieties V(A) and V(B) generated 
by these algebras are categorically equivalent. Secondly, we prove that, except 
for some cases when A has three or four elements, the full idempotent rcduct 
of A is plain; that is, up to term equivalence, A arises from a plain idempotent 
algebra by expanding it with some new operations. 

Both of these results point out a reason for the fact that the property of gen
erating minimal varieties carries over naturally from idempotent plain algebras 
to nearly idempotent plain algebras. This is obvious for the result on category 
equivalence. To see it for the other result, one would need to know 

(•) to what extent the property of generating minimal varieties is hereditary 
for expansions among plain algebras. 

It is well known (see, e.g., [2; Theorems 12.1, 12.4]) that if for a plain algebra 
A the variety V(A) is congruence modular, then V(A) is minimal unless A is 
an affine algebra having no idempotent elements. Since every idempotent plain 
algebra A with at least three elements generates a congruence modular variety 
(cf. [10]) -- and this property is inherited by the expansions of A it follows 
immediately that all nearly idempotent expansions of A will generate a minimal 
variety. We remark at this point that hereditariness in the sense of (•) holds 
true also under much weaker assumptions than congruence modularity, see [12]. 

Comparing nearly idempotent plain algebras 
to idempotent plain algebras 

We follow the convention that algebras are denoted by boldface capitals and 
their base sets by the corresponding letters in italics. 

Let A be an arbitrary algebra. By an idempotent element of A , we mean an 
element u £ A such that {u\ is a subuniverse of A . The set of idempotent ele
ments of A will be denoted by UA . We will say that A is an idempotent uhjehrv 
if UA — A. By an idempotent operation on /I , we mean an operation / on A 
such that f(x, . . . , ;/*) = x for all x G A. Clearly, the algebra A is idempotent if 
and only if every fundamental operation (hence every term operation) of A is 
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idempotent . T h e full idempotent reduct of A is defined to be the algebra with 

base set A whose opera t ions are all idempoten t t e r m opera t ions of A . 

Observe t h a t by t he definition above, a una ry opera t ion is idempoten t if and 

only if it is the identi ty mapping , denoted id; th is is the meaning involved in 

the concept of an idempoten t algebra or full idempoten t reduct of an algebra . 

However, among unary opera t ions ( tha t is, among t ransformat ions) a more cus

tomary meaning a t t ached to t he word " idempoten t" - which we will adopt from 

now on is the following: a una ry opera t ion / on A is called idempotent if 

P(x') = f(x) holds for all x G A. 

For an algebra A , Clo A will denote the clone of t e rm opera t ions of A ; 

Clo,/{ A the set of n-ary t e r m opera t ions of A (n > 1); Au t A the au tomorph i sm 

group of A ; and Sub A the set of subuniverses of A . One-element subuniverses 

[subalgebras] of A are usually referred to as trivial subuniverses [subalgebras]. 

Two algebras C , D on the same base set C — D are called term equivalent 

if C l o C = C l o D . We will find it convenient to ex tend this not ion to algebras 

C , D on a rb i t ra ry base sets as follows: C , D will be called term equivalent 

in symbols: C = D if C is isomorphic to an algebra C on D such t h a t 

C l o C ' = C l o D . 

For an ?j-tuplc x t he coordinates of x will be denoted by x ° , . . . , xll~l . If C 

is a set, V C C , and g is an opera t ion on C wi th g(V, . . . , V) C V , then Oli/ 

s t ands for the restr ict ion of O to V. Similarly, for a subset S of Cn (n > 1), 

S\Y lH used fts an abbrevia t ion for S D Vn. T h e diagonal of C x C is the set 

A r = {(r, c) : c G C } . For 5 , T C C 2 t he relat ional p roduc t of S and T is the 

set 

S o T = {(a, c) G C 2 : there exists beC wi th (a, b) G S, (6, c) G T } , 

and the converse of S is 

Su = {(/j,O) e.C2 : (aJ)) e S } . 

