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GRAY CODES IN GRAPHS

MARTIN KNOR

(Communicated by Pavel Tomasta )

ABSTRACT. This paper deals with special Gray codes associated with graphs.
We examine labellings of a given graph where two labellings are considered suc-
cessive whenever one can be obtained from the other by interchanging at most k
edges.

Introduction

The codes which are now commonly known as Gray codes were invented and
patented by F. Gray in 1953 [9]. For a given set X and a symmetric relation
IR of “small difference” on X, a Gray code is an ordering of all the elements of
X such that every two immediately successive elements are in R.

Gray codes were examined for such sets as subsets of a given set ([7] and [12]),
permutations ([11] and [19]), combinations ([4], [5], [13], and [17]), partitions of
a natural number ([18]), binary trees ([10], [15], and [16]) etc. (See also (2], [3],
and [6].)

The concept of a Gray code is easily explained in graph-theoretical terms. Let
A(X) be a graph with the vertex set X where two vertices x and y are joined
by an edge whenever r and y are in the “small difference” relation. Then the
problem of finding a Gray code on X is equivalent to the problem of finding a
Hamiltonian path in A(X), whereas the problem of finding a closed Gray code is
cquivalent to the problem of finding a Hamiltonian cycle in A(X). This method
was used in 1958 in the pioneering work of E. N. Gilbert, who examined
the Hamiltonian paths on n-cube instead of finding the Gray codes on subsets
of a given set.

[n this paper, we examine closed Gray codes on the set of all nonisomorphic
labellings of vertices of a given graph I'. If we remove an edge from I', we can
have more possibilities for inserting a new edge such that the resulting graph is
isomorphic to I'. In this way, from a labelling ', of ' we get a new labelling

ADMNS Subject Classification (1991): Primary 05C45. Secondary 94A29, 05A05.
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MARTIN KNOR

I'y , and these labellings are in the relation “small difference” (see Definition 1.1).
This relation has the following real-life motivation: Assume that we have n users
in a network. By successive interchanges of just one line we want to generate
all possible “realizations” of the given type of network in the way that no two
configurations are repeated until the first is identical to the last. (In the case
when I' is a path or a cycle, we can regard our task as generating of Hamiltonian
paths or Hamiltonian cycles, respectively, in a complete graph.)

Let T be an arbitrary graph; VI' and ET are used for the vertex set and
the edge set of I', respectively. The complement of I' will be denoted by T .
By G(I') we denote the automorphism group of I'. Permutations of the set
{a1,az2,...,a,} are given by the position of the elements aj, as,.... a,. So
(a1,a3,a2) means ay — ay, az — az and asz +— as. Composition of mappings
is always to be understood from right to left.

1. The k-copylist of a graph

In this section, we give precise definitions of basic notions and some elemen-
tary observations.

Let I" be a graph with vertices uy,us,.. ., u, . In this way, we ordered the ver-
texset of I'. Let x = (z1,22,...,x,) be any permutation of the set {1.2..... nt.
Then the labelling of I" by x, I';, is the bijection

Lot {ur,ug, .o unt — {1,2,...,n}

such that T',(u;) = x; for all i, for which 1 <i < n. We remark that by [, we
denote also the graph I' with vertices labelled by I',; the meaning of I', will
always be clear from the context.

Let G(I') be the automorphism group of I'. Two labellings T', and I';, of I
are I'-equivalent if and only if there is g € G(I') such that I'; =goTl,.

Let us introduce the relation “small difference” on the labellings of T".

DEFINITION 1.1. Two labellings I'; and I'y are in the relation R[l\ if and
only if there is a set A of | mutually different edges of ', and a set B of [

mutually different edges of ', such that (ET, — A)U B = ET, . where r and
y are the permutations of the set {1,2,...,n}, n=|VI| and [ > 0.

Clearly, the relation R{ is symmetric.

Each class of I'-equivalent labellings will be represented by a single labelling.
Now we are able to introduce the basic concept of this work.
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GRAY CODES IN GRAPHS

DEFINITION 1.2. Let 7 be the set of all classes of I'-equivalent labellings of
a graph T'. The k-copylist of the graph T', B¥(T'), is the graph for which

VB*T)={I,; T, €T} and
EB¥T) ={[l,,Ty]; T,y €T, I'y #T, and thereis [ <k
such that I', R} Ly},

where k£ > 0.

