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ABSTRACT. It is proved that for every nearly idempotent plain algebra A with
at least two idempotent elements there exists an idempotent plain algebra B such
that the varieties V(A) and V(B) are categorically equivalent; furthermore, ex-
cept for some cases when A has three or four elements, the full idempoteat reduct
of A is plain. These facts lead also to a classification, up to term equivalence, of
nearly idempotent plain algebras with at least two idempotent elements.

Introduction

An algebra A is called plain (or strictly simple) if A is finite, simple, and A
has no nontrivial proper subalgebras. Recently K. A. Kearnes [3] has found
a short, elementary proof for the result in [10] that plain idempotent algebras
generate minimal varieties. In fact, the proof is given for a more general class of
algebras that are called in [3] nearly idempotent plain algebras. By definition, a
plain algebra A is nearly idempotent if A has at least one idempotent element,
and the automorphism group of A acts transitively on the set of non-idempotent
clements of A.

Our aim is to study how far nearly idempotent plain algebras are from idem-
potent plain algebras. If A is a nearly idempotent plain algebra with a single
idempotent element 0, then clearly 0 is the only fixed point of each nonidentity
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AGNES SZENDREI

automorphism of A. Furthermore, since the automorphisms of A act tran-
sitively on A \ {0}, therefore every unary term operation of A is either the
constant with value 0 or a permutation of A fixing 0. Hence A is one kind of
so called term minimal algebras discussed in detail in [11].

In this paper, we restrict our attention to nearly idempotent plain algebras
with at least two idempotent elements. We show that these algebras are indeed
very close to idempotent plain algebras. Firstly, it turns out that for every nearly
idempotent plain algebra A with at least two idempotent elemnents there exists
an idempotent plain algebra B such that the varieties V(A) and V(B) generated
by these algebras are categorically equivalent. Secondly, we prove that. except
for some cases when A has three or four elements, the full idempotent reduct
of A is plain; that is, up to term equivalence, A arises from a plain idempotent
algebra by expanding it with some new operations.

Both of these results point out a reason for the fact that the property of gen-
erating minimal varieties carries over naturally from idempotent plain algebras
to nearly idempotent plain algebras. This is obvious for the result on category
equivalence. To see it for the other result, one would need to know

(o) to what extent the property of generating minimal varieties is hereditary
for expansions among plain algebras.

It is well known (see, e.g., [2; Theorems 12.1, 12.4]) that if for a plain algebra
A the variety V(A) is congruence modular, then V(A) is minimal unless A is
an affine algebra having no idempotent elements. Since every idempotent plain
algebra A with at least three elements generates a congruence modular variety
(cf. [10]) — and this property is inherited by the expansions of A - it follows
immediately that all nearly idempotent expansions of A will generate a minimal
variety. We remark at this point that hereditariness in the sense of (e) holds
true also under much weaker assumptions than congruence modularity. see [12].

Comparing nearly idempotent plain algebras
to idempotent plain algebras

We follow the convention that algebras are denoted by boldface capitals and
their base sets by the corresponding letters in italics.

Let A be an arbitrary algebra. By an idempotent element of AL we mean an
clement u € A such that {u} is a subuniverse of A. The set of idempotent ele-

ments of A will be denoted by U7, . We will say that A is an idempotent algebra

il U, = A. By an idempotent operation on A, we mean an operation f on A
such that f(e,...,. r) = for all » € A. Clearly, the algebra A s idempotent if

and only if every fundamental operation (hence every term operation) of A s
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NEARLY-IDEMPOTENT PLAIN ALGEBRAS

idempotent. The full idempotent reduct of A is defined to be the algebra with
base set A whose operations are all idempotent term operations of A.

Observe that by the definition above, a unary operation is idempotent if and
only if it is the identity mapping, denoted id; this is the meaning involved in
the concept of an idempotent algebra or full idempotent reduct of an algebra.
However, arnong unary operations (that is, among transformations) a more cus-
tomary meaning attached to the word “idempotent” — which we will adopt from
now on is the following: a unary operation f on A is called idempotent if
f*(x) = f(2) holds for all z € A.