Let C — (C; F) be an arb i t rary algebra. For a positive integer rn the rath 

matrix power Q^'1^ of C is the algebra with base set Cw , whose operat ions are, 

for all k. all k-ary operat ions g: (Cm)k -> Cm of the form 

g ( x ( V . . . , x k _ { ) = ( . . . , O / ( ; r ( ) , . . . , ; / : A : _ j ) , . . . ) , 

where gt G Vlo//iA. C for all i (0 < z < m - 1 ). 

Let ( G Clo, C be an idempotent unary tei'm operat ion of C . Then e ( C ) 

is deiined t(> be the algebra with base set c(C) -- [x G C : c(x) = x]> . whose 

operat ions are all opera t ions of the form ig\r(n\ with g G C l o C . Notice^ that 

the algebra ( ( C ) is essentially independent of c as soon as the range of ( is 
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fixed. T h a t is, if e £ Clo1 C is idempotent and e(C) = e ( C ) , then e (C) and 

e (C) have the same set of operat ions, namely the restrict ions to e(C) = e(C) 

of all t e rm operat ions of C whose range is contained in e(C) = e(C). 

It is easy to see t ha t C [ r r^ and e ( C ) have no other t e rm opera t ions than 

their fundamenta l operat ions described in the preceding paragraphs . Since we 

are interested in algebras only up to t e rm equivalence, we need not be very 

rigorous on the similarity types; the similarity types of C'[7n] and e(C) could be 

selected arbi t rar i ly so t h a t the sets of t e rm operat ions are those described. 

Following [6] we call e £ Clox C invertible if for some integer rn > 1 there 

exist t{V . . . , tm_l £ Clo1 C and t £ C l o m C such tha t 

t(e(t0(x)),. . . , e(tm _,(x))) = x for all xEC. 

The impor tance of the construct ions C i—» C[m] and C i—> e ( C ) for an invert
ible idempoten t e £ Clo1 C lies in the fact t ha t they yield category equivalences 
V(C) -» V ( C l m l ) and V(C) -> V ( e ( C ) ) between the varieties generated by 
these algebras . Moreover, as R . M c K e n z i e proved in [6], if for two algebras 
C . D there is a category equivalence V(C) —> V(D) carrying C to D . then 
D = e(C[rn]) for some m > 1 and some invertible idempotent s £ Clo, C "' . 
T h e la t ter deep result wrill not be applied in this paper . W h a t we will need are 
merely the na tu ra l bijections be tween the subimiverses of the squares of the 
algebras C , C[m] and C , e ( C ) . It is s traigh tforward to check (see also [13 ) 
that 

S u b ( C x C ) -> S u b ( C [ m ] x C [ m ] ) , 5 ^ S[m] (f) 

wi th 

S[m] = {(x,y) eCm xCm : (x\yl) eS for i = 0 , . . . , m - l } . 

is a bijection. Suppose now that e £ Clo 1 C is invertible and idempoten t . and 
invertibility is wi tnessed by the term opera t ions t{v . . . , t,tn_l and / as al)ove. For 
every subuniverse S of C x C , each pair a £ S can be canonicallv represented 
as 

O--l(e/:0(O-),...,el:m_1(O-)) wi th et{)(a), . . . , etm_{ (a) £ e(S) (a £ S) . 

(••) 
implying that S is genera ted by its subse t e(S) ( throughout , the opera t ions 
are applied coordinatewise) . Fur thermore , the definition of the opera t ions of 
e ( C ) combined with the idempotence of e yields t ha t e(S) is a subuniverse of 
e ( C ) x e ( C ) , and e(S) = ^ L ( - ) • T h u s 

S u b ( C x C ) -> S u b ( e ( C ) x e ( C ) ) , S H-> e(S) = S\(,^ , (J) 

is a bijection . In par t icular , it follows t h a t for a subuniverse S of C x C 
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(])' S is a congruence of C if and only if S ^ is a congruence of C M 
( f )" S is an au tomorph i sm of C if and only if S^mJ is a n au tomorph i sm 

of C H ; 

and similarly, 

(~\.)' S is a congruence of C if and only if e(S) is a congruence of e ( C ) , 

(\),f S is an au tomorph i sm of C if and only if e(S) is an au tomorph i sm of 

' ( C ) . 

