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ON DETERMINING SETS FOR THE CLASS 
OF SOMEWHAT CONTINUOUS FUNCTIONS 

CUBICA HOLA 

This paper positively answers a question asked in [1]. 
Let X, Y be sets. Let Fx Y be a class of functions from X to Y. A set D cz X 

is called a determining set for Fx Y if each two members of Fx Y which agree on 
D must agree on all of X. Denote by Q) (Fx Y) the family of all determining sets 
foriv.y-

Let X, Ybe topological spaces. A function f: X -+ Fis said to be somewhat 
continuous if for each set V cz Y open in Y such thatf_1(K) # 0 there exists a 
nonempty open set U a X so that U czf~\V). (See [2].) In the sequel Sx Y 

denotes the set of all somewhat continuous functions from X to Y. 
Let e, t e F, e ^ t. If A is a subset of X, then the characteristic function of A 

is the function XA*'- X ~* Y 

( e for x e X — A 
Zl'ix) = r 

(. t for x G A . 
Denote by #£V the class of all characteristic functions of the form 

XA':X-* Y. We assume throughout this paper that the set Y has at least two 
elements. 

Let X, Fbe topological spaces and A be a nonempty subset of X. Let e, te 7, 
e T̂  ?. Consider the following statements: 

(i) As®(Sx.Y) 
(ii) Ae9(Sx^Ynxx!y) 
(iii) for each L cz K cz X, 0 # K — L cz X — A, some of the following asser­

tions holds: 
(a) lntK=(fr 
(b) L is dense in X 
(c) IntL = 0 and L ^ 0 
(d) AT is dense in X and K^ X. 
If Y is a Urysohn space, then the statements (i), (ii) and (iii) are equivalent. 

(See [1].) 
We show that if Y is a HausdorfT space, then the statements (i), (ii) and (iii) 

are also equivalent. This positively answers a question asked in [1]. 
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Theorem 1. Let X, Y be topological spaces, Y be a Hausdorff space. Let A be 
a nonempty subset of X. Let e, te Y, e -̂  t. Then the statements (i), (ii) and (iii) 
are equivalent. 

P r o o f The implications (i) => (ii) and (ii) =-> (iii) are obvious from [1]. 
(iii)=> (i): By contradiction. Suppose that (iii) holds and there exist two 

different functions/, geSx Y which agree on the set A. Choose a.beXsuch that 

(\)f(a) = g(a) and f(b)*g(b). 

First we shall prove that for each nonempty open set G cz X such that CI 
G ^ - I w e have 

(2) G n A # 0. 

Suppose that there exists a nonempty open subset G of X such that CI G # X 
and G n A = 0. Then for the sets 0 and G no assertion from (iii) holds. Thus 
GnA # 0 . 

By (1) eitherf(fl) ^f(b) or g(a) # g(b). Suppose thatf(a) #f(6). The other 
case is similar. Choose C/, Vand Fopen neighbourhoods of the pointsf(b), g(b) 
andf(a) respectively, such that 

(3) Un V = 0 and UnT=Q. 
The somewhat continuity off implies that Int f~](U) # 0 # Int f-^T). By 

(3) I n t f - , ( C / ) n I n t f - , ( r ) - 0 , thus \ntf~](U) is not dense in X. Since f 
g G Sx y we have 

(4) \ntf~](U) # 0 9-- lntg~](V). Put ^ = Int f^C/) n I n t g ' ( V ) . We shall 
prove that 

(5) 1^=0 . 

By contradiction. Suppose that W ± 0. Since MVc: Intf_,(C/) and Intf '^C/) 
is not dense in X, ^Vis not dense in X. Thus by (2) we have W n A # 0 . Choose 
ze WnA. Thenf(z)e U,g(z)e Vandf(z) = g(z). This is contrary to (3). In the 
following we distinguish three cases 

e) Suppose that \ntf~](U) - C\{b} = 0 = Intg- ](V) - Cl{b}. By (4) we 
obtain belntf~](U) and belntg-^V). This is contrary to (5). 

0 Suppose that \nt f'\U) - Cl{b} # 0. Putting in (iii) K = lntJ"l(U)v 
u{b}, L = lntf~](U) - {b}, we obtain that 

(6) \ntf~](U) u {b} is dense in X. 

Then by (5) we have 0 # (\ntf~](U) u {b}) n \ntg~](V) = {b} n \ntg~](V). 
Thus 

(7) be\ntg~](V). 
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We distinguish two cases. First, suppose that Intg_ 1(V) — Cl{b} = 0. By (4) 
and (5) \ntg~ ](V) is a nonempty open set which is not dense in X. Thus by (2) 
\ntg~](V) nA^0. Choose a point z in this intersection. Thenf(z) = g(z)e V. 
Hencef"1 (V) # 0. Since feS^, Y9 we have \ntf~](V) # 0. Then by (6) 0 # (Int-
f~](U)yj {b}) n\ntf~](V) czf-](U)nf~](V), which contradicts (3). 

Now, suppose that \ntg~](V) — Cl{b} ^ 0. Analogously as for (7) we obtain 
be \ntf~](U). Thus beW. This is contrary to (5). This shows that the case f) is 
not true. 

g) Suppose that Intg _ 1(V) — Cl{b} # 0. Analogously as for f) we obtain 
that the case g) is not true. 

The proof is complete. 
The following theorem is obvious. 

Theorem 2. Let X, Y be Hausdorjf topological spaces. Then S)(SX Y) = {X}. 
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ОБ ОПРЕДЕЛЯЮЩИХ МНОЖЕСТВАХ 
ДЛЯ НЕМНОЖКО-НЕПРЕРЫВНЫХ ФУНКЦИЙ 

ЕиЫса Но1а 

Р е з ю м е 

Мы даем характеризацию определяющих множеств для немножко-непрерывных функций 
из топологического пространства X в топологическое пространство Хаусдорфа У. 
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