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A THEOREM ABOUT 

CARATHEODORY'S SUPERPOSITION 

ZBIGNIEW GRANDE 

ABSTRACT. Let R be the set of reals, and let Y be a separable Banach space. 
Suppose that D is a nonempty open subset of R x Y and / : D —• Y is a locally 
bounded function having the sections fx(u) = f(x,u) equicontinuous and the 
sections fy(v) = f(v,y) being derivatives. Then for every continuous function 
g: I —> Y ( J C l is an interval and (x,g(x)) e D for x e I) Caratheodory 's 
superposition h(u) = f(u, g(u)) is a derivative. Some applications of this theorem 
to the ordinary differential equations are shown. 

I. The theorem about the Caratheodory superposit ion 

Denote by R the set of reals. Let Y be a separable Banach space, and let 
D C R x Y be a nonempty open set. A function / : A —• Y (A C R ) is 
measurable (in the Lebesgue sense) if f~l(U) is measurable (L) for every open 
set U C Y . Observe that the separability of the space Y implies that a function 
/ : A —> Y is strongly measurable in the sense of [8]. A locally Bochner integrable 
function / : I —• Y (I C R is an interval) is said to be a derivative at a point 
x E I if 

x+h 

lima//*)/ f(u)du = f(x) ([1], [4], [6]). 
X 

In this article we assume that: 

(H) / : D —> Y is a locally bounded function such that all its sections 
fy(u) = f(u,y) ( u G R , y £ F ) are derivatives and all its sections 
fu(y) = f(u-,y) are equicontinuous at each point yo £ Y- (i.m. for every 
r > 0 there is s > 0 such that for every y €Y with ||y — yo|| < s we 
have for each u E l , ||/(iz,y) - f(u,y0)\\ < r. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26B40. Secondary 34G20, 34A46. 
K e y w o r d s : Caratheodory superposition, Cauchy problem, Picard 's theorems . 
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REMARK 1. If f: I —•• Y (I is a finite interval in R ) is measurable and 
bounded, then f is a Bochner integrable function. 

P r o o f . Indeed, it is an easy consequence of the well-known Bochner theo
rem ([8], p. 43, Th. 3.5.2.). 

THEOREM 1. Assume (H). Then for every continuous function g: I —> Y, 

where I is an interval and (u,g(u)) G D for u G I, the Caratheodory superpo

sition h(u) = f(u,g(u)) is a derivative. 

P r o o f . Fix a point xo G / . Since / is locally bounded, there are r , 
M > 0 such that ||ft(w)|| < M if | u — xo\ < r. Remark that the function h is 
measurable [11]. We have for u G / 

u 

\\J((h(t)-h(x0))/(u-x0j)dt 
xo 

u 

= ( l / (u - xo)) J(f(t,g(t)) - f(t,g(x0)) + f(t,g(x0)) - f(x0,g(x0))) dt 

xo 

u 

< ( l / ( u - xo)) J(f(t,g(t)) - f(t,g(x0))) dt II 

u 

+ ( l / (u - xo)) J(f(t,g(x0)) - f(x0,g(x0))) dt 

(1) 
Since the section t i—» f(t,g(xo)) is a derivative at xo , so 

u 

ulimo(l/(w - xo)) / (f(i,g(xo)) - f{xo,g(x0))j dt 

xo 

u 

= lim ( l / ( t i - x 0 ) ) f f(t,g(xo))dt-f(x0,g(xo)) = 0 . (2) 
U-+X0 J 

Fix a positive number e. It follows from the equicontinuity of the sections 
fu at g(xo) that there is ,s > 0 such that \\f(u,y) — f(u,g(xo))\\ < e for every 
y with ||y — g(^o)|| < s ((u^y) £ D). There is also a number z > 0 such that 
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\\g(u) — g(xo)|| < s for every u with \u — x0\ < z ( u G / ) . If | u — xo| < z, we 
have \\f(t,g(t)) — / (* ,^(^o)) | | < e for t e [x0,u] and 