The only nontrivial claims t h a t are involved in these s t a t emen t s are t h a t 

in ( j y , e(S)oe(S) C e(S) implies SoS C S , t h a t is, if e(S) is t ransi t ive, 

then so is S, 

while 

in {})", e(S) o e(Su) = e(S) o (e(S))U C A c ( c ) implies 5 o Su C A r ; ; 

and the same with the roles of 5 , S u in terchanged. 

Both claims follow easily if one applies the canonical representa t ion (••) for the 

pairs in S. 

Clearly, the algebra C can essentially be recovered from C ^ as follows: if 

s{) G Clo1 C ^ is defined by £0(y) = ( H ° , . . . , H ° ) , t hen E0 is idempoten t and 

invertible, fur thermore, C = _ . 0 (C t m l ) . T h e following lemnra - a variat ion of 

Remark 2 irr [6; Section 2] - t he proof of which is s t raightforward, shows how 

the construct ion C »—» e ( C ) for an invertible idempoten t e E Clo 1 C can be 

i n v e r t e d ' to recover C from e ( C ) . 

L E M M A 1. ([6]) Let C be an arbitrary algebra with an invertible idempotent 

unary term operation e , and let D = e ( C ) . If the invertibility of e is wit

nessed by t{),.. . ,tm_l G C k q C and t G C l o m C . then e(y) = (e l 0 ( t (H ) ) , . . . 

• • • ̂  ctm-i {t(y))) ^s an invertible idempotent unary term operation of D ^ , and 

the mapping 

C^e(Dm), c ^ ( e < 0 ( c ) , . . . , e < m _ 1 ( c ) ) , 

is an isomorphism between C and an algebra term equivalent to e(D^) . 

One explanat ion why nearly i dempoten t plain algebras A with at least two 
idempotent elements behave so similarly to plain idempoten t algebras is given 
in the next proposit ion, which inrplies t h a t the variety V(A) is categorically 
equivalent to a variety generated by a plain idempoten t algebra. 

P R O P O S I T I O N 2. Let A be a nearly idempotent plain algebra with at least two 
idempoteni elements. 

(1) A has an invertible idempotent unary term operation e with e(A) — UA , 

(2) B — e (A) is a plain idempotent algebra, and 

(3) A = e ( B ^ ) for some invertible idempotent unary term operation e 

of B l 2 ] . 
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P r o o f . For brevity we will write U instead of UA. If A is idempoten t . 
then the claims of the proposi t ion are obvious (with e the identi ty operat ion 
and e = E 0 , where e0 is the operat ion described in the pa rag raph preceding 
L e m m a 1). Therefore, we assume tha t U ^ A. Select a rb i t ra ry distinct elements 
H0,H1 £ U, and let c £ A \ U. The sets {c} and {u0.u1} generate A , hence A 
has unary t e rm operat ions ei for i — 0 ,1 and a binary t e rm opera t ion h such 
t h a t e,t(c) = u% and h(u0,u{) = c Thus the equality 

h[e0(x),e1(x)) = x (*) 

holds for x = c. If x £ U, then the equalities e z(x) = x and (*) are obvious. 

Finally, since Aut A is t ransi t ive on A \ U, we conclude t h a t (*) holds for all 

x e A\U and e%(A\U) C U ( i = 0, 1). This implies t ha t e = e() is idempoten t . 
f 'o( e i (* r)) ~ ei(x) ^or a ^ x ^ ^ ' a n ( ^ e *s -Avertible (as witnessed by e ( ). e. 

and h). This completes the proof of (1). 