It is easy to see that this definition is correct for all & > 0. Note that
B*(I') = BYT") if k and [ are greater than or equal to |ET| .

Clearly, B¥(I') is a regular graph. The classes of I'-equivalent labellings I',

such that T, R,I‘ [';q, where I', # I';g and [ < k, are called generators of B"’(F).
The generators can be determined by the sets A and B from Definition 1.1.

The elements of VB¥(I') depend on the ordering of VT, but the structure
of B¥(I') does not.

LEMMA 1.3. Let T' and I' be isomorphic graphs. Then B*(T) is isomorphic
to B¥(I'") for all k >0.

Proof. Denote by ¢ the graph isomorphism between I' and I''. Then ¢
maps labellings of T' to labellings of T”. So ¢ induces an isomorphism between
B*(I') and B*(T). O

Now we introduce two basic lemmas.
LEMMA 1.4. The k-copylist of a graph ' is a vertex transitive graph.

Proof. Let 7 be the set of all [-equivalent labellings. It is easy to see that

I,,I'y] € EB*() if and only if [T'yoz,[yoz] € EB*(I') for any permutation z

of the set {1,2,...,n}.
Since I'yop-10, = I'y, the mapping ¢: 7 — 7T defined for all ', € 7 as

#(I'.) = .oz 10y Is an automorphism of B*(T") which maps T', to T, . ]

Thus, the structure of B¥(T") in any vertex is completely determined by the
set. of generators.
LEMMA 1.5. B*(T') is isomorphic to B*(T').

Proof. Let |VI| = n. Denote by uj,us,...,u, the vertices of I' and T
such that TUT = K,,, where K, is the complete graph on n vertices.

Since G(I') = G(T'), we have VB*(I') = VB*(T').
397
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Let z be a generator of B¥(I'). Then there are /-element sets A and B such
that (ET;q — A)UB = ET,, where [ < k. But since AN B =0, we have

ET, = (El;y— A)UB = (ET;qUA)NB = (ET;y— B) U A,

so z is also a generator for T'. Since the generators of B*(I") are just the gener-
ators of B¥(T'), we see that EB¥(T') = EB*(T'). Thus, B*(I') is isomorphic
to B¥(T). .

The following trivial assertions can be helpful in understanding the notion of
k-copylist.

PROPOSITION 1.6. For any graph T we have

VBK(I)=VBYT) and EBFT) 2 EBYT) if 0<I<k.

PROPOSITION 1.7. Let I be a graph, n = |VI'|, m = |ET|, r = |G(I)|. and
o
p=-- Then

B°(l'y=D, and B"()=Ak,,

where K, and D, are the complete and discrete graphs, respectively. on p ver-
tices.

PROPOSITION 1.8. We have

B*(K,) = K, forall k>0,
BY K, —¢) = K'(n~) , where e is an edge of K, .
2
B U (Kp1) = Kner  and  B" 2K, ) = Dy

In the following sections we always choose a certain representation of I'-equiv-
alent classes. We thus consider only some simple labellings and not the classes
of labellings. For brevity. the labelling I', will be denoted just by .r in what
follows. So, the labelling x means I', while the permutation a means just .r
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2. Paths and circuits

This section is devoted to finding Hamiltonian cycles in B(P,) and
B*(C,4,), where n >3, P, is a path on n vertices, and C,,;; is a circuit on

n + 1 vertices.
Let us denote the vertices of P, as follows (see Fig. 2.1):

P": o—o0—0— P —o0—o0
u; uz ug Un—1 Un

Figure 2.1.
Then G(P,) = {id,w}, where
id = (ug,ug,...,uy) and w= (Up, Up_1,.--,U1) -

|
So. [VBY(P,)| = %

The classes of P,,-equivalent labellings will be represented by simple labellings
£, where the elements 1, 2, and 3 are in ordering 1,2,3 or 2,3,1 or 3,1,2 in
the permutation x. (There can be some other elements between 1, 2, and 3.)

