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ORDERING OF OBSERVABLES AND
CHARACTERIZATION OF CONDITIONAL
EXPECTATION

OLILGA NANASIOVA

In the first half of this paper we study various ways of the ordering of
observables. We analyse the relationship between two different definitions of the
ordering of observables. In the second half we analyse properties of “relative
conditional expectations” for partially compatible observables on quantum
logics. These “‘relative conditional expectations’ have been introduced in [14].
The main result is a characterization of “relative conditional expectations” in
the sense of Shu-Ten Chen Moy [19] in a quantum logic.

Preliminaries

Let L be a logic, (= an orthomodular o-lattice). The elements a, be L are
orthogonal (a L b) if a < b*. The elements a, b € L are compatible (a+> b) if
a=(@Ab)v(anb'),b=(anb)v (a* A b). Asubset K = Liscompatibleif
a<— b for any a, be K (see [20]).

Definition 1.1. A subset M < L is partially compatible with respect to an
element ae L (M is p.c. [a]) if )

() M—a (ie. b—a forallbe M);

(iiy M A a={b A albe M} is a compatible subset of L.
Let aeL, a # 0. The set L, , = {beL|b < a} is a logic with the orthocomple-
mentation defined by b* = b* A a.

A set M A a is compatible in L iff it is compatible in L ,.

If F={a,, ..., a} <L, put

com(F) = \/ al' A ... A al
deD"

where D = {0, 1}, d=(d,, ..., d,), a® = a*, a' = a. The set F if p.c. [com(F)].
F is compatible iff com(F) = 1.
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Let M < L be any subset. If there is A {com(F)|F is a finite subset of M}
(briefly com(M)), then the element com(M) is called the commutator of the
set M. If com(M) exists, then M is p.c. [com(M)] (see [17], [18]).

A mapping x: L, — L, between logics L,, L, is called a o-homomorphism if it
satisfies the following conditions: (i) x(1,) =1,,; (i) if a, be L,, a L b, then
x(a) L x(b); (i) {a}~, = L, are mutually orthogonal; then x(v a) = v x(a).
A o-homomorphism x: B(R) — L is called an observable on L (B(R) is the
o-algebra of Borel sets on the real line). If fis a Borel measurable function on
R and x is an observable on L, then fox {(for E€ B(R): fox(E) = x(f~(E)) is
also an observable on L. The range R(x) = {x(E)|Ee B(R)} is a Boolean-sub-
o-algebra of L. The spectrum o(x) of an observable x is the smallest closed set
C < R such that x(C) = 1. The observable x is bounded if o(x) is compact. For
any a€ L, there is an observable x, such that o(x,) = {0, 1} and x,({1}) = a. The
observable x, is called a proposition observable.

If x is an observable, and a€ L, we write x <> a if x(E) < a for any E € B(R).
If x, y are observables, then x & y iff x(E) > y(F) for all E, Fe B(R). If x—a,
thenthe map x A a: B(R) = L, ,(x A a(E) = x(E) A a, E€ B(R))is an observ-
able on a logic Ly .

Observables x, y are said to be simultaneous (x < y) if R(x) — R(y) (i.e.a—b
for any a€ R(x), be R(y)). Observables x, y are p.c. [a] (ae L, a # 0) if R(x)u
U R(y) is p.c. [a].

The mapping m: L — R is called a measure on L if (i) m(0) = 0; (ii) {b;}~, =
< L are mutually orthogonal elements; then m(v b) = Y m(b). If m: L - [0, 1]

and m(1) = 1, then the measure m is called a state on L. Let m, n be measures
on L. If m(b) = 0 implies n(b) = 0, then we write n < m (n is absolutely con-
tinuous to m).

Let x be an observable on L and let m be a state on L. Then m,: E+>
+— m(x(E)) for E€ B(R) is a probability measure on B(R).

The expectation of x in a state m is defined by the formula

m(x) = jx dm = J‘Amx(d,l)

if the later integral exists. If fis a Borel function, then

m(f(x)) = ff (A) m(dA).
It is obvious that
m(x) = J Am (dA).
o)
An observable x on L is called integrable in a state m if m(x) exists and it is

finite.
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If o(x) = [0, o0), then x is called a positive observable (abbr. x > 0). If
m(x([0, oc0))) = 1, then we write x = 0 [m] (m is a state on L).

Let M be a set of states on L. The pair (L, M) is called a full system
(abbr. f.s.) if m(a) < m(b) for any me M implies a < b. The pair (L, M) is a quite
full system (abbr. q.f.s.) if {me M|m(a) = 1} c {me M|m(b) = 1} implies a < b.
S. Gudder [6] showed that if (L, M) is a g.f.s., then (L, M) is an f.s. with the
following property: If a # 0, ae L, then there is me M such that m(a) = 1.

Let (L, M) be q.f.s. We say that L has the property U if m(x) = m(y) for all
me M implies x = y, where x, y are bounded observables on L. We say that L
has the property FE if for any pair x, y of bounded observables there is a unique
bounded observable z such that m(z) = m(x) + m(y) for any me M. The observ-
able z is called the sum of observables x, y and we write z = x + y. For details
see [3], [6], [4], [16]. A pair (L, M) is called a sum logic if it is ¢g.f.s. and L has
the properties U and E.