T h e claim in (2) is now an easy consequence of the propert ies of the Injection 

in (I) (cf. also (-j.)'), and (3) follows immediately from Lemma 1. L 

We note t h a t the weaker versions of the claims (1) (2) in Proposi t ion 2. 
where the invertibility of e is not required, is t rue for any plain algebra with at 
least two idempoten t elements (cf. [11], [3]). 

Making use of Proposi t ion 2 we now prove a s t ruc tu re theorem for nearly 

idempotent plain algebras. A 2-element algebra B will be called ordecable if B 
has a non tr ivial compa t ib le order. 

T H E O R E M 3 . If A is a nearly idempotent plain algebra with at least two tdt ///-

potent elements, then exactly one of the following conditions holds for A . 

(a) the full idempotent veduet of A is plain; 

(b) A = B ^ for a two-element ordevable idempotent algebva B tcith 
| A u t B | = 2 ; 

(c) A = f (B [ J J ) for a two-clement ordevable idempotent algebva B trith 

| Au t B | = I , and for an invertible idempotent unary tcrtti ope vat ion E 

of B ^ with three-element range containing the diagonal. 

P r o o f . Throughou t the proof we write U instead of l \ . If the algebra 

A is idempotent . then (a) obviously holds, so we assume1 that A \ I / 0 . \ \ \ 

use the claims and the notat ion of Proposit ion 2. including the term operat ions 

e() - e, e. and // constructed in its proof to witness the invert ibility o\' t . 

\\\ Lemma 1 and Proposit ion 2. the mapping yf: A --* f (/>"). a •-•• b ()( a ) • < . ; a ,), 

is an isomorphism between A . I K ! an algebra term equivalent to f ( B J ! . l o r 

any // £ U we ha\'e f (//) •--• (c()(a).( j(//)) — ('/• a), tliei'efore the imago o; I un

der Y; is the diagonal A / ;, of It2 , The term operat ion of f(B-~ ) eorrospondiuL. 
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to e under ip is 

cf = p o e o if"1: e(B2) -> e(B2) , 

(e0(a),e1(a)) = p(a) »-> <p(e(a)) = (e0(e0(a)) , e ^ e ^ a ) ) ) = (e()(a), eQ(a)) . 

That is, cf is the term operation e0(y) = (H°,H°) of B ^ restricted to e(B2). 
Clearly, e ' (>(B^)) =£ ( )(Bt2]) E E B . 

Later on, we will need the following claim, which is an easy consequence of 
the assertion in (\)ff. 

CLAIM 1. Restriction to U = e(A) = B yields an isomorphism \JJ : 
Aut A -> A u t B . 

It is worth noting that the invertibility of e is not a crucial assumption in this 
claim, though the proof presented here makes use of it. In fact, as was observed 
in [4], Claim 1 is true for arbitrary plain algebra A with at least two idempotent 
elements and for any idempotent e G Clo! A with e(A) = UA, even if e is not 
invertible. 

In order to prove Theorem 3, we consider first the case when B is not a two-
element orderable algebra. Our aim is to show that the full idempotent reduct 
of A is plain. To this end, we need to investigate the subuniverses of A x A . 
First we establish the required facts for the subuniverses of B x B , and then, 
using Proposition 2, we lift the results to A . 

For a set C and for c G C, XC(C) will denote the subset ({c} x C) L (C x {c}) 
of C x C . 

CLAIM 2. (see [9]) 
(1) Every proper subdirect subuniverse of B x B is either an automorphism 

of B or of the form X°(B) for some element O G / 3 . 
(2) If X°(B) is a subuniverse of B for some 0 G B. then 0 is a fixed point 

of each automorphism of B . 