U 

(l/(« - x0))J(f(t,g(t)) -f(t,g(x0))) dť 

U 

<(l/\u-x0\)y\\f(t,g(t))-f(t,g(x0))\\dt 
X0 

u 

I í I < (l/l u — x0\)\ / e d£ = (e\u — x 0 | ) | u — x 0 | 

xo 

oг 

lim 
l í - І Q 

u 

( l/(u - x 0 )) /(/(*,flf(í)) - /(*,5(*o))) dť (3) 

It follows from (1), (2), (3) that lim (l/(tz - x 0 )) / h(t)dt = h(x0) and the 
u " ^ X o xo 

proof is complete. 

E x a m p l e 1. There is a function / : [0, l ] 2 —* [0,1] such that all its sec
tions fx , and fy are continuous, /(0,0) = 0, and f(x,x) = 1 for x e (0,1] 
([5]). Remark that h(u) = f(u,u) is not a derivative. 

I I . Appl icat ions t o t h e differential e q u a t i o n s 

In this Section we show some application of Theorem 1 to the ordinary dif
ferential equations. 

1° . P i c a r d t h e o r e m s . 
It follows immediately from Theorem 1: 

REMARK 2. Assume (H). / / / C K is an interval and g: I —> Y is a con
tinuous function such that 

u 

g(u) = y0+ J f(t,g(t))dt for u e l (u0el), 

«0 

then g'(u) = f(u,g(u)) for u e l and g(uo) = yo • 
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THEOREM 2. Assume (H). If f satisfies the local Lipschitz condition with 
respect to y on D, then: 

(a) every solution of the differential equation 

y'(u) = f(u,y(u)) (4) 

has an extension which is a global solution of (4) ; 
(b) every global solution of (4) is defined on an open interval; 
(c) for every (tto,yo) £ D there is exactly one global solution of (4) which 

satisfies the condition 

y(y>o) = yo • (5) 

P r o o f . Because the above Remark 2 holds it suffices to repeat the proof 
of the classical Picard theorem from [9] (pp. 194-196). 

THEOREM 3 . Assume (H), where D = (a,b) xY. If for every closed interval 
I C (a, b) f satisfies the Lipschitz condition with respect to y on I X Y, then 
every solution of (4) has some extension on the interval (a, b). Moreover the 
global solution y of the equation (4) which satisfies (5) is the limit of uniformly 
convergent (on every closed interval I C (a, b)) sequence of the approximations 

u 

y0(u) = tin, yn(u>) = u0+ / f(t,yn-i(t))dt, n = 1,2,. . . . 

P r o o f . Remark 2 enables to repeat the proof of Theorem 2 from [9], (pp. 
197-198). 

The following Remark 3 shows the range of the generalization of the classical 
Picard theorems by Theorems 2 and 3. 

R e m a r k 3. Assume (H) and denote by LK the set of all functions / 
satisfying (H), which satisfy the Lipschitz condition with the constant K in 
y on D and by CK - the set of all continuous functions being in LK • For 
g,h E LK let 

p(g, h) = min( 1, sup \\g(u, y) - h(u, y)\\ ) . 
v ( « , y ) G D y 

Remark that LK is a complete metric space with the distance p and CK is a 
closed subset of LK • We prove that it is nowhere dense in LK • Let g: R —•• [0,1] 
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be an approximately continuous function such that y _ 1 (0) is a dense subset of 
R of measure zero ([1] and [12]). Evidently g is not continuous at every point 
u i g-1(0)- Moreover g is a derivative ([12], [1], [6], [4]). Fix / G CK and 
r > 0. Put 

Mw>y) = / K y) + rg(u)yo, 

where (u,y) G D and yo G F is such that ||yo|| = 1- Then h G L* — Ck and 
p(f, h) < r . So C # is nowhere dense in L x . 

2° . Ex t ens ion t h e o r e m . 