For an algebra A, CloA will denote the clone of term operations of A;
Clo,, A the set of n-ary term operations of A (n > 1); Aut A the automorphism
group of A; and Sub A the set of subuniverses of A. One-element subuniverses
[subalgebras] of A are usually referred to as trivial subuniverses [subalgebras].
Two algebras C, D on the same base set C = D are called term equivalent
if CloC = CloD. We will find it convenient to extend this notion to algebras
C. D on arbitrary base sets as follows: C, D will be called term equivalent

in symbols: C = D - if C is isomorphic to an algebra C’ on D such that
(loC’' = Clb D.

For an n-tuple = the coordinates of x will be denoted by z",.. ,z"~ 1. If C
is a set, V. C C, and g is an operation on C' with g(V,...,V) C V then g|v
stands for the restriction of g to V. Similarly, for a subset S of C" (n > 1),
STy- is used as an abbreviation for SN V™. The diagonal of C'x C' is the set
A ={(c.e): ce (7}, For S, T C C? the relational product of S and T is the

set

Sol = {(a,c) € C*: there exists b € C' with (a,b) € S, (b,c) €T},
and the converse of S is
SY ={(ba) e C?: (a,b) € S}.

Let € = (C F) be an arbitrary algebra. For a positive integer m the mth
maltric power Cof C s the algebra with base set €™, whose operations are,
for all A all k-ary operations g: (C")F — (" of the form

ith
—— N,
IC v ) = (g, ) ).
where g, € Clo,  C forall ¢ (0 <0< m — 1).
Let o Clo, € he anidempotent nnary term operation of C. Then ¢(C)
. - / . \ 1
i delined to be the algebra with base set (') = {r € (' ofa) =, whose
. . ~ 3 I . - . .
operations are all operations of the form (g](,((v) with ¢ € Cllo C. Notice that

the aigebra (C) s essentially independent of ¢ as soon as the range of ¢ s

393



AGNES SZENDREI

fixed. That is, if € € Clo, C is idempotent and e(C') = e(C"). then ¢(C) and
¢(C) have the same set of operations, namely the restrictions to e((") = ¢((")
of all term operations of C whose range is contained in e(C') = ().

It is easy to see that Cl”] and e(C) have no other term operations than
their fundamental operations described in the preceding paragraphs. Since we
are interested in algebras only up to term equivalence, we nced not be very
rigorous on the similarity types; the similarity types of C and ¢(C) could be
selected arbitrarily so that the sets of term operations are those described.

Following [6] we call e € Clo, C invertible if for some integer m > 1 there
exist t,,....t, | € Clo, C and t € Clo,, C such that

tle(ty(x)),....e(t,, (x)) = for all &€ (.

The importance of the constructions C — Cl"l and C — ¢(C) for an invert-
ible idempotent e € Clo, C lies in the fact that they yield category equivalences
V(C) — V(C["”‘}) and V(C) — V(e(C)) between the varietics generated by
these algebras. Moreover, as R. McKenzie proved in [6], il for two algebras
C. D there is a category equivalence V(C) — V(D) carrying C to D. then
D = E(C{m]) for some m > 1 and some invertible idempotent = € Clo, C.
The latter deep result will not be applied in this paper. What we will need are
merely the natural bijections between the subuniverses of the squares of the
algebras C, CU" and C, ¢(C). It is straightforward to check (see also (13
that

Sub(C x C) — Sub(C™ s ¢ty g s (1)

with
stml = {(1, y) € C™ x O (2f iy e S for i =0,.. ., m—1}.

is a bijection. Suppose now that ¢ € Clo, C is invertible and idempotent. and
invertibility is witnessed by the term operations ¢,. . .,
every subuniverse S of C x C, each pair ¢ € S can be canonically represented
as

t,,_, and t as above. For

o=t(ety(o),....et,, (o)) with et (o),....et,, (o) € c(S) (o€ 5).
(oo)
implying that S is generated by its subset e(S) (throughout. the operations
are applied coordinatewise). Furthermore, the definition of the operations of
¢(C) combined with the idempotence of e yields that ¢(9) is a subuniverse of

e(C) x ¢(C), and e(S) = Sl(,,((j). Thus

Sub(C x C) — Sub(e(C) x ¢(C)) , Si—e(S)=S

ey W

is a bijection. In particular, it follows that for a subuniverse S of C x C
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NEARLY-IDEMPOTENT PLAIN ALGEBRAS