P r o o f . Let S be a proper subdirect subuniverse of B x B , which is not 
an automorphism of B . The sets uS = {b G B : (H, b) G S} and Su = {b G B : 
(b, u) G S} are nonempty subuniverses of B for all u G B. Consequently, each of 
them is either a one-element set or equals B, as B is plain. By the assumptions 
on S, not all of them are one-element sets. Therefore a short analysis of the 
possible cases yields that there exist elements 0, 1 G B such that S = ({()} x B) 
U (B x {1}) . If 0 = 1, then we get that S = X°(B). Suppose therefore that 
0 ^ 1 . Then {b G B : (6,6) G S) = {0,1} is a subuniverse of B , hence 
B = {(). 1} and S is the order 0 < 1. This contradicts our assumption that B 
is not orderable, so the proof of (1) is complete. 
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To verify (2), assume X{)(B) is a subuniverse of B and consider an auto
morphism 7T of B . Then the relational p roduc t F = X°(B) on is a subuniverse 
of B x B , and F = ({0} x B) U (B x {TT(0 )} ) . Thus the claim proved in (1) 
implies t h a t jr(0) = 0 . Z 

C L A I M 3 . Every proper subdirect subuniverse of A x A is either an automor

phism of A or of the form, X{)(A) for some element 0 G U. 

P r o o f . Let S be a proper subdirect subuniverse of A x A such that S is 

not an au tomorphism. Then p(S) is a proper subdirect subuniverse of f ( B ^ i ) x 

e(E»f2J) which is not an au tomorphism. In view of the bijections described in 

( | ) and ( J ) , B x B has a subuniverse F such t ha t p(S) = F^ | , jy?.\ • It is 

easy to see t h a t F must be a proper subdirect subuniverse of B which is not 
an au tomorph ism. Thus by Claim 2, T = X°(B) for some element 0 G B = 

c(A) = U. Hence 

p(S) = (X{)(B)f]\£{B2) 

= X^(eiB'2))u(EQxEl)U(E1xEQ). 

where E% = {(b^bj G e(B2) : b{ = 0 , b1_i ^ 0} (i = 0, 1) . Applying p~x we 
get t ha t 

S = X°(A) U (DQ x Dx) U (Dx x DQ) wi th D% = p~l(E^ (i = 0, 1 ) . 

Here, t he sets DQ, Dx are disjoint from U, because EQ = p(DQ) < E1 = p^(D{) 

are disjoint from AB = p(U). 

We show t h a t DQ x D1 = 0 . Otherwise we would have a pair (c,d) in S 

such t h a t c, d G .4\f/. Since Aut A acts transit ively on A \ U, there exists 

-T G Aut A with J = 7r(c). By Claim 1 and Claim 2 (2 ) , we have TT(0) = 0. It 

follows now t h a t V = {a £ A : (a,7r(a)) G S } is a subuniverse of A such that 

c G V and V C\ U = {0} . Thus V is a proper subuniverse of A containing a 

non idempoten t element of A , contradict ing the plainness of A . This completes 

the proof of Claim 3. • 

Now we are in a position to prove t h a t the full idempoten t reduct of A is 
plain. Since each block of a congruence of an idempotent algebra is a subuniverse., 
it suffices to show tha t the full idempoten t reduct of A has no nontrivial proper 
sub algebras. 

Let a , bQ, 61 be a rb i t ra ry elements of A such t ha t bQ ^ b, . We are done1 it" 
we show tha t A has an idempoten t t e rm opera t ion g with g(b[r b]) = a . bet us 
select and fix an element c G A \ U, and consider the subuniverse S of A x A. 
generated by the pairs (bv, c) (i = 0 , 1 ) . Then S is a subdirect subuniverse. 
because {bQ1bl} and {c} generate A . Clearly, S is not an au tomorph i sm of A 
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and is not of the form X()(A) for any 0 <E U. Thus, by Claim 3, S = A x A. 
Hence A has a binary term operation g such that g((b0, c), (61? c)) = (a, c), that 
is. g(b{),b{) — a and g(c,c) = c. The transitivity of Aut A on A\ U implies 
that O(.r, x) = x for all x G A \ U, while for the elements x E U this equality is 
trivial. Thus O is idempotent. This completes the proof that (a) holds whenever 
B is not a :wo-element orderable algebra. 