In B'(P,) we have just three possibilities for choosing A and B to create

the generators (see Fig. 2.2):

(a) A:{[u.,:,uiH]}, B:{[ul,ui_H]}, where 2<:<n-1,

(b) A= {[ui, u.iﬂ]}, B = {[u.,;,u,,,]} , where 1<i<n-—2,
(c) A= {[u,;,uz—+1]}, B = {[ul,u”]}, where 2<i<n-—2.
(@ e e
(b) —o— _{._uo.mg lun
(©  fE R Th
Figure 2.2.

We now present an algorithm for finding a Hamiltonian cycle in BY(/,).
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ALGORITHM 2.1.
sTEP 1 1:=0, A;jy1:=(1,2,...,n).

STEP 2 1:=1i+ 1. Now A; = (n,n—1,...,k+1,ai,,a,,... a,; ). where
a;, #k (but it is also possible that k =n, i.e.,
A; = (a,,a4,,...,a;,), where a,, #n).
sTEP 3 If k= 2 then go to STEP 5.
STEP 4 Ai+1 = (aiz,a1;3, cey Qg ail,k+1, k+2, RN TL) , 80 to STEp 2.
STEP 5 A;yp = (1,2,...,n), end.
stand for the elements of the set {1,2,.... n}. Algo-

Here a;,,a4,,...,a;,
rithm 2.1 acts on permutations, but we can view these permutations as labellings
(see Section 1).

PROPOSITION 2.2. The sequence of labellings Ay, As,..., A, AL’H con-

structed by Algorithm 2.1 is a Hamiltonian cycle in BY(P,) for all n > 3.

Proof. Clearly, A; € VBY(P,) for all A; constructed by Algorithm 2.1.

We divide the proof into three steps.

1. In each permutation A; constructed by Algorithm 2.1 the elements 1. 2.
and 3 are in ordering 1,2,3 or 2,3,1 or 3,1,2.

This assertion is true if ¢ = 1, and it is easy to see that this ordering cannot
be reversed either in STEP 4, or in STEP 5. So we have A; # wo A; for all A4,
and A; constructed by Algorithm 2.1 since the elements 1. 2. and 3 are in
ordering 3,2,1 or 1,3,2 or 2,1,3 in wo A;.

2. [A;, Ait1] € EBY(P,) for all 4, for which 4; and A;;, are constructed
by Algorithm 2.1.

But A;+1 can be constructed only in sTEP 4, or sTEP 5. (In the second case.
A; = (n,n—1,...,3,1,2).) In both these steps [A;, A;;] is an edge of B'(P,)
created by a generator of (b)-type (see above).

3. A}, As, ..., A%!,A%!+1 is a Hamiltonian cycle in BY(P,).

Let A = (aj,as,...,a,) be a permutation constructed by Algorithm 2.1
such that ar = n, where 1 < k < n. Then A was constructed from B =

(ak41y---5an,ay1,az,...,a5-1,n) after n —k (sTEP 2-sTEP 4)-cycles of Algo-

rithm 2.1.

Let B = (by,by,...,b,_1,n) and by =n — 1, where 1 </ <n—1. Then B
was constructed from C = (bj41,...,bp_1,b1,...,bj_1,n—1,n) on (n—1-1)-n
cycles of Algorithm 2.1. So, A was constructed from C on ((n—1)— [y n+n-k
cycles of Algorithm 2.1.

But since (2,1,3,...,n) cannot be constructed by Algorithm 2.1 (see part 1
of this proof), the permutation A was constructed from (1,2,....n) on m cycles

400



GRAY CODES IN GRAPHS

of Algorithm 2.1.

Since

n-=1)4+Mm-n-2)+4n-(n—-1)-...-4-2
=n-((n=1)-(..-(4243)+...)+n—-2) +n—1

(k—1)! n!
=n-|...k- [ —=—-1)4+k—-1... —1=—=-
n < ( 5 + +n 5 1,

. ! .. . !
m is at most % — 1. So there is just one 7 < % such that A; = A, for

any permutation A with 1, 2, and 3 in allowed ordering (i can be strictly
computed).

Since Aw = (n,n —1,...,3,1,2), we have A%’+1 = (1,2,...,n), and
AL As, L A%!_H is a Hamiltonian cycle in BY(P,).

. !
Clearly, the algorithm finishes in sTEP 5 with 7 = % d

Now we find a Hamiltonian cycle in B%(C,,), where n > 4. Let us denote
the vertices of C,, as follows (see Fig. 2.3):

.

