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ON DETERMINING SETS FOR THE CLASS
OF SOMEWHAT CONTINUOUS FUNCTIONS

LUBICA HOLA

This paper positively answers a question asked in [1].

Let X, Y be sets. Let F; , be a class of functions from Xto Y. Aset Dc X
is called a determining set for Fy , if each two members of F; , which agree on
D must agree on all of X. Denote by & (F; y) the family of all determining sets
for Fy y.

Let X, Y be topological spaces. A function f: X — Y is said to be somewhat
continuous if for each set ¥ = Y open in Y such that f~'(V) # 0 there exists a
nonempty open set U = X so that U < f~'(V). (See [2].) In the sequel Sy y
denotes the set of all somewhat continuous functions from X-to Y.

Lete,teY, e #t. If Ais a subset of X, then the characteristic function of A
is the function y5': X -> Y

e forxeX — A4

t for xeAd.

210 = {

Denote by yxyy the class of all characteristic functions of the form
xq't X — Y. We assume throughout this paper that the set Y has at least two
elements.

Let X, Y be topological spaces and 4 be a nonempty subset of X. Lete, te Y,
e # t. Consider the following statements:

(i) AeD(Sy.y)

(i) AeZ (Sy. vy xx'y)

(iii) foreach Lc K< X, 0 # K — L < X — A, some of the following asser-
tions holds:

(a) IntK=0

(b) Lis densein X

(c) IntL=0and L#0

(d) Kis dense in X and K # X.

If Y is a Urysohn space, then the statements (i), (ii) and (iii) are equivalent.
(See [1].)

We show that if Y is a Hausdorff space, then the statements (i), (ii) and (iii)
are also equivalent. This positively answers a question asked in [1].
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Theorem 1. Let X, Y be topological spaces, Y be a Hausdorff space. Let A be
a nonempty subset of X. Let e, te Y, e # t. Then the statements (i), (i) and (ii1)
are equivalent.

Proof. The implications (i) = (ii) and (ii) => (iii) are obvious from [1].

(iii) = (1): By contradiction. Suppose that (iii) holds and there exist two
different functions f, g€ Sy , which agree on the set A. Choose a, b€ X such that

(1) f(a) = g(a) and f(b) #g(b).

First we shall prove that for each nonempty open set G = X such that C1
G # X we have

2)GnA#0.

Suppose that there exists a nonempty open subset G of X such that C1 G # X
and G n 4 = 0. Then for the sets ) and G no assertion from (iii) holds. Thus
GnA#0.

By (1) either f(a) # f(b) or g(a) # g(b). Suppose that f(a) # f(b). The other
case is similar. Choose U, V and T open neighbourhoods of the points f(), g(b)
and f(a) respectively, such that

B)UnV=0 and UnT=0.

The somewhat continuity of f implies that Intf~'(U) # 0 # Intf~'(T). By
(3) Intf~"(U)nIntf~(T) =0, thus Intf~'(U) is not dense in X. Since f,
geS, , we have

4) Intf ' (U)#0 #Intg ' (V). Put W= Intf"(U)nIntg~' (V). We shall
prove that

5) w=20.

By contradiction. Suppose that W # 0. Since W < Intf~'(U) and Intf~'(U)
is not dense in X, Wis not dense in X. Thus by (2) we have W 4 # 0. Choose
zeWn A. Then f(z)e U, g(z)e V and f(z) = g(z). This is contrary to (3). In the
following we distinguish three cases

e) Suppose that Intf~'(U) — Cl{p} =0 = Intg~' (V) — Cl{b}. By (4) we
obtain belntf~'(U) and belntg~"' (V). This is contrary to (5).

f) Suppose that Intf~'(U) — Cl{b} # 0. Putting in (iii) K = Intf~'(U) v
ui{b}, L =Intf""(U) — {b}, we obtain that

(6) Intf~"(U)u{b} is dense in X.

Then by (5) we have 0 # (Int/~" (U)u{b}) nIntg " (V) = {b}nIntg™' (V).
Thus

(7) belntg=' (V).
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We distinguish two cases. First, suppose that Intg~' (V) — Cl{b} = 0. By (4)
and (5) Intg~' (V) is a nonempty open set which is not dense in X. Thus by (2)
Intg™"' (V)N A # 0. Choose a point z in this intersection. Then f(z) = g(z)e V.
Hence f~'(V) # 0. Since fe Sy ,, we have Intf~' (V) # 0. Then by (6) 0 # (Int-
U OYub) nintf~' (V)< f~(U)nf~'(V), which contradicts (3).

Now, suppose that Intg~'(V) — Cl{b} # 0. Analogously as for (7) we obtain
belIntf~'(U). Thus be W. This is contrary to (5). This shows that the case f) is
not true.

g) Suppose that Intg='(V) — Cl{b} # 0. Analogously as for f) we obtain
that the case g) is not true.

The proof is complete.

The following theorem is obvious.

Theorem 2. Let X, Y be Hausdorff topological spaces. Then 2 (Sy y) = {X}.
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OB OINPEAEJAOINX MHOXECTBAX
JJ11 HEMHOXKO-HENPEPBIBHBIX ®YHKLUN

Lubica Hola
Pe3iomMme

MbI naeM XapakTepU3aLHIO ONMPEALIISIOLIMX MHOXECTB U1l HEMHOXKO-HENPEPBIBHBIX (YHKLMIA
13 TONOJIOrHYECKOrO NMPOCTpaHCTBa X B TOMOJIOrHYecKoe npocTpancTso Xaycaopda Y.
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