R e m a r k . Notice that except for orre step in the proof of Claim 3, where near 
idempotence is made use of most of the argument above is based solely on the 
representation A = e ( B ^ ) of A from Proposition 2 and on the correspond
ing natural Injections (f), (if). Nevertheless, the assumption that A is nearly 
idempotent cannot be omitted if we want to conclude that the full idempotent 
reduct of A is plain. It is easy to see, for instance, that if A = B'2^ for a plain 
idempotent algebra B with X°(B) £ Sub(B2) (cf. Theorem 4), then the full 
idempotent reduct of A is not plain. 

Returning to the proof of Theorem 3 we now consider the case when B is a 
two-element orderable algebra. By Claim 1, we have | Aut A| = | A u t B | . Since 
Aut A acts transitively on A\U, and no nonidentity automorphism has a fixed 
point in A\U, therefore we get that | A u t A | = |-A\U |. In the case | A u t B | =-"2, 
these considerations yield that \A\ = 4, hence e has to be the identity operation. 
Thus (b) fodows immediately from Proposition 2. Similarly, if | A u t B | := 1, then 
| .41 — 3, arrd (c) is an immediate consequence of Proposition 2 and the inclusion 
Ay, C e(B2) established at the beginning of the proof. 

In case (b), A has a compatible Boolean lattice order with bounds in U, while 
in case (c), A has a compatible total order with bounds in U. Therefore in both 
cases, the intervals of these lattices are subalgebras of the full idempotent reduct 
of A , hence the full idempotent reduct of A is not plain. This implies that no 
two of conditions (a) (c) can hold simultaneously for a nearly idempotent plain 
algebra. • 

Nearly idempotent plain algebras, up to term equivalence 

Plain idempotent algebras are known, up to term equivalence (see [9], and for 
the two-element case [7]). This description, combined with Theorem 3, allows 
one to determine up to term equivalence all nearly idempotent plain algebras 
with at least two idempotent elements. For comparison., we note that according 
to the results in [11], for each finite set A with \A\ > 3 there are continuously 
many pairwise non-equivalent nearly idempotent plain algebras A with base set 
.4 such that A has a single idempotent element. 
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We int roduce some notat ion. Let A be a finite set. For a set U C A and for a 
pe rmuta t i on group G act ing on A , let 1ZU(G) denote the clone of all opera t ions 
/ on A such t h a t /(H, . . . , u) = u for all u G U and / admi t s each member of 
G as an au tomorph i sm . If G = { id} , then we write 1ZV instead of 1ZV(G). 

For an element 0 G A and for n > 2 , let ^ denote the clone of all opera t ions 

/ on A preserving the relation 

X®(A) = { ( a 0 , . . . , a n _ 1 ) G A n : az = 0 for at least one i , 0 < z < n - l } . 

oo 

Fur thermore , we put T^ = f| .F*A°. Clearly, X°(A) = N°(A) is the subset of 
k = 2 

A x A t h a t played an impor t an t role in the proof of Theorem 3. 

For a par t ia l order < on A., V< denotes the clone of all opera t ions on A 

t h a t are monotone wi th respect to < . 

In addi t ion, we will use the nota t ion 2 for the two-element set {0, 1} ; A for 

t he semilat t ice operat ion on 2 with absorbing element 0; 0 = ( 0 , 0 ) , 1 = (1,1) 

and a — (0 ,1) for the elemen ts of 2 x 2 ; and 3 for the subset {0, a, 1} of 2 x 2 . 

For the readers ' convenience, we recall first t he descript ion of idempoten t 

plain algebras. 