L GUNE

up uz ug Up-2Up—-1

Figure 2.3.

Since G(C},) is the dihedral group, we have

—1)!
IG(Cy)| =2n  and  |[VB2(C,)| = %
\ 1 (n—1)! '
Note that B*(C,,) = D, , where m = — - The classes of C,,-equivalent

- labellings will be represented by simple labellings x, where the element n is in
the nth position and the elements 1, 2, and 3 are in ordering 1,2,3 or 2,3,1
or 3,1,2 in the permutation .

Then : VB3(C,y1) — VBY(P,), where n > 3, defined as

W(al7a27' e 7a'n7n+1) = ((1,1,0/2,... ,(Ln)

is a bijection between V B*(Cpn41) and VBY(P,)-
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LEMMA 2.3. Let n >3, and [c,d] be an edge of B'(P,) created by a generator
Of (b)'type‘ Then [W_I(C)’W_l(d)] is an Edge Of B2(07',+1)'

Proof. Let ¢ = (¢1,¢ca,...,c,). Since the edge [c,d] is created by a gen-
erator of (b)-type, we have

d=(c1,Ca,. .y ChkyCnyCraty- -y Chit1) or

d ::(Ck+1vck+27"'acnackvck_lv"'acl)*

depending on the ordering of 1, 2, and 3, where 1 <k <n — 2.

In both these cases, it is sufficient to choose A = {[u,,, Wop1]e [wg. 11,,.*1}} and
B = {[uk,un], [ug+1,un+1]} in Definition 1.1, and we see that [~ (c). o7 '(d)]
is an edge of B2(C,+1) (see Fig. 2.4). a

Un41
Uk41l  Up Uk 41 Up
upu2 “k\—_: Uy Uz U g\ :

Figure 2.4.

Let Algorithm 2.4 be created from Algorithm 2.1 by replacing all the per-
mutations (zq,x2,...,2,) by the permutations (zq,xo,....x,.n+1). Then we
have the following consequence of Proposition 2.2 and Lemma 2.3:

PROPOSITION 2.5. Algorithm 2.4 finds a Hamiltonian cycle in B>(C,.\) for
all n > 3.

We remark that B%(C,41) is not isomorphic to B (P,) if n > 1.

3. Bipartite graphs
This section is devoted to finding Hamiltonian cycles in B+ "=2(K,, ).
where m >n and K,,, is the complete bipartite graph.
Let us denote the vertices of VK, , as shown in Fig. 3.1.
Then |G(K,, )| =m!-n!lif m>n,and |G(K,,,)| =2 (n)? if m =n.

The classes of K, ,-equivalent labellings will be represented by simple la-
bellings © = (a1,a2,...,am4n), where a1 < az < -+ < a,, and a,,+| < a,,40 <
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- < dyy+n - Moreover, we claim that a; =1 if m =n.

Figure 3.1.

We have only one type of generatorsin B™T"~2(K,, .} if m > n+2 or m =n
(see Fig. 3.2.(a) — reversing an edge of K, , ). We call it a generator of (a)-
tvpe. Certainly, the generator of (a)-type is also a generator for B"+t"~%(K,, ,,),
where m = n+2 or m == n+1. However, we have still one more type of generator
in BM=2(K,, ) if m = n+2 (see Fig. 3.2.(b)). We call it a generator of
(b)-type.

It is easy to check that B™""73(K,,,) is a discrete graph whenever
m # n+ 1 (use Lemma 1.5). But B"(K,,,) is not discrete if m = n + 1
since in B"(K,41..) we have a generator of (c)-type (see Fig. 3.2. (c)).

Dn+2 D"

Figure 3.2.

In the following, we use only generators of (a)-type.

Denote by Ci; the graph whose vertex set is the set of all [-element combi-
nations of a k-element set, where two vertices are joined by an edge whenever
they differ as sets in just one element. Then we have:

LEMMA 3.1. There is a graph homomorphism from Cy, into B™t"2(K,, )
for some k and | depending on m and n.

