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SUBDIRECTLY IRREDUCIBLE DECOMPOSITION
OF SOME ALGEBRAS HAVING THE SEMILATTICE
STRUCTURE

TADEUSZ WESOLOWSKI

0. In this paper we consider algebras of type 7. {+, -} >N, where
7(+) = 7(-) = 2. Denote by D the variety of all distributive lattices of type Tand
by S, the variety of all algebras of type 7 satisfying the following identities:

M) xy=z1

2) x+xy)=x;

(3) identities which define + — semilattices.

In [5] algebras from the join D v S, of varieties D and S, were studied. In
particular, the following facts were proved there:

(i) identities (2), (3) and the following identities (4) — (7):

@ x-y=y-x;

(5) (x-3)-z = x-(y-2);

6) x-(y +2)=(xy)+ (x-2);

(7 (x-x)-y=2x-y,
form an equational base of D v S;;

(i) if o =(A4; +, -)eD v S,, then the mapping h: A - A defined by the
formula:
h(x)=x-x for xeA

is a retraction of &/ such that (h(A4); +, -) is a distributive lattice, h(x) < x
and x-y = h(x)-h(y) for all x,ye A.

In this paper we describe all subdirectly irreducible algebras from D v §,. In
order to attain this we shall use the notion of a disjunctive lattice, which was
introduced in [4] as an utilization of the notion of a disjunctive poset for lattices
(cf in [1], [3]).

Let us recall that a lattice & = (L; +,. -) with the least element 0 € L is called
disjunctive if for all a, be L the following condition holds:

(iii) if a < b, then there exists ce L\ {0} such that c< b and a-c = 0.

Lemma 1. Let & = (L; +, ) be a distributive lattice with the least element
O€ L. Then & is disjunctive iff for each nontrivial congruence © of £ there exists
ce L\{0} such that c = 0(O).
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Proof. (=). It was proved in [4].

(«<). Let a < b for a,be L. Then the principial congruence @(a, b) of £ is not
trivial, so ¢ = 0(@(a, b)) for some ce L\{0}. Using the G. Gratzer—E. T.
Schmidt theorem (cf [2], p.74) we have a-c=a-0=0 and b+c=
=b+0=5b.

1. It is known that each nondegenerated subdirectly irreducible member of
D is isomorphic to the two-element lattice 2 = ({0, 1}; +, -), where a + b =
=max{a,b} and a-b=min{a,b} for a,be{0,1}. Similarly, each non-
degenerated subdirectly irreducible member of S, is isomorphic to the algebra
2 =({0,1}; +, -), in which a + b = max{a, b} and a-b = 0 for a, be{0,1}. In
fact, if & = (4; +, -)€S,, then the reduct (4; +) of o/ is a semilattice and
congruences of (4; +) and &/ coincide.

Of course, algebras 2 and 2 are examples of subdirectly irreducible members
of D v S,. For another example let us consider a distributive disjunctive lattice
L =(L; @, ®) with the least element Oe L and let us put L, = L U {e}, where
e¢ L. Now we define on L, two binary operations + and - as follows. If a,be L,
then a+b=a®b and a-b=a®b. If acL,\{0}, then a+e=e+a=a.
Finallyweput0 + e =e+ 0 =eanda-e = e-a = 0foreachae L. Itiseasy to
check that the algebra %, = (L,; +, -) satisfies identities (2) — (7), so by (i),
ZL.eD v S,. Observe that L is a subalgebra of %, and L = h(L,), where h is a
retraction of .%, defined in (ii). Indeed, for x e L, we have h(x) = x for xe L and
h(e) = 0. Below, the operations @ and ® will be denoted by + and -, respec-
tively.

Theorem 1. If & = (L; +, -) is a distributive disjunctive lattice and e ¢ L, then
the algebra %, is subdirectly irreducible.

Proof. Let ~ be the kernel of &. We have [0]. = {0, e} and [a]. = {a} for
each ae L\ {0, e}. It means that ~ is an atom in the lattice of all congruences of
Z,. If &, is subdirectly reducible, then there exists a nontrivial congruence @ of
&, such that ~ N @ = @, . Hence 0 # () and the restriction O, of O to the
subalgebra L of %, is a nontrivial congruence of #. Therefore, by Lemma 1
there exists ce L\{0} such that ¢ = 0(®,). Then ¢ = 0(®) and consequently
c=c+e=0+4e=e(0). Thus e = 0(@) — a contradiction.

Note that the algebra 2 is of the form 1,, where 1 = ({0}; +, -) is the
one-element disjunctive lattice and e = 1.

2. For an algebra o = (4; +, -)e D v §, denote by h the retraction of o/
defined in (ii). Let £ " denote the distributive lattice (h(4); +, -) and let ~ be
the kernel of 4. Assume that 0 is the least element of .«/.

Lemma 2. (a). If ue A, then [u]_ is a subalgebra of </ and ([u].; +, -)€S,;
(b) Each congruence @ of ([0].; +, -) can be extended to some congruence @*
of ;
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(¢). If xeh(A), then the relation o, = A x A defined as follows:
aob iff a+x=b+x

is a congruence of /. Moreover, g, is trivial iff x = 0.

Proof. (a). Since (4; +) is a semilattice, [u]. is closed under the opera-
tion +. Further, if x, ye[u] ., then A(x-y) = h(x)-h(y) = h(u)-h(u) = h(u) and
x-y = h(x)-h(y) = h(u). Thus x-ye[u]. and the algebra ([u].; +, -) satisfies
(D).

(b). For a congruence @ of ([0]_; +, -) we define a relation @* =< 4 x 4
putting
x=yp(0* iff x~y and x=y(@) if x,ye[0]..