THEOREM 4. Assume (H), where Y = R m . .Every solution g: I - • R m o/tfie 
equation (4) can 6e extended (as a solution) over a maximal interval of existence 
(c,d) to a global solution h: (c,d) —> R m . Moreover if l im(t,/i(t)) = (x,yo), 

tf/fcen (#,yo) G F r D , where Fr_D denotes the boundary of D and x = c or d. 

P r o o f . Remark 2 enables to repeat the proof of Theorem 3.1 from [7] (p. 
13). 

3° . C a r a t h e o d o r y equa t ions . 

REMARK 4. Assume (H), where Y = R m . If an absolutely continuous func
tion g: I —» R m satisfies the differential equation (4) almost everywhere on 
the interval I, then g satisfies (4) everywhere on 7 . So every Caratheodory 
solution of (4) is a solution (in the ordinary sense) of this equation. 

P r o o f . This remark is an immediate consequence of Remark 2. 

As an easy consequence of the above remark and Theorem 1 from [3, p. 7], 
or Theorem 2 from [3, p. 8] we obtain the following two results: 

THEOREM 5. Assume (H), where Y = R m and D = [*0,*o + a] x {y G R m : 
\y — yo\ < b} (a , 6 > 0) . Suppose that there is an integrable function 
k: [to, to + a] —» R such that | / ( t , y ) | < k(t) for every (t,y) G D . Let 

U 

g(U) = / k(s) ds for to < u < to + a . 

Then for every d such that 0 < d < a and g(to + d) < b there is a solution 
y of (4) satisfying (5) and defined on the interval [to, to + d]. 
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THEOREM 6. Assume (H), where Y = Rm . Let (u0,y0) £ D. If there is an 
integrable function k: Pr D —> R (Pr£> denotes the projection of D on R) 
•SMCA tAatf | | / (u ,y) — / (u ,x ) | | < A:(u)|.r — y\ for (u,x), (u,y) G D, then the 
equation (4) has at most one solution y in D such that (5). 

From Remark 4 and the Theorem proved by D e B 1 a s i and M y j a k in 
[2] we get: 

THEOREM 7. Assume (H), where Y = Rm and D = [0,1] x U and U is 
the open ball in Rm with center yo and radius To > 0. Let J = [0,T], where 

T 

0 < T < 1 be such that f (k(t) + l ) dt < r0 and k: [0,1] —> R be an integrable 
o 

function such that ||/(£, y)|| < k(t) for each (t,y) G D . Then the set of all 
solutions y of (4) satisfying the condition y(0) = yo and defined on J is an 
R& -set in the space C(J, Rm) of all continuous functions from J to Rm with 
the norm of uniform convergence. 

Recall that a subset of metric space is called an R$ -set if it is the intersection 
of a decreasing sequence of (nonempty) compact absolute retracts. 

Now, for a bounded X C Y denote by oc(X) the greatest lower bound of 
such numbers r > 0 that X can be covered by a finite number of sets with 
the diameter not larger than r . We shall call a Kamke function every function 
w: [0, a] x R + —> R"*" such that all sections wt are continuous, all sections wy 

are measurable, w(t, 0) = 0 for t G [0, a] and y(t) = 0 is the only continuous 
solution of the inequality 

y(t) < / w(s,y(s))ds 

satisfying the condition y(0) = 0. 
From Remark 4 and P i a n i g i a n i 's Theorem [10] there follows immedi

ately the following theorem: 

THEOREM 8. Let D be the rectangle 0 < t < a, \\y - y0\\ < b. Assume (H) 
and suppose that \\f\\ < M > 0 and for each bounded set A C Y for almost 
every t G I, there holds lim a(/(/*,6, .A)) < w(t,a(A)) , where I = [0,/?], 

6—•O 

j3 = min(a, b/M), It,6 = (t — 6, t + 6). Then there exists at least one solution 
of the Cauchy problem y(t) = f(t,y(t)) , y(0) = yo defined on [0,/?]. 
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