Proof. We distinguish two cases.
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1I.m>n.
Let ¢: Cryypm — B " "2(K,,.,) be a mapping defined as

Q&‘{ﬂl, az, ... aam,} - (blq b27 cee 7bm~, bm,+1~ s bm,+n) .

where {ai,az,....am} = {b1,ba, ..., by}, by < by < < by b1 < by <
« < bpan and {b1,-. . bmint = {1.....m+n}. Then ¢ is a bijection from
VCiinm to VB™T"2(K,, ).

Two vertices A and A’ are joined by an edge in '+ .,n whenever they differ
in just one element. But then ¢(A) and ¢(A’) are joined by an edge created oy
a generator of (a)-type in B™™"2(K,, ). So p is a graph homomorphism.

2. m=n.

Let p: Cop_ 1 n_1 — B %(K, ) be a mapping defined
olay,ag, .. san_1} = (1,02, by, by bugrs oo oy

where {al,ag, .. .,an_l} = {bg—*l, bs—1,... ,b,,—l}, by < -+ < b,.
<+ < by, and {bg,... b} ={2,...,2n}.

Then it can be shown that ¢ is a bijection from VCq,_1,,_1 to VB?" 2(K, )
which is a graph homomorphism by arguments similar to the previous ones. O

’)”+] <

In [4], P.J.Chase gives an algorithm for finding a Hamiltonian cycle in
Cry for all k and | such that & > 1 > 0 (see also [5]). G. Fhrlich gives
another algorithm in [6]. Thus, Lemima 3.1 can be used for tinding Hamilton-

ian cycles in B"T"%(K,,,) from those in Cy,;. However. since (', can He

decomposed into two graphs T' and T isomorphic to Cp—y; and Ch_y oy re-
spectively, and Cjy1; is isomorphic to K4 and ) is isomorphic to Ay .1

¢
R

can be proved that Cj; is Hamiltonian-connected by induction (see Section L.
part 3 of proof of Lemma 4.1). Thus, B" " 2(K,,,) is Hamiltonian-connect-d
graph as well {see Section 4 for the notion of the Hamiltonian-connectivity).

As we mentioned above, B"TP=3(K,, ) is a discrete graph for m # n — 1.

while B™+t"=2(K,, ,) has a Hamiltonian cycle. But if m = r-1. even the graph
B"(K,4+1.,) is not discrete. In B”(K.,,“.,,‘) , edges are created by the generators
of (c)-tvpe.

Two vertices ((1,aa, ..., as,,,) and (by.by ... bs,, 1) are joined by a ven-
erator of (c)-type in B" (K, ., ) whenever
|{(11.‘(I,2., e ,(1,,,{\1} N {hlbg ..... [’H':'l]ﬂ == 1
[t means that
l{a,,+-3, An43.. .., az,,+1} N{bys2.bngs, oo by M =0
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Figure 3.3.

Thus, B"(Kny1.n) = Ont1, where 0,41 are the odd graphs (see [1] and
[14]). The odd graphs have been studied intensively. It is known that O,, has
a Hamiltonian cycle for n € {4,5,6,7} ([14]), but for n > 7 it is still an open
problem. However, B*(K3») = O3 has no Hamiltonian cycle because Oj is the
well-known Petersen graph (see Fig. 3.3).

4. Forks
This section is devoted to finding Hamiltonian cycles in 1-copylist of the fork
F,, . where n > 5.

Fork F), is a tree consisting of a path on n — 2 vertices, (n — 2 > 3), with
two new vertices adjoined to one end of the path. Let us denote the vertices of
F,, as shown in Fig. 4.1.

Then G(F,) = {id,w}, where

id = (ug,ug, ..., up) and

w = (u15u27 . '1u7l—27un7un—1) .

|
So, |VB'(F,)| = 22—

Un-1

F o———O— .
n uy wg uz Un-3 Un-2 Un

Figure 4.1.

The classes of F),-equivalent labellings will be represented by simple labellings
r={ry,...,xh_1,2,}, where z,,_| < x,,.

In B'(F,) we have three types of generators:
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(a) A= {{ui_1,u] B = {[u1,u}, where 3 <i<n-2.
(b) A= {[u,l_4,u,, 3]} B = {[un—a,tn-1]} . or

A= ““n»/hun 3]} B = {[un—4’un]},
() A={lu, —osun—1]}, B ={[us,un_1]}, or

A= {[un 2, U]}, B = {[ug,un },

where A and B are the sets from Definition 1.1 (see Fig. 4.2).