For bounded summable observables let us define the Segal “product’ by
putting 1
xy=2 ((x+y) — (x = .

Note that if x« y, then there are Borel measurable functions f, g and an
observable z such that foz = x, goz = y (see [20]). Then we have

X~y=i((f+g)2—(f—g)2)02-

Hence for any Ee B(R), we obtain the equality x:y(E) = (fez-geoz)(E) =
= (f-g)oz(E). Thus we have x-y = (f-g)-z.

2. Order properties of observables

Recall first that the ordering of observables was considered in [1], [21], [10].
D. Catlin [1] gave the definition of spectral resolution e* such that for each re R,
e‘(r) = x(—oo,r)and x < yiffe* > e’. S. Gudder and J. Zerbe ([10]) introduced
an ordering in the following way. One writes x < y if for each re R x(r, o) <
< y(r, o0). Moreover, they introduced an ordering of observables “modulo” a
state m in the following way: x < y [m] if m(x(r, o0)) < m(y(r, o0)) for all re R.
They proved the following theorem.

Theorem 2.1. (Lemma 3.5., [10]). If x <y [m] and m(x), m(y) exist, then
m(x) < m(y).

If x < y [m] in the sense of S. Gudder and J. Zerbe and x < y and if we put
x = foz, y = goz, the inequality f < g a.e. [m.] need not hold as the following
example shows.
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Example 2.1. Let 2=1{0, 1}, L =22 and f(w) = o for we 2, g(0) =1,
g(1) =0.Letx =f~', y = g~ ' Itisclear that x < y. Let m be a state determined
by putting m({1}) = 1/3.

If r = 1, then m(x(r, 00)) = 0 = m(y(r, o0)). If re[0, 1), then m(x(r, x0)) =
=m({1}) = 1/3, m(y(r, ©))=m({0}) =2/3. If r <0, then m(x(r, ©)) =
= m(y(r, o0)) = 1. Hence x < y [m] in the sense of S. Gudder and J. Zerbe. On
the other hand, x = fox,,y = gox,. If f< ga.e.[m, ], thenm, ({we Qf > g}) =
= 0. But m, {we Q2|f>g) = 1/3. Hence f & g [m,].

This example contradicts the remark following Theorem 3.7 in [10], by which
m(x(r, ©)) < m(y(r, )) for all re R (x < y) would imply y — x = 0 [m].

For that reason we define the ordering of observables in the following way:

Definition 2.1. Let L be a logic, x, y be some observables on L. We define <,
for observables as follows:
(i) if m is a state on L, then x <,y [m] if for each re R
m(x(— o0, r) A y(— o0, r)) = m(y(— o, r));
(@) x<,yifx(—o0, r) = y(—o0, r) forall re R.
It is easy to see that x <,y iff x < y as defined by D. Catlin [1].

Definition 2.2. Let (L, M) be a sum logic, x, y be summable observables. We
define <, as follows:

(@) if meM, then x <,y m]if y — x =0 [m];

() x<,yif y—x20.

In what follows the indices 1, 2 will be omited if no misunderstanding is likely
to arise.

It is easy to see that x <,y implies x <,y [m] for any m and x <,y implies
x <,y[m]forallme M. Conversely, if (L, M)is f.s., then x <,y [m]forallme M
iff x <, y.

N. Zierler ([21]) proved the following theorem (see also [16]).

Theorem 2.2. Let (L, M) be q.f.s. and x < y. Then m(x) < m(y) for allme M
iff whenever f, g are Borel function and z is an observable such that x = foz,
y=goz, then f< g ae. [m] for all me M.

Proposition 2.3. Let (L, M) be q.f.s. and x be bounded observable on L. Then
m(x) = 0 for any me M iff x > 0.
Proof. If x > 0, then o(x) = [0, o0) and so we have

m(x) = f Am (dA) = j Am (d1) =0 (for all me M).
o(x) [

0. %)

Let m(x) > 0 for any me M and x * 0. Then there is A€ B(R) such that
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A = (— 0, 0) and x(A4) # 0. Therefore is a state me M such that m (4) = 1. We
thus obtain

m(x) = f Am(x(dA)) = f 1 A)-Am(x(dA) <0.  (Q.E.D.)

Let us note that Proposition 2.3 also follows from Lemma 3 in [21].

Corollary 2.3.1. Let (L, M) be a sum logic, then
() x <,y,y <,x implies x =y;
@) ifx=20,y=0, thenx+y=0.

Proposition 2.4. Let (L, M) be q.f.s. and x — y. Then

() x <,y [m] iff x <,y [m], me M ;

(i) x <,y iff x <y

Proof. Since x «» y, there is an observable z and Borel functions f, g such
that x = foz, y =goz.