We see that @* is an equivalence on A. Let a = b(®*) and ¢ = d(O*). Then
a-c= h(a)-h(c) = h(b)-h(d) = b-d, so a-c = b-d(O*). Now observe that if
h(x + y) = 0, then A(x) = 0 and A(y) = 0. Therefore, if a, b ¢[0]. or ¢,d¢[0].,
then a + c¢[0]. and b + d¢[0].. Hence a + ¢ = b + d(O*). If a, b, ¢, d€[0] .,
then a = b(®) and ¢ = d(0), so a + ¢ = b + d(®) and consequently a + ¢ =
= b + d(O*).

(c). Let xeh(A). Obviously g, is an equivalence on A. Let a = b(g,) and
c=d(g,). Then a+c=b+d(o,) and (a-c)+ x= (h(a)-h(c)) + h(x) =
= (h(a) + h(x)) - (h(c) + h(x)) =h((@a+x) - (c+x)=h((b+x) - (d+ x)) =
=(b-d)+ x. Thusa-c = b-d(p,). If x = 0, then 9, = w,. On the other hand we
have a + x = a(p,) for each ae 4. Therefore, if o, = w,, then a + x = a, so
x=0.

Lemma 3. If an algebra o/ = (A; +, -)e D v S, is subdirectly irreducible and
~ # @, then the lattice ¥" is disjunctive and there exists e€ A\ h(A) such that
oA = P

Proof. Observe that the lattice #* has the least element 0 e A. Indeed,
otherwise all relations g, x € #(4) from Lemma 2(c) are nontrivial congruences
of . If a = b(("\ {o,: x€h(A4)}) for a,be 4, then a = b(g,.,) since a-beh(A).
Hence a =a + (a-b) = b + (a-b) = b — a contradiction. -

Put B = {xe A\[0].. :|[x].| > 1} and # = {0, : x€ B}. For each congruence
O of the algebra ([0]..; +, -) denote by @* the extension of @ from Lemma 2(b).
Let 2* = {®*: O D}, where Z is the family of all congruences of ([0]_; +, -).

We see that if B # 0, then families # and 2* are not empty and ~ € 2*, since
~ is the extension of [0]. x [0]. € 2. Further, all congruences from the family
H =F U P*arenot trivial. Leta = b((\#)and a # bfora,be A. Thena ~ b,
i.e. h(a) = h(b). If h(a) = h(b) # 0, then a,be B and a = b(g,,). Hence a =
=a+ h(a) =b + h(a) = b + h(b) = b — a contradiction. If h(a) = h(b) =0,
then a,b€[0]. and a = b(O*) for each @e 2. In particular, a = b(af}_), so
a = b(awy,_) — a contradiction.
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We have proved B = 0. It can be easily verified that the algebra ([0].; +, -) €S,
is subdirectly irreducible. Therefore, |[0].| = 2. Hence 4\ h(A) = {e} for some
e A. It means that the set {0, e} is the only one nondegenerated congruence class
of ~, so ~ is the atom in the lattice of all congruences of /. We have:

@iv) a-e=0 forall aeAd
since a-e = h(a)-h(e) = h(a)-0 = 0. Further,
) a+e=a forall aeA\{0}.

In fact, e + e = e and ae h(A) for ae A\ {0, e}. Hence the congruence g, of <,
is not trivial, so ~ < g,. Thus 0 = e(g,), which gives (v).

It follows from (iv) and (v) that &/ = £". To prove that the lattice £ is
disjunctive we use Lemma 1. Of course, if #" has exactly one element, then it
is disjunctive. Let |A(4)| > 1 and @ be a nontrivial congruence of #*. Let us
assume that [0]o = {0}. Then the relation ©, = @uU {{e, e)} is a congruence of
/. Indeed, let a = b(6,) and ¢ = d(0,) for a, b, ¢, de A. If {a,b>e ® and
{c,d)>e® or {a,b) ={c,d) =<e,e), then obviously a-c=b-d(0,) and
a+c=b+d®,). If {a,b)e® and c=d=e, then by (iv) we have:
a-c=ace=0=b-e=bod,soaocc=bod(®,). If a=0, then also b = 0 and
a+c=b+d(0,).Fora#0wehaveb# 0and by (v),a+c=a+e=aand
b+d=>b+ e=b.Hencea+ c = b + d(0,). Then congruence 6, is not trivial,
so~ < 0, Thus0=e(0,)—a contradxctlon Therefore |[0]o] > 1, which ends
the proof of the Lemma.

Theorem 2. If an algebra of = (A; +, -)e D v S, is subdirectly irreducible and
|A| > 1, then of =~ 2 or there exists a distributive disjunctive lattice ¥ = (L; +,
-) and an element e¢ L such that of = %,.

Proof. If ~ = w,, then h(4) = A. Hence /€D and o = 2. If ~ # w,,
we use Lemma 3.

It was proved in [5] that the varieties D v S, D, S, and the trivial variety T
of type 7 are the only subvarieties of D v §,. Therefore we have

Corollary. If e is not a member of 2, then the algebra 2, generates the
variety D v S§,.

Proof. Obviously, the lattice 2 is disjunctive, so 2, is a subdirectly ir-
reducible member of D v §,. Let K = HSP(2,). Then K=< D v S,. But K # D
since 2,¢ D and K # S, since 2,¢S,. Thus K= D v §,.
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Pesome
B pa6ote nccaenyercd o6seAMHEHHE IBYX MHOrooGpasuii anrebp ¢ monypeléTo4HOMH CTpyK-.

Typoii. [Tosy4eHO onucaHKe BCeX MOANPSIMO HEPA3JIOXKMMBIX aredOp U3 pacCMaTpHBaEBOro KJjacca
M OKa3aHO, YTO OH MOPOXIAETCH TPEXINEMEHTHON anreGpoii.
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