(1) S is a congruence of C if and only if SI"™ is a congruence of CI ml
(t)” S s an automorphism of C if and only if S [m] is an (]utolllorp}llml
of Gl
and similarly,

()" S is a congruence of C if and only if e(S) is a congruence of ¢(C),
()" S is an automorphism of C if and only if e(S) is an automorphism of
c(C).
The only nontrivial claims that are involved in these statements are that
in (1), e(S)oe(S) C e(5) implies SoS C S, that is, if e(S) is transitive,
then so is S,
while
in 1), e(S)oe(SY) =e(S)o ((Z(S))u C A, ) implies $o SYC AL
and the same with the roles of S, SY interchanged.
Both claims follow casily if one applies the canonical representation (ee) for the
pairs in S
Clearly, the algebra C can essentially be recovered from CU" as follows: if
s, € Clo, Cll s defined by ¢,(y) = (y",...,y"), then g, is idempotent and
invertible, furthermore, C = 5:0(C{""']), The following lemma - a variation of
Remark 2 in [6; Section 2] — the proof of which is straightforward, shows how
the construction C +— e(C) for an invertible idempotent e¢ € Clo, C can be
‘inverted’ to recover C from e(C).

LEMMA 1. ([6]) Let C be an arbitrary algebra with an invertible idempotent
unary term operation e, and let D = e(C). If the invertibility of e is wit-
nessed by t, ...t € Clo,C and t € Clo,, C, then e(y) = (et,(t(y)),---

oty (I,(y))) is an invertible idempotent unary term operation of DU | and
the mapping

C —e(DM), e (ety(c),... et,, (c)),
is an isomorphism between C and an algebra term equivalent to e:(D"”’]) .

One explanation why nearly idempotent plain algebras A wita at least two
idempotent elements behave so similarly to plain idempotent algebras is given
in the next proposition, which implies that the variety V(A) is categorically
cquivalent to a variety generated by a plain idempotent algebra.
PROPOSITION 2. Let A be a nearly idempotent plain algebra with at least two
idempotent elements.

(l) A has an invertible idempotent unary term operation e with ¢(A) = U, ,

(2) B:=e(A) is a plain idempotent algebra, and

(3) A = 5(B 21) for some invertible idempotent unary term operation e

of BI2
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Proof. For brevity we will write U instead of U, . If A is idempotent.
then the claims of the proposition are obvious (with e the identity operation
and € = g, where ¢, is the operation described in the paragraph preceding
Lemma 1). Therefore, we assume that U # A. Select arbitrary distinct elements
uy,uy, € U, and let ¢ € A\ U. The sets {c} and {uy, u,} generate A. hence A
has unary term operations e, for « = 0,1 and a binary term operation h such
that e (c) = u; and h(uy,u,) = c. Thus the equality

hiey(z), e (z)) =x (%)

holds for @ = ¢. If x € U, then the equalities e,(x) = x and (x) are obvious.
Finally, since Aut A is transitive on A\ U, we conclude that (x) holds for all
r € A\U and e,(A\U) CU (i=0,1). This implies that ¢ = ¢,
eoley(z) = t”l( x) for all # € A, and e is invertible (as witnessed by ¢
and h). This completes the proof of (1).

is idempotent.

TR

I
The claim in (2) is now an easy consequence of the properties of the bijection
in () (cf. also (1)’), and (3) follows immediately from Lemma 1.

We note that the weaker versions of the claims (1) -(2) in Proposition 2.
where the invertibility of e is not required, is true for any plain algebra with at
least two idempotent elements (cf. [11], [3]).

Making use of Proposition 2 we now prove a structure theorem for nearly
idempotent plain algebras. A 2-clement algebra B will be called orderable it B
has a nontrivial compatible order.