(i) Let x <,y [m]. It means that for each re R

0 =m(y(—oo, r)) —m(x(—00, r) A y(—00,r)) =
=m(y(—00, r) A x[r, 00)) = m.({wlg(w) <r, flw) =r}),

(for all re R). Hence 0 = m.({w|g(w) < flw)}) (i.e. f < g [m.]). On the other hand,
if x <,y [m], we have y — x>0 [m]. And then 0 = m((y — x)(— 0, 0)) =
=m.((g =)' (=, 0)) = m.({olf(0) > g(w)}) ie. f< g ae. [m].

(i) x <,y [m] for all me M iff x <,y. Then we have x <,y [m] for all me M
iff x <,y [m], for all me M. Using Proposition 2.3 we have y — x > 0. (Q.E.D.)

Proposition 2.5. Let (L, M) be q.f-s. The following statements as equivalent :

(0) m(x,(r, ©)) < m(x(r, ©)) for all reR;

(i) xo <;x [m];

(iii) xo <, x [m];

(iv) x =0 [m].

Proof. Since we have x,«<> x, it is obvious that (ii) is equivalent to (iii).
Let x, <, x [m]. Then m((x — x,) [0, ©)) = 1. But x, = fo x, where f(r) = 0 for
all re R. Let g be the identity function on R. Then

1 = m((x — x) [0, ©)) = m((g>x — fox)[0, 0)) =
=m,((g =)' [0, 0)) = m,({olg(w)€[0, )}) = m(x[0, x)).

Then we have x > 0 [m). It means that (iii) implies (iv).

Let us suppose that x > 0 [m]. If r < 0, then we have m(x,(r, 0)) =1 and
m(x(r, 00)) = 1. If r = 0, then m(xy(r, ©0)) = 0. But m(x(r, «0)) > 0 for all re R.
It means that (iv) implies (V).
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Let m(x,(r, c0)) = m(x(r, o)) for all re R. Let r,e R be taken such that
r,e(—1/2", —1/2"*"). We obtain x,(r,, ©) = 1 for all n and therefore m(x(r,,
o)) =1 for all n. Hence for any n m . (—o0, r,) = 0. Now we have lim m,

(—o0,r,)=m/(—o0,0)=0and m(x[0, c0)) = 1. It means x > 0 [m] and so (i)
implies (iii). (Q.E.D.)

Note that <, [m], <,, <, [m], <, are reflexive and <,, <, are transitive. If
x, y are observables on L such that x <,y and y <, x, then x = y. In fact, let
x <,y,y <, x; then for each re R, x(— o0, r) = y(— o0, r). Hence for r,, r,e R:
r, < ry. we have x([r,, r,)) = y([r,, r,)). But if two observables are equal on all
generators for Borel sets, then they are indentical (see e.g. D. Catlin [1]). Since
a sum logic has the property U, we have x <,y, y <, x iff x = y.

Proposition 2.6. If x, y are observables on L, and if there is rye R such that
o(x) c (— o0, 1), o(y) < [ry, ©), then x <, y.

The proof is obvious.

From Proposition 2.6 it follows that x <,y does not imply x—y. It is
sufficient to take the observables x«b y, o(x) = (—x, t), o(y) = [t, o) (1€ R).

From Theorem 2.1 it is obvious that x <,y implies x <,y on a sum logic. If

(L, M) is f.s., then x < y [m] for all me M in the sense of S. Gudder and
J. Zerbe iff x <, .

Example 2.2. Let L ={0, 1, a*, a, b*, b}, where a«»b and a A b=
=bAara*=b*Aa=b'Aa* =0. Let us choose states m; (i =1, ..., 4) as
follows: m(@)=0  m,(b)=0.1

my(a) =1 m,(b) = 0.1
my(a) =09 myb) =0
my(a) =09 m,(b)=1.

Then (L, M) is q.f.s. for M = {m,, ..., my}. Let x({0}) = a, x({2}) = at, y({1}) =
=b, y({3})) = b*. Obviously x £,y. Now we have m(x) = 2m(a*), m(y) =
= m(b) + 3m(b*). Hence m,(x) =2 <m(y) = 2.9; my(x) =0 < my(y) =2.9;
my(x) =02 <my(y) =3; my(x) =02<m(y)=1. We can conclude that
m(x) < m(y) for all me M but x £, ).

S. Gudder [6], [9] showed that if (L, M) is g.f.s., x, y are bounded observables
and the spectrum of x has at most one limit point, then

m(x) = m(y) forany meM implies x = y.
Under the same assumption the implication

m(x) <m(y) forany meM=x<,y

does not hdld, as Example 2.2, shows.
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Proposition 2.7. Let (L, M) be q.f.s. and o(x) ={t,, b}, o(¥) ={r, r}
(< ty,r,<r). Ift,<r ort, =r, then x <,y iff m(x) < m(y) for any me M.

Proof. Let us put x({t,}) = a, y({r,}) = b. If t, <r, we can use Proposi-
tion 2.6 for ry = r,.

Now consider ¢, = r,. Then

m(x) = t, + (t, — t)ym(@*), m@®y) =t + (r;— t))ym(b").
From the assumption we have
(t,— tym(a*) < (r,— t)m(b*).