(a) < o \o__o__—o/i;

up ug Ui—1 Ui Uigd Un-2

Un

b Up-1
( ) o o o L
uy uz us Un-4 Upn—-3 Un-2 Ou,
Up -1

(C) ° 4 ; S o

Up—~ 3—';);1}\‘0 Un
Figure 4.2.

We recall that a graph I' is Hamiltonian-connected if and only if there i~ a
Hamiltonian path between any two distinct vertices of I'. It is easy to see that
there is a Hamiltonian cycle in T if [' is Hamiltonian-connected and V1 -

LEMMA 4.1. Bl(F,,,) 1s Hamiltonian-connected if n > 7.

Proof. We divide the proofl into five steps.

1. The maximal connected subgraphs 57 of BY(F7) with edges created only
by generators of (a)-type are Hamiltonian-connected.

We remark that all such graphs S; are mutually isomorphic and have
(7 =3 = 24 vertices. One of the graphs S; is in Fig. 1.5, The vertices ... . 2
are labellings of F% and below we give the first fonr members of these li-
bellings. since the last three are always 5.6,7 in this ordering. So. instead of
Z = (1,2,3,4,5,6,7) we simply write Z == 1234.

The assertion 1 will be proved by simiple enumeration of Hamiltonian paths.
Since S7 is vertex-transitive, it is enough to find Hamiltonian paths from all the
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vertices of S7 to the vertex Z (see Fig. 4.3):

ABCDEFGHIJKLMNOPRSTUVXYZ A =2134
BGHIVXYPRIJIKLMNOCDEFSTUAZ B = 4312
CBGFEDKLMHIJRSTNOPYXVUAZ C = 3412
DCOPYXEFGBAUVIHMNTSRIJKLZ D = 1432
EFGBCDKLMHIJRSTNOPYXVUAZ E =4132
FGBCDEXYPONTSRJIKLMHIVUAZ F = 3142
GBCONTSFEDKLMHIJRPYXVUAZ G = 1342
HIJKLMNTSRPOCDEFGBAUVXY Z H = 2431
IVXYPONMHGFEDCBAUTSRIJKLZ I = 4231
JIHMLKDEFGBCONTSRPY XVUAZ J = 3241
KJRPYXVIHGBAUTSFEDCONMLZ K = 2341
LMHIJKDEFGBCONTSRPYXVUAZ L = 4321
MNOCDEFSTUABGHIVXYPRJKLZ M = 3421
NTSRIKDCOPYXEFGBAUVIHMLZ N = 1243
OPRSTNMLKJIHGFEDCBAUV XY Z O = 2143
PRIKLMNOCDEFSTUABGHIVXY Z P = 4123
RPONTSFGHMLKJIVUABCDEXY Z R = 1423
STNOCBGFEDKLMHIJRPY XVUAZ S = 2413
TSRPONMLKJIHGFEDCBAUVXY Z T = 4213
UT'SFEDCONMLKJRPYXVIHGBAZ U = 3124
VUTSFGHIJRPY XEDKLMNOCBAZ V =1324
AVIHGBAUTSFEDCONMLKJRPY Z X =2314
YXVUTSRPONMLKJIHGIFEDCBAZ Y = 3214

2. The maximal connected subgraphs S, of B'(F,) with edges created only
by generators of (a)-type are Hamilténian-connected if n > 7.

We prove this assertion by induction.

If n > 7, the graph S,, consists of n — 3 copies of 5, _; joined by edges
created by the generator z with A = {[’11,,,,_3,11,,,,_2]} and B = {[uj. v, ..}
(sce Definition 1.1). The edges created by the generator z form a linear factor
in 5, and between any two distinct copies of 5,1 in S, there are xactlv
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(n — 5)! edges created by the generator z. (We fix the elements in the first.
(n—=3)rd,...,nth positions in labellings.) In this way, we obtain K, _3 from 5,
by contraction of all the copies of S,,_; into single points.

For any A, B € VS,, we find a Hamiltonian path from A to B in S5,. We
distinguish two cases:

a. A and B are in the same copy of S,_1 (see Fig. 4.4).