THEOREM 3. If A is a nearly idempotent plain algebra with at least two idem-
potent elements, then exactly one of the following conditions holds for A :

(a) the full idempotent reduct of A is plain;

(h) A = B f()’/' a two-clement orderable idempotent algebra Boaweith
| Aut B| =

(c) A = »( ) for a two-clement orderable idempotent algchra B with
[AwtB| = 1. and for an invertible idempotent wnary term opcration

of BB with three-clement range containing the diagonal.

PProof. Throughout the proof we write {7 instead of I the atdgebra
A is idempotent. then (a) obvionsly holds. so we assume lh.li .\ VA0 We
usce the claims and the notation of Proposition 2. including the term operations

¢, . ¢ and o constructed inits prool to witness the invertibilite of
By Lemma I and Proposition 20 the mapping w0 b =007 ) ae (o fatoo ta )
is an isomorphism between A and an algebra terni equivalent to =B~ 0 o

any e U we have sta) = (g bu)oc (a)) = (uoa) o therefore the i'nugw or o

der 2ois the diagonal A, of 35 The term operation of (B ) correspondie
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NEARLY-IDEMPOTENT PLAIN ALGEBRAS

to ¢ under ¢ is

(co(@)ey(a)) = pla) = p(e(a) = (¢4(eq(a)), € (ela))) = (eg(a), () -

That is, ¢/ is the term operation £,(y) = (y°,y") of BI? restricted to e(B?).
Clearly, ¢'(¢(Bl?))) = ¢,(B?) = B.

Later on, we will need the following claim, which is an easy consequence of
the assertion in (1)”.

CLAIM 1. Restriction to U = e(A) = B yields an isomorphism |{;:
Aut A — AutB.

It is worth noting that the invertibility of e is not a crucial assumption in this
claim, though the proof presented here makes use of it. In fact, as was observed
in [4], Claim 1 is true for arbitrary plain algebra A with at least two idempotent
clements and for any idempotent e € Clo; A with e(A) = U, , even if e is not
invertible.

In order to prove Theorem 3, we consider first the case when B is not a two-
element orderable algebra. Our aim is to show that the full idempotent reduct
of A is plain. To this end, we need to investigate the subuniverses of A x A.
First we establish the required facts for the subuniverses of B x B, and then,
using Proposition 2, we lift the results to A.

For a set. C' and for ¢ € C', X¢(C) will denote the subset ({c}x )L (Cx{c})
of C'x (.

CLAIM 2. (see [9])

(1) Every proper subdirect subuniverse of B x B is either an cutomorphism
of B or of the form X°(B) for some element 0 € B.

(2) If XY(B) is a subuniverse of B for some 0 € B, then 0 is a fized point
of each automorphism of B.

Proof. Let S be a proper subdirect subuniverse of B x B, which is not
an automorphism of B. The sets S = {b€ B: (u,b) € S} and 5, = {be B:
(b.u) € S} are nonempty subuniverses of B for all u € B. Consequently, cach of
them is either a one-element set or equals B, as B is plain. By the assumptions
on S, not all of them are one-clement sets. Therefore a short analysis of the
possible cases yields that there exist elements 0,1 € B such that S = ({0} x I3)
U (B x {1}). 1f 0 = 1, then we get that S = X°(B). Suppose therefore that
0 # L. Then {b € B : (bb) € S} = {0,1} is a subuniverse of B, hence
I3 ={0.1} and S is the order 0 < 1. This contradicts our assumption that B
is not orderable, so the proof of (1) is complete.

u
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To verify (2), assume X"(B) is a subuniverse of B and consider an auto-
morphism 7 of B. Then the relational product 7= X"(B)or is a subuniverse
of Bx B, and T = ({()} X B) U (R X {W(())}). Thus the claim proved in (1)
implies that 7(0) = 0. =

CLAIM 3. Every proper subdirect subuniverse of A x A is either an automor-
phism of A or of the form X°(A) for some element 0 € U .