Let ne M be such that n(b) = 1. Obviously, n(a*) = 0. Hence n(b) = 1 implies
n(a) = 1. We conclude that a > b.

Let me M be such that m(at) = 1. Since b* < a*, we have m(b*) = 1. It
follows that ¢, < r,. Hence x <,y. The converse implication follows from
Theorem 2.1. (Q.E.D.)

If (L, M) is a f.s. and x, y are proposition observables, then we have x <,y
iff m(x) < m(y) for any me M and moreover x <,y implies x—y and x, <
< x < x, for all proposition observables x.

Let (L, M) be q.f.s. Put i(x) = inf{re R|re o(x)}. s(x) = sup{re R|re o(x)}. It
is clear that m(x) < m(y) for all me M implies i(x) < i(y) and s(x) < s(p). If
x> 0and x <,y, then y > 0. If o(y) = {t} and m(x) < m(p) for all me M, then
x <,y. Analogically, if m(x) = m(y) for all me M, then y <, x.

Let x, y be such observables that x has a point spectrum and y({i(y)}) A
A b # 0 for be R(x) n{0}°. Then m(x) < m(y) for all me M iff x <,y. Indeed,
put o(x) = {#}7~,. Because y({i(»)}) A x({t}) # 0 for each j, there is a state
m;e M such that m;(y({i(»)}) A x({t})) = 1. Now we have m,(y) = i(y), m(x) =
= t;. From the assumption it follows that i(y) > ¢, for all j. Now we use Proposi-
tion 2.3 for ry = i(y).

Now we consider a sum logic (L, M) and ae L, a # 0 such that, for any
summable observables x, y on L, the following conditions are satisfied:

Q) if xoa, ye—a, then x+ yea;

B) if R(x) U R(y) is p.c. [a], then (x + y) Aa=xAa+a A y.

For instance, Hilbert space logic L(H) fulfils a), p).

Proposition 2.9. Let (L, M) be a sum logic and ae L, (a # 0) such that ), f)
are fulfilled. Let me M be such that m(a) = 1. Then for any pair observables
x, y on L, with R(x) U R(y) p.c. [a] there holds x <,y [m] iff x <,y [m].

Proof. Since x Aae>y Aa,wehavex Aa<,yAa[m]iff xAa<,yAa
[m]. But m(x(E) A y(F)) = m(x(E) A a A y(F) A a) and m(y(E)) = m(y(E) A
A a), for any E, Fe B(R): As (—, r)e B(R) for each re R, we have x <,y [m]
iff x <,y [m]. (Q.E.D.)
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Corollary. 2.9.1. Let x, y be p.c. [a], m(a) =1 and let x >0 [m], y = 0 [m].
Then
() x+y=0[m];
(i) x-y 20 [m];
@iii) if x ha=foz, y A a=goz, where f, g are Borel functions and z is an
observable on Ly, ,, then x <y [m] iff f < g a.e. [m.].

3. Properties of functional representation for p.c. observables

In what follows we shall assume (L, M) to be a sum logic with a), B). Let
O < L be a sublogic of L which is p.c. [a] for some ae L (a # 0). From the
properties of partial compatibility it follows that Q A ais a Boolean o-algebra.
Let me M be such that m(a) = 1. Denote by X(Q) the set of all bounded
observables with R(x) = Q and suppose that x, ye X(Q); then x + ye X(Q). Let
us fix a measurable space (2, #), and a o-homomorphism 4 from % onto
O A a, which exists by the Loomis-Sikorsky theorem (see [13], [22]). To any
observable x on Q there is an & -measurable function f,: £ — R such that
X A a=f.oh[20]. We shall write x ~ f..

Definition 3.1. Let x, ye X(Q). We shall say that x ~ y [m] (x is equal to y
modulo m) if for any Ee B(R)

m(x(E) A y(E)) =0,
where aAb = (a A b*) v (a* A b) (a, be L).

Lemma 3.1. Let x, ye X(Q). Then x ~ y [m], y =~ z[m] imply x ~ z [m].

Proof. We have m(x(E)Ay(E)) = m(x(E) A aAy(E) A a). But R(x A
A a)UR(y A a)uR(z A a)c Q A a. The statements follows from the proper-
ties of the symmetric difference on a Boolean-o-algebra. (Q.E.D.)

Lemma 3.2. For x, ye X(Q), x >y [m] iff f. = f, a.e. [m], (where m,(E) =
= m(h(E)), for all E€ F).
Proof. We have
m(x(E) Ay(E)) = m(x(E) A aAy(E) A a) =
= m(h(f;'(E)) Ah(f,; ((E))) = my(f; (E) A S (E)).

It was shown by S. Gudder and J. Zerbe [10] that f, = f, a.e. [m,] iff m,(f7'(E) A
Af;'(E)) = 0 for all E€ B(R). (Q.E.D.)