T H E O R E M 4 . ([9], [7], cf. [11]) Up to term equivalence, the idempotent plain 

algebras are the following: 

(i) (A]1ZA(G)) for a permutation group G on A such that every noniden-

tity permutation in G has at most one fixed point; 

(ii) (A; 7Z A(G) C\ J7^) for some k (2 < k < uo), for some element 0 G A, and 

some permutation group G on A such that 0 is the unique fixed point 

of each nonidentity permutation in G ; 

(iii) [A\ x—y-\-z, \rx-\-{l—r)y : r G E n d ^ A . } ) where KA is a finite vector 

space over a finite field K; 

(iv) (2]7Z2(G) H 79
<) where G is a permutation group, and < is the order 

0 < 1 on 2 ; 

(v) ( 2 ; 7 i 2 n J ^ n P < ) for some k (2<k<uo), where < is the order 0 < 1 ; 

(vi) ( 2 ; A ) ; 

(vii) (2; i d ) . 

Now we are in a posit ion to describe all nearly idempo ten t plain algebras A 
with 2 < |L7 A | < \A\. 

T H E O R E M 5. Up to term equivalence, the nearly idempotent plain algebras that 

are not idempotent, but have at least two idempotent elements are the following: 

(a.i) (A;7ZU(G)) for a proper subset U of A with |U| > 2 and, for a permuta

tion group G on A such that A\U is an orbit of G, every nonidentity 
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permutation in G has at most one fixed point, and that fixed point is 

in U; 

(a.ii) (^A;'RU(G) H •?-"£) for a proper subset U of A with \U\ > 2 , for some k 

(2 < k < ui), for some element 0 G U, and some permutation group G 

on A such that A\U is an orbit of G, and 0 is the unique fixed point 

of each nonidentity permutation in G; 

(a.iii) (A; x—y+z,{rx+(l—r)y : r G E n d K y l } , e ) where KA is an at least 

two-dimensional finite vector space over a finite field K, and e is a 

projection onto a subspace of KA of codimension 1 ; 

(b.iv) (2 x 2;7£rQ j-i ( { i d / } ) (1 V< ) where < is the Boolean lattice order on 

2 x 2 , and ' is complementation; 

(b.vii) ( 2 x 2 ; o ) with (x0
1x

1)o(y°,y1) = (x1^0); 

( c iv ) ( 3 ; 7 £ | Q j | n V< ) where < is the order 0 < a < 1 ; 

( c v ) ( 3 ; ^ | Q j j H J7^ H VK ) for some k (2 < k < uu), where < is the order 

0 < a < 1 ; 
( cv i ) ( 3 ; * , e 0 , e 1 ) where (x° , x 1 ) * (y°, y1) = (x° A y 1 , y1) and e - ( (x° , x1)) — 

(X\X*) (2 = 0 , 1 ) . 

P r o o f . It is s traightforward to check t h a t t h e algebras listed in the theorem 
are indeed nearly idempoten t plain algebras which are not idempoten t and have 
at least two idempoten t elements . In fact, t h e sets of idempoten t elements are 
the following: U in cases ( a . i ) - ( a . i i ) , e(A) in case (a.iii), and {0,1} in the 
remaining cases; fur thermore, t he au tomorph i sm groups are the following: G in 
cases (a.i) (a.ii), 

{hix + a: K,eK\{0}, a e e(A)} (**) 

in case (a.iii), { id / } in cases (b.iv), (b.vii), and the one-element group in cases 

( c iv ) ( c v i ) . 

Conversely, let A be a nearly idempoten t plain algebra wi th 2 < |U A | < \A\, 
and, for simplicity, let us wri te U instead of UA. If Theorem 3 ( b ) or (c) holds 
for A , then obviously A is uniquely de te rmined (up to t e rm equivalence) by 
the two-element orderable idempo ten t a lgebra B . To see this for (c), recall that 
.-(131-1) depends on the range of e only, and the two possible three-element 
ranges con taining the diagonal yield term equivalen t a lgebras . Fur thermore , we 
know from the proof of Theorem 3 and from Proposi t ion 2 that B = e ( A ) , 
where r is a unary term opera t ion of A wi th range U. 