Proof. Let S be a proper subdirect subuniverse of A x A such that S is
not an automorphism. Then ¢(9) is a proper subdirect subuniverse of f(BM) X
z?(Blz]) which is not an automorphism. In view of the biject ions‘ described in
() and (), B x B has a subuniverse 17" such that p(S) = (B2 It is
casy to see that T must be a proper subdirect subuniverse of B which is not
an automorphism. Thus by Claim 2, T' = X"(B) for some element 0 € I3 -
¢(A) = U. Hence

, [2)
() = (X"(B) 71 g2y
= X"OBY))U(E, x E))U(E, x E,).

where F, = { 0 b)) Ee(BY): b, =0, b, _, # ()} (i =0,1). Applying ! we
get that

5 =X"(A)U (D, x Dy)U(Dy x Dy)  with D, =@ '(E) (i=0.1).

Here, the sets D, D, are disjoint from U, because E, = ¢(D). E, = (D))
are disjoint from A, = ¢(U).

We show that Dj x D, = 0. Otherwise we would have a pair (c.d) in S
such that ¢,d € A\ U. Since Aut A acts transitively on A\ U, there exists
m € Aut A with d = 7(¢). By Claim 1 and Claim 2 (2), we have 7(0) = 0. It
follows now that V = {a €A: ((L,’/T((l)) € S} is a subuniverse of A such that
c eV and VNU = {0}. Thus V is a proper subuniverse of A containing a
nonidempotent element of A, contradicting the plainness of A. This completes
the proof of Claim 3. Ol

Now we are in a position to prove that the full idempotent reduct of A is
plain. Since each block of a congruence of an idempotent algebra is a subuniverse.
it suffices to show that the full idempotent reduct of A has no nontrivial proper
subalgebras.

Let a, by, by be arbitrary elements of A such that b, # b, . We arce done it
we show that A has an idempotent term operation g with g(b,.b) = a. Let ns
select and fix an element ¢ € A\ U, and consider the subuniverse S of A x A
generated by the pairs (b, ¢) (¢ = 0,1). Then S is a subdircct subuniverse,
because {by,b,} and {c} generate A. Clearly, S is not an automorphism of A
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NEARLY-IDEMPOTENT PLAIN ALGEBRAS

and is not of the form XY(A) for any 0 € U. Thus, by Claim 3, S = A x A.
Henee A has a binary term operation g such that g((b,,c), (b),¢)) = (¢, ), that
is. g(b,.b,) = a and g(c,¢) = c. The transitivity of Aut A on A\ U implies
that g(r,r) = for all @ € A\ U, while for the elements x € U this equality is
trivial. Thus g is idempotent. This completes the proof that (a) holds whenever
B is not a “wo-element orderable algebra.

Remark. Notice that - except for one step in the proof of Claim 3, where near
idempotence is made use of  most of the argument above is based solely on the
representation A = E(Bm) of A from Proposition 2 and on the correspond-
ing natural bijections (1), (). Nevertheless, the assumption that A is necarly
idempotent cannot be omitted if we want to conclude that the full idempotent
reduct of A is plain. Tt is easy to see, for instance, that if A = B for a plain
idempotent algebra B with X"(B) € Sub(B?) (cf. Theorem 4), then the full

idempotent reduct of A is not plain.

Returning to the proof of Theorem 3 we now consider the case when B is a
two-clement orderable algebra. By Claim 1, we have | Aut A| = | Aut B|. Since
Aut A acts transitively on A\ U, and no nonidentity automorphism has a fixed
point in A\ U, therefore we get that | Aut A| = |A\U|. In the case | Aut B| = 2,
these considerations yield that |A| = 4, hence ¢ has to be the identity operation.

Thus (b) folows immediately from Proposition 2. Similarly, if | Aut B| = 1, then
|4] = 3, and (c) is an immediate consequence of Proposition 2 and the inclusion
A}, € =(B3?) established at the beginning of the proof.