Lemma 3.3. Let x, ye X(Q) and g be any Borel real function. Then
() h(welf,,, =f+LH=1;
(ii) h({we Q2lf, (o) =g( (@) = 1;
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(iii) h({we Qlf,.,(0) =f(o)-f,(0)}) = 1. |
Proof. (i) We have f., h(E)=(x+)y)Aa(E)y=(xAra+ynra)(E)=
= f.oh(E) + f, o h(E) = (f; + f,) o h(E) for any Ee B(R). It means that
h({we Qf, . () = f(0) + f,(0)}) = 1.
(i) fy.xoh(E) = gox(E) A a = x(g"(E)) A a=f,oh(g™(E))) = gof.oh(E)
for any Fe€ B(R).

(iii) follows from (i) and (i7). (Q.E.D.)
Let x be an observable on Q such that [m(x)| < co. For b€ Q let us denote by

the symbol jx dm the following integral
b

Jx dm = er(x(dr) A b).
b

The integral on the right side exists, because m(x(E) A b) = m(x(E) A b A a) =
=m(x A a(E) A b A a) = m,(f{'(E) n B), where h(B) = b A a, Be #. There-
fore

er(x(dr) Ab) = jrm,,(f;'(dr) N B) = J f.(rym,(dr).

Especially for b = 1, fx dm = frm(x(dr)).
Lemma 3.4. For any xe X(Q) and be Q

Jx dm = IX-xb dm = J.rm(x-x,,(dr)).
b

Proof. We have

Jx dm=J.fv dm,,=jxa-fx dm,.
b B

We have yzoh({1}) = h(B)=b Ana=x,Aa({l}) and gzoh({0}) = h(B°) =
=b"* A a=x, A a({0}). Then X, ~ y,. From this we obtain

fxs fedm, = Jtmh(“r'XB)_l (d) = Jt'n((x-xb) A a(dr)) =

- Jx~x,, dm. (Q.E.D.)

331



Lemma 3.5. Let n be a finite measure on Q. If n < m, there is an observ-
ables y on L, y«—b, for any beQ, such that R(x) A ac Q A a and for any

xe X(Q), jx dn=| x-ydm.
Proof. Let xe X(Q). We have

Jx dn = Jtn(x(dt)) = J tn, (f7'(d1)),

where n,(B) = n(h(B)), BeF (h(B)=b na, beQ). If m,(B)=0, then
m(h(B)) = 0 implies n(h(B)) = 0. But n(h(B)) = n,(B) and from n, < m,. By the
Radon-Nikodym theorem there is a function g: £ — R, #-measurable, such

that n,(B) = jg dn,. Put y =goh v xy A a*. Then y is an observable on L

and R(y) A a= R(geh) = Q A a. Moreover, y <> x for any xe X(Q). Now we
have

Jx dn = Jf‘ dn, = Jgfx dm, = J.Y-}' dm. (Q.E.D))

Let {x,}7_, < X(Q). We say that x, — x a.e. [m] if

m (\7 N e]) =1

n=1lk=n

for all £> 0. We say that x, - x in L,-mean (x, - x) if m(|x, — x|") > 0 [8].

Lemma 3.6. Let {x,}/_,, x = X(Q).

(l) X, > X a.e. [m] Wf\'n —’f\' a.e. [mh]’
(ii) X, 5> x iff fo 2> f in L, (2, F, my).
Proof. (i) We have

m(f\:/‘k/l(xk—x)[—g, 8]>=’"<\x//x\(xk Aa—xnAa)|—& s]> -

i=lk=i

(0 -1 4)

The last expression equals 1 iff f, — f, a.e. [m,].

(i)

U A wh0-10<a).

i=1 k=1

m(|x, — x|?) = j tm()x, — x|"(dt)) = J|t|”m((x,, Aa—xAa)dr)) =
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= fltl"mh((fx" —f)7'dn) = ftm;,((lﬂ" — £~ dn) =

= JVVH(I) _fw(t)lpmh(dt)

The last expression equals 0 iff f, — f, in L,(£2, #, m;). (Q.E.D.)

4. Conditional expectation

Let P = Q be a sublogic. We define a conditional expectation with respect
to P as follows.

Definition 4.1. Let x€ X(Q). We say that an observable y on Q is a conditional
expectation of x with respect to P if
() RO)AacPAha,;

(ii) .[x dm=fy dm for all be P.
b b

Any observable y, which satisfies (i), (ii) is called a version of conditional
expectation. The case of a = 1 (i.e. Q and P are Boolean-o-algebras) was studied
in [12]. For any x € X(Q) this definition is a restriction on Q of the definition of
a conditional expectation of x with respect to P relativized by a in the state m
(E, (x/P, a)), which has been studied in [14]. Because we have a fixed m and a,
we write E(x/P) in the sequel.

Theorem 4.1. To any x € X(Q) there is a version of conditional expectation, then
y =~z [m].