It is easy to check that for the algebras A listed in (b.iv) ( cv i ) the cor
responding algebras B = O(A) exhaus t all two-element orderable idempo ten t 
algebras; namely, the algebra (iv) wi th \G\ = 2 if A is of type (b.:v), (vii) if A 
is of type (b.vii), and (iv) with \G\ — 1, (v), (vi), respectively, if A is of type 
( c i v ) , ( c v ) , ( c v i ) . Thus the uniqueness es tablished in the previous paragraph 
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proves the claim of Theorem 5 for all nearly idempoten t plain algebras satisfying 

condit ion (b) or (c) in Theorem 3. 

Suppose now t h a t condit ion (a) in Theorem 3 holds for A , and let A i d denote 

the full idempoten t reduct of A . Clearly, |Ai| > 3 , so A i ( i is t e rm equivalent to 

one of the algebras (i) - (hi) in Theorem 4. In case (i), A i d . and hence A . too. 

is quasipr imal . Since A is plain, it follows easily t h a t G = Aut A satisfies the 

condit ions required in (a.i), and A is t e rm equivalent to (A; 7c r ( (7 ) ) . 

In case (iii), A i d is a plain algebra generat ing a congruence permutab le va

riety, therefore A also has these propert ies . By M c K e n z i e 's theorem [5! A 

is quasipr imal or affrrre. But A cannot be quasiprimal , as A i d is not quasipri

mal. Hence A is affine. From the description of plain affine algebras up to term 

equivalence (see, e.g., [1] or |8]) and from the assumpt ion tha t 2 < |(7j < |.1L 

we conclude t h a t A is t e rm equivalent to an algebra of the form described in 

(a.iii) with KA an at least two-dimensional vector space over a finite Held A 

and c a projectiorr onto a nontrivial proper subspace of RA. Since t lie au to

morphism group of this algebra is the group in (**), orre can easily see that the 

au tomorph i sm group acts transit ively on A \ U = A \ c(A) if and only if c(A) 

has codimension 1. 

Finally, consider the case when A i d is ( term equivalent to) the algebra in 

(ii). Clearly, G = Aut A i d . Let us call a subuniverse S of A " or of A[ d ( n > 1 ) 

irredundant if S is a subdirect subuniverse, and Si- = {(x\xJ) G A2 : x G S\ 

is not a pe rmuta t ion for any 0 < i < j < n — 1. Since A i d is not quas ipr imal . 

A is not quasipr imal , either. Hence, for some m > 2 , A m has an i r redundant 

subuniverse T dist inct from A™. Obviously, all i r redundant subuniverses of 

finite powers of A are anrong the i r redundant subuniverses of finite powers of 

A i d . T h u s the description of i r redundant subuniverses of finite powers of A i d 

(see [9; Proposi t ion 2.3 and its applicat ion on p. 263]) yields that 

{xeA: ( x , . . . , x ) G T) = { 0 } , whence 0 G U, 

moreover, 

A is t e rm equivalent to ^A]TZU(G/) fl fj') , where G" = Aut A . and 
/ = cO if X®(A) is a subuniverse of A n for all n > 2 , while / is the 
largest such n otherwise . (Observe t ha t if X®(A) is a subuniverse of 
A n , t hen XH^A) = {x G A71'1 : (x[\x(\x\ . .. ,xn~l) G A , % 4 ) } is a 
subuniverse of A n _ 1 .) 

Since G' = Au t A C Aut A i d = G and A is nearly idempoten t , all other 
requirements in (a.ii) hold for G'. (It can be verified t h a t , in fact, we must have 
G = G' and k = I.) • 
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