In case (b), A has a compatible Boolean lattice order with bounds in U, while
in case (¢), A has a compatible total order with bounds in U . Therefore in both
cases, the intervals of these lattices are subalgebras of the full idempotent reduct
ol A, hence the full idempotent reduct of A is not plain. This implies that no
two of conditions (a) - (c¢) can hold simultaneously for a nearly idempotent plain
algebra. O

Nearly idempotent plain algebras, up to term equivalence

Plain idempotent algebras are known, up to term equivalence (sce [9], and for
the two-clement case [7]). This description, combined with Theorem 3, allows
one to determine up to term equivalence all nearly idempotent plain algebras
with at least two idempotent elements. For comparison, we note that according
to the results in [11], for each finite set A with |A] > 3 there are continuously
many pairwise non-equivalent nearly idempotent plain algebras A with base set
A such that A has a single idempotent element.
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We introduce some notation. Let A be a finite set. For a set I/ C A and for a
permutation group G acting on A, let R, (G) denote the clone of all operations
f on A such that f(u,...,u)==u for all w € U and f admits each member of
G as an automorphism. If G = {id}, then we write R, instead of R .(G).

For an element 0 € A and for n > 2, let .7:2 denote the clone of all operations
f on A preserving the relation

X2(A) = {(ag,...,a, ;)€ A" : a;=0 for at least one i, 0 <i<n-—1}.

Y 'n—1

o0
Furthermore, we put F. = kﬂ FY. Clearly, X9(A) = X"(A) is the subset of
e—="

A x A that played an importar:t role in the proof of Theorem 3.

For a partial order < on A, P_ denotes the clone of all operations on A
that are monotone with respect to <.

In addition, we will use the notation 2 for the two-element set {0.1}: A for
the semilattice operation on 2 with absorbing element 0; 0 = (0,0). 1 = (1.1)
and a = (0,1) for the elements of 2 x 2; and 3 for the subset {0,a,1} of 2x 2.

For the readers’ convenience, we recall first the description of idempotent
plain algebras.

THEOREM 4. ([9], [7], cf. [11]) Up to term equivalence, the idempotent plain
algebras are the following:

(i) (A;R4(G)) for a permutation group G on A such that every noniden-
tity permutation in G has at most one fized point;

(i) (A4 RA(G)NFY) for some k (2 <k <w), for some element 0 € A. and
some permutation group G on A such that 0 is the unique fired point
of each nonidentity permutation in G; ~

(iii) (A4; z—y+z, {re+(1-r)y: 7 € End A }) where A is a finite vector
space over a finite field K ;

(iv) (2;R,(G)NP.) where G is a permutation group, and < is the order
0<1 on 2;

(v) (2; Rzﬁfgﬁ'P<) for some k (2 <k <w), where < is the order 0 < 1:

(vi) (Z7);
( .

Now we are in a position to describe all nearly idempotent plain algebras A
with 2 <|U,| < |A].

THEOREM 5. Up to term equivalence, the nearly idempotent plain algebrus that
are not idempotent, but have at least two idempotent elements are the following:

(ai) (AR, (Q)) for a proper subset U of A with |U| > 2 and for a permuta-
tion group G on A such that A\ U is an orbit of G, every nonidentity
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NEARLY-IDEMPOTENT PLAIN ALGEBRAS

permutation in G has at most one fized point, and that fized point is
mn U;

(a.il) (A;Ry(G)NF}R) for a proper subset U of A with |U| > 2, for some k
(2 <k <w), for some element 0 € U, and some permutation group G
on A such that A\ U is an orbit of G, and 0 is the unique fized point
of each nonidentity permutation in G; _ R

(a.iii) (A; T—y+z, {rw+(1~r)y : 7€ Endg A },e) where A is an at least
two-dimensional finite vector space over a finite field K, and e s a
projection onto a subspace of A of codimension 1;

(b.iv) (2 x Z;R{Gyi}({id,' }) NP, ) where < is the Boolean latiice order on
2 x 2, and ' is complementation;

(bvii) (2 x 250) with (2%,a") 0 (y%,y') = (z1,3°);

(c.iv) i 'Rys,iy N P< ) where < is the order 0 <

k

(3
(c.v) 7(3 R }ﬁfk ﬁ’P<) for some k (2 <
0

1;

a<
< w), where < is the order

3;x, e, €,) where (2% z') * (y°,9") = (2° Ay, yt) and e,((z° 2")) =

Proof. Itisstraightforward to check that the algebras listed ir. the theorem
are indeed nearly idempotent plain algebras which are not idempotent and have
at least two idempotent elements. In fact, the sets of idempotent elements are
the following: U in cases (a.i)-(a.i), e(4) in case (a.iii), and {0,1} in the
remaining cases; furthermore, the automorphism groups are the following: G in
cases (a.d) - (a.ii),

{/m:+a: k€ K\ {0}, a€e(A)} ()

in case (a.ii), {id,/ } in cases (b.iv), (b.vii), and the one-element group in cases
(c.iv)  (c.vi).