Proof. Since xe X(Q) then x A a is bounded on L ,. Then f, is boun-
ded. Put F, = {Be Z|h(B)€ P A a}. Since K, is a sub-o-algebra of & then there
is a Fy-measurable function g: E(f./F,) which is bounded [2]. Put y = goh v
vat ax, R) hac P Aaand yis a bounded observable. Let be P and
Be % be such that hi(B) = b A a, clearly BeF,. Now we have

J‘xdm=J‘fxdm=J‘gdm=J~ydm.
b B B b

If y, z are versions of conditional expectation E(x/P), then their functional
representations f,, f; are versions of E(f./F). This implies f, =f. [m)] and
therefore y ~ z [m]. (Q.E.D.)

Corollary 4.1.1. (i) If ae Q, xe X(Q), then there is a version of conditional
expectation of x which belongs to X(Q);

(i) If ae P, xe X(Q); then there is a version of conditional expectation of x
which belongs to X(P).
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In what follows we shall write x = y if x ~ y [m]; i.e. f, = f, a.e. [m,]. Then
for example, x, = x, if ae Q. From Proposition 2.9 it follows that if x, y € X(Q),
then x <,y [m] iff x <,y [m]. In the following we shall write x < y. From
Corollary 2.9.1 it is obvious that x < y iff £, < f, a.e. [m,].

Theorem 4.2. A conditional expectation has the following properties :

1) If ae R, then E(ax/P) = aE(x/P).

2) If x, ye X(Q), then E(x + y/P) = E(x/P) + E(y/P).

3) If x <y, then E(x/P) < E(y/P).

4) If x, ye X(Q) and R(x) A a < P A a, then E(x-y/P) = x- E(y/P).

S) If x, < x,< ..., x belong to X(Q) and x,— x a.e. [m), then E(x,/P)—
— E(x/P) a.e. [m].

6) If p = 1, then |E(x/P)]" < E(|x|’/P) (xe X(Q)).

7) If x,, X, ..., x€ X(Q) and x, > x, then E(x,/P) > E(x/P).
Proof. Follows from the fact that x ~ f,, E(x/P) ~ E(f,/K) and from the
properties of E(-/Ky) ([12], [14], [19]) (Q.E.D.)

5. Characterization of conditional expectation

In what follows we shall suppose that ae Q. Let Y(Q) be subset of X(Q) such
that xe Y(Q) if x = 0. Due to Corollary 2.9.1, it is clear that Y(Q) is closed
under the formulation of the product and the sum of observables. It is easy to
see that x = 0 iff £, = 0 [m,].

Let T be a transformation of Y(Q) into Y(Q) satisfying the following con-
ditions:

T1) For x, ye Y(Q), a> 0, B> 0 T(ax + py) = aT(x) + BT(»).

T2) For x, ye Y(Q) T(x-T(»)) = T(x)- T(y).

T3) If xy, x5, ..., xe Y(Q), x, = x a.e.[m], x, < x,, , for each n, then T(x,) —

- T(x) a.e. [m].
By Theorem 4.2 and Corollary 4.1.1 the transformation which transfers x to
E(x/P) is a transformation of Y(Q) into Y(Q) satisfying T'1), T2), T3).

Lemma 5.1. If x, ye Y(Q) and x > y, then T(x) > T(y).

Proof. We have x > y iff f, > f, a.e. [m}]. The transformation T induces a
transformation 7; of the set of all bounded % -measurable functions £ > 0 a.e.
[m,] on (£2, F) into itself. Indeed, for any element x e Y(Q) there is f, such that
x ~ f,, where f, > 0 a.e. [m,]. Let T(x) = y. We put T,(f,) = f,. By this definition
T(x) = T() iff T,(f) = T,(f,) a.e. [m,). Now we have x > y iff . > f, a.e. [m,].
But T,(f,) = T,(f, + (s — /) = Ti() + Tl — £) = T,(f}), because £, — f, >
> 0 a.e. [m,] and then T,(f, — f,) = 0 a.e. [m;]. Then we have T(x) > T(y). On
the other hand, to any bounded % -measurable function f > 0 a.e. [m,] there is
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an observable xe Y(Q) such that x ~f. In fact, put x =foh v a* a x,.
(Q.E.D.)

Lemma 5.2. Denote by Z = {xe Y(Q)IT(¥)-x = T(x-y) for all ye Y(Q)}. Then
the following statements are true.

1) If x, yeZ, then x + yeZ, x-yeZ and if x > y, then x — ye Z.

2) For a> 0, xe Z, we have axe Z.

3) If {x,, X3, ...} © Z such that x, < x,,, for all n and x, — x a.e. [m], where

xe Y(Q), then xe Z.
4) If {x,, x5, ...} © Z and there is ye Y(Q) such that x, <y for all n and,
moreover, if x,— x a.e. [m], then xe Z.

Proof. Let & be the set of all bounded % -measurable functions f> 0 a.e.
[m,] for which T;(f- g) = f- T;(g) for any & -measurable bounded function g > 0
a.e. [m,). By repeating the arguments Shu-Ten Chen Moy — if we restrict our
considerations to bounded functions only — we can prove that the following
statements hold:

1) If g,, g,€&, then g, + g,€& and g,-g,€&, and if g, < g, a.e. [m,], then
—g,€86.
2) If a> 0, geé&, then ageéd.
3) If {g), g, ...} = &, 8, 7~ g a.e. [m,] (where g is bounded), then ge&.
4) If {g), &5, ...} = &, &, — g a.e. [m,] and there is a bounded function k for
which g, < k a.e. [m,] for any n, then ge&.

If we pass from functional representation to observables, we obtain 1), 2),

3), 4). (Q.E.D))
Lemma 5.2. If xe Y(Q), then T(x)eZ.
Proof. Follows from T2). (Q.E.D.)
Lemma 5.3. Define P = {de L|x,e Z}. Then P is a sublogic of Q.

Proof. If x,eZ, then 1e P. Let de P. Then x,. = x, — x,€ Z. This im-
plies by Lemma 5.2.1 that d* e P.

Let d, beP; then x,;, x,€Z and x,;~ xp, X, ~ X5, Wwhere D, Be # and
h(B)=b A a,h(D)=d A a. Then x;-X, ~ X5 Xp = Xs~pand ¥Yg~p ~ X4.,- But
x4 x,€ Z according to Lemma 5.2.1; then d A be P. Then also d A be P. By

induction it can be proved that {d,, ..., d,} = P implies \/ d;e P.

i=1
Without loss of generality we can assume that {d,, d,, ...,} = P are mutually
orthogonal elements. Denote by y, = x, . .., 4 for all n. It is sufficient to prove

that y, — x\/d a.e. [m], (y, < yn+ for all n). Put x = de Because d, > d,, for
alln, m there is an observable z such that {d,, d,, ...} = R(z). Suppose {B,, B,,
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...} B(R), z(B)=d, and D, = Cj B, D=\) B,=\) D,. Put f,= o,
f=xp. We obtain x = foz, y, =f,,;=zf Hence " '
m(lim (x — y,)[—& &) = m.(lim (f = £)"'[ &, &]).
Consider € > 1. Then
m,(lim (f — f,)"'[—¢ &) = m.(R) = 1.
Further, if € < 1, then
m.(im (f = £)"'[—¢, &) = m.(lim ;L ,, ({0})) =
= m,(lim {t|x, _p (1) = 0}) = m.(lim D°U D,)m.(R) = 1.
Then xe Z. Thus \/ d,e P. (Q.E.D.)
Corollary 5.3.1. (i) For all xe Y(Q) we have R(T(x)) Ahac P A a.

(ii) Since x, = x, and 1€ P, we have a€ P.

Theorem 5.5. Let T be a transformation of the set Y(Q) into Y(Q) satisfying
T1), T2), T3); then T is of the form T(x) = E(x-y/P), where y = 0 such that
ye Q.

Proof. Define S: dHJT(xd) dm, de Q. Then B is a measure on Q by
T1), T2), T3), and if m(b) = 0 (be Q), then x, = x,. And

Bb) = j T(x,) dm = f T(x,) dm = j T(x,-x,) dm = jxo- T(x,) dm = 0.

so that B < m. Moreover f(a) = B(1). By Lemma 3.5, there is an observable y,
y = 0 and y < Q such that for xe Y(Q)

Jx dﬁ=Jx-y dm.

Let{a, ..., a,} =« R(¢;=> O forall i), {B,, ..., B} = %, BnB;= 0, for i #j

and h(B) = b, A a, ({b,, ..., b,} = Q). If we put = Z @ xp, then foh v a* A
A xo€ Y(Q) and =1

_[T<i aixb,.) dm = Z a;f T(xh,-) dm = Z a; | T;(x) dm, =
= = i

n

= i a,-'[T(x,,i A a)dm = En: o | T(xs ) dm =} a;B(b; A a).
i=1 i=1

i=1
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pb; A a) = be;Aa dB, and p(a*) =0,

i;} q; xb,- Aa dﬂ = Z ; xbi dﬁ’

i=1

ie. J T(Z a,.xbi) dm = J (Z a,.x,,i) dB. Since any & -measurable function f
i=1 i=1
can be described as a limit of a nondecreasing sequence of a simple functions,

we have for all xe X(Q)

J‘T(x)dm=J~T(fx0hvaJ‘/\xo)dm=foohval,\xodﬂ=
=deﬂ=fx-ydm.

j T(x) dm = jxd- T(x) dm = J T(x4 x) dm = jxd-x-}’dm = Jx-y dm.
d d

Let de P; then

Because R(T(x) A a < P A a we have E(x-y/P) = T(x). (Q.E.D.)

Let us consider a transformation S of X(Q) into X(Q) with the following
properties:

S1) a, peR S(ax + Py) = aS(x) + BS(y) for x, ye X(Q).

S2) S(X'SI(_V)) = S(x)-S(yl)for x, y€ X(Q)-
 83) If x, > x, then S(x,) = S(x), {x.}_,, x = X(Q)).

S4) m(IS(x))) < m(|x]), (xe X(Q)).

As before, x, - x means that m(|x, — x[) - 0. Moreover, x, - x iff f, = f.in
L, Z,my,ie. (If, —f|dm—0.