Conversely, let A be a nearly idempotent plain algebra with 2 < |U, | < |A],
and, for simplicity, let us write U instead of Uy If Theorem 3 (b) or (¢) holds
for A, then obviously A is uniquely determined (up to term equivalence) by
the two-element orderable idempotent algebra B. To see this for (¢), recall that
5(BM) depends on the range of € only, and the two possible three-clement
ranges containing the diagonal yield term equivalent algebras. Furthermore, we
know from the proof of Theorem 3 and from Proposition 2 that B = ¢(A),
where ¢ is a unary term operation of A with range U.

It is casy to check that for the algebras A listed in (b.iv) (c.vi) the cor-
responding algebras B = ¢(A) exbaust all two-element orderable idempotent
algebras: namely, the algebra (iv) with |G| = 2 if A is of type (b.v), (vii) if A
i of tvpe (hovii). and (iv) with |G] = 1, (v), (vi), respectively, if A is of type
(c.iv), (c.v), (c.vi). Thus the uniqueness established in the previous paragraph
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proves the claim of Theorem 5 for all nearly idempotent plain algebras satisfving
condition (b) or (¢) in Theorem 3.

Suppose now that condition (a) in Theorem 3 holds for A, and let A, denote
the full idempotent reduct of A.. Clearly, |[A| > 3, s0 A, is terin equivalent to
one of the algebras (i) - (iii) in Theorem 4. In case (i), A, ;. and hence A too.
is quasiprimal. Since A is plain, it follows easily that ¢ = Aut A satisfies the
conditions required in (a.i), and A is term equivalent to (A: R, (G).

In case (iii), A, is a plain algebra generating a congruence permutable va-
riety, therefore A also has these properties. By McKenzie's theorem [57 A
is quasiprimal or affine. But A cannot be quasiprimal, as A, is not quasipri-
mal. Hence A is affine. From the description of plain affine algebras up to tern
cquivalence (see, e.g., [1] or [8]) and from the assumption that 2 < [[7] < |11
we conclude that A is term equivalent to an algebra of the form described in
(a.iii) with , A an at least two-dimensional vector space over a finite ficld A
and ¢ a projection onto a nontrivial proper subspace of ,-A. Since the auto-
morphism group of this algebra is the group in (kx), one can casily sce that the
automorphism group acts transitively on A\ U = A\ e(A) if and only if ¢(.1)
has codimension 1.

Finally, consider the case when A, is (term equivalent to) the algebra in
(ii). Clearly, ¢ = Aut A, . Let us call a subuniverse S of A" orof Al (n > 1)
irredundant if S is a subdirect subuniverse, and S, = {(.r’. vy e A u e S’}
is not a permutation for any 0 <i < j < n — 1. Since A, is not quasiprimal.
A is not quasiprimal, either. Hence, for some m > 2, A" has an irredundant
subuniverse T distinct from A" . Obviously, all irredundant subuniverses of
finite powers of A are among the irredundant subuniverses of finite powers of
A, ,. Thus the description of irredundant subuniverses of finite powers of A,
(sce [9; Proposition 2.3 and its application on p. 263]) yields that

{:I,' €A (z,...,z) € T} = {0}, whence 0 € U,

moreover,

A is term equivalent to (A; R, (G') N .7:[”), where ¢/ = Aut A. and
l = w if Xf,’(A) is a subuniverse of A" for all n > 2, while [ is the
largest such n otherwise. (Observe that if X?(A) is a subuniverse of
A", then Xflq(/‘) = {a’: c A (2020 2t e ) € X::(\)} is a
subuniverse of A"~ )

Since G = AutA C AutA,; = G and A is nearly idempotent. all other
requirements in (a.ii) hold for G'. (It can be verified that, in fact, we must have
G=G and k=1.) O
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