Lemma 6.1. Let K = {y e X(Q)IS(x-y) = y-S(x), for all xe X(Q)}. Then the
following holds :
() If y\, y,€K, then ay, + Py,€ K (a, Be R).
(i) y1, € K implies y,-y2€ K.
(i) If )2, = K y,— y € X(Q)), then yeK.
Proof. Statements (i), (ii) follow immediately from S1), $2). To prove
(iii) let us observe that for any {¥.}x-1, y, x from X(Q), y, > y; then x.y, 5

L x-y. Indeed, y, > y iff f, =1, in L,(2, &, m,). This implies /, -/ - f,-£, in
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L, (2, #, m,), and then x-y, —I+x-y. Now, let {y,}5_, = K and y, —Iw Then

n=1

S(x-y,) 4 S(x-y) by §3). Hence S(x-y) for any xe X(Q), i.e. ye K. (Q.E.D.)

Lemma 6.2. Define V = {de L|x,e K}. Then V is a sublogic of L.

Proof. Similarly, as in Lemma 5.3 we prove that if de V, then d* eV and
if{d,, ..., d} <V, then vd.eV. Suppose now that {d,, d,, ...} = V are mutually
orthogonal elements. We have

mxy g, — X, 1) = m,(1xp - p 1),

’

where ypoh=x,, Aa, xp ch=x, Aa, b,= \/ d. (i.e. h(D)=(vd)Ana=

i=1
=h(uD,), h(D)=\/d n a)- But lim m,(|x,_p ) = m(Ix%l) = 0. Then
i=1 n- i
vd,e V. (Q.E.D.)
Corollary 6.2.1. Fol all xe X(Q) we have R(S(x)) A ac< V A a.

Lemma 6.3. If ye X(Q) and R(y)e V, then ye K.

Proof. If y =x,, then x,e K. Linear combinations of proposition ob-
servables are in K. Any bounded observable can be written as a limit in L, of
a sequence of linear combinations of proposition observables, which implies
that ye K. (Q.E.D.)

Theorem 6.4. If S is a transformation on X(Q) into X(Q) satisfying S1)—S4)
and S(x,) = x,, then S(x) = E(x/V) for all xe X(Q).

Proof. Put n(d) =m(S(x)) (deQ). Then n(l)={x,dm=1. Let
{b}* | = Q, be mutually orthogonal. Put b = v b;. Then

n 1 X n
xcn = Z x,,i—> Z x,,‘_ = xv;,'_ (Cn = \/b,)a

i=1 i=1 i=1

which implies S(x, ) 5 S(x;). Therefore n(v b,) = v n(b,). Then nis a o-add-
itive function on Q. Further [7(b)] = [m(S(x,))| < m(S(x,)]) < m(|x,]) = m,(xp),
where h(b) = b A a. Now we have m, () = m(b). Then m(b) = |n(b)| = n(b),
for all be Q. If m(b) > n(b) and m(b*) = n(b*), then 1 = m(b) + m(b*) >
> n(b) + n(b*) = 1. Then m(b) = n(b) for all be Q. This fact implies n(b) =
= m(x,) for all be Q.

If{a, ..., @} = R, {b,, ..., b,} = Q, then

m <S <Z": a,-x,,,_)) = Zn: a;m(S(x,)) = <Z": a,-x,,'_>-

i=1
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Let be V; then

b

J;S(x) dm = JS(x)~xb dm = JS(x-x,,) dm = ~l‘xvc,, dm = Jx dm,

S(x) = E(x/V). (Q.E.D.)

We note that the sublogic V (resp. P) is not uniquely defined. In fact, if P,
P, are sublogics of Q such that P, A a = P, A a, then the conditional expecta-
tions with respect to P, and P, are equal to m for any x e X(Q). Also, if a¢ O, we
put O, ={b A av c A a'lb, ceQ}. Then Q, is a sublogic of L, ae Q,, and for
any x € X(Q), the functional representation f, depends onlyon Q A a = Qy A a.
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YIIOPAAOYEHUE HABJJIIOAAEMbBIX U XAPAKTEPUCTHUKA YCJIOBHOI'O
MATEMATHUYECKOI'O OXXUJAHHNA

Olga Nanasiova
Pesome

B nepBoii 4acTH 3TOl CTaTbH PacCMAaTPUBAIOTCA [Ba Crlocoba ynopsaaoueHHs HabIo1aeMBbIX H
HCCIIEAYIOTCS OTHOLUEHHS «PEJIATUBHBIX YCJOBHBIX OXHMIOAHHA» 1 YACTMYHO KOMMNATHOMJIbHBIX
HabrogaeMbIX Ha KBaHTOBO# JIOTHMKE. DTH «peJlaTHBHbIE OXUIaHUA» ObLIM onpenesieHbl B [14].
I'naBHbIA pe3ynbTaT — XapaKTepHCTHKA «PEATHBHBIX YCIOBHBIX OXHOaHHH» B cMbicie Wy-Ten
XeHn Moii [19] Ha kBaHTOBOI JIOTHKE.
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