We can find a Hamiltonian path ‘H from A to B in S, by induction. Since
the edges created by z form a linear factor, there are two successive vertices on
H,say X and Y, such that z0 X and zoY are in distinct copies of 5,
in S, . Let us order the remaining copies of S, _; arbitrarily. Since n > 7. we
have (n —5)! > 2. Thus, we can choose nonadjacent edges between the copies of
S,—1 which join them in the required order (see Fig. 4.4). Then we can complete
‘H — [X,Y] to a Hamiltonian path in S,, using induction.

b. A and B are in distinct copies of S, .

Let us order the copies of S,,_; such that the one containing A4 will be rhe
first and that containing B will be the last. Then we can find a Hamiltonian
path in S, as in the previous case.

57:

Figure 4.3. Figure 4.4.

3. There is a path from B to C in C} 5 traversing all the vertices of C.»
just once and missing the vertex A for all mutually different 4. B. (". where
A, B,C € V(o and k > 3.

Here, C} 2 is the vertex-transitive graph defined in the Section 3. Again. we
prove this assertion using induction.

If k=3, then Cx2 = K3, and the assertion trivially holds.

Let k& > 3. Then C} > can be decomposed into two graphs I' and I (all
combinations in I” contain the element k, but those of I' do not), where ' ix
isomorphic to Ci_12 and T” is isomorphic to Kj_; (see Fig. 4.5). Since ('
is a vertex-transitive graph, we can suppose that A € I'. We distinguish three
cases:
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a) B,CeVrl,
b) BeVIl, Ce VI’
c) B,CeVI.

a) There is a path H in ' traversing all the vertices of I' except of A (hy
induction). Let X and Y be two successive vertices on H. Then there are
X' Y" € VI such that X' #Y’, and X is joined to X', and Y is joined to
Y. (Each vertex from I' is joined to exactly two vertices in I'.) Since T is
isomorphic to Ky, we can complete H — [X, Y] to the required path in Cj 5.

The remaining cases b) and ¢) can be proved similarly, using the fact that
each vertex of T’ is joined to exactly two vertices of IV, and each vertex of T’
is joined to exactly k — 2 vertices of I'. )

We remark that the assertion 3 implies that Cy 2 is Hamiltonian-connected.

Ck,z :

Figure 4.5.

4. Bach maximal connected subgraph S! of B!(F,) created only by gener-
ators of (a) and (b)-types is Hamiltonian-connected.

Again, such subgraphs are mutually isomorphic, so the definition of S/, is
correct. Let all S, -subgraphs of S! be contracted into single points. Then the
resulting graph is isomorphic to ), 5.

Now we can prove the assertion 4 by arguments similar to those used in the
proof of the assertion 2. If the vertices A, B of S/ are in the same copy of
S, . we use the assertion 3, and if the vertices A and B are in distinct copies
of S, . we use the Hamiltonian-connectivity of C,,_1 5.

5. BY(F,) is Hamiltonian-connected.

Let all subgraphs S7, of B'(F,) be contracted into single points. Then the
resulting graph is isomorphic to K,, and so the assertion 5 can be proved by
arguments similar to those used in the proof of the assertion 2. a

The following lemma completes the previous one.
LEMMA 4.2. BY(F,) is Hamiltonian-connected if n € {5,6}.

Proof. Let S/ be the maximal connected subgraph of BY(F,) created
only by generators of (a) and (b)-types, where n € {5,6}.
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The graph Sf containing the labelling (1,2,3,4.5) is in Fig. 4.6. where

A=(1,2,3,4,5),
D = (4,5,3,1,2),
G =(2,1,3,4,5),
J=(5,4,3,1,2),

1,4,3,2,5), C =(4,1.3.2.5).
=(4,2,3,1,5), F=(2,4.3.1.5).
)
)

2,5,3,1,4),  I=(523.1.4).
5,1,3,2,4), L=(1.5,3.2.1).

x T W
I

It is easy to verify that S{ is Hamiltonian-connected.

Figure 4.6.

Denote by I' the maximal connected subgraph of B!'(Fj) created only by
generators of (b)-type and one generator of (a)-type with A = {[uz. ul} and
B = {[u1,u4]} (see Definition 1.1). Then I' is isomorphic to S%. So. S{ consists
of four copies of S/ connected by a generator with A = {[uy.u3]} and B =
{{uhus]}. Moreover, there are exactly three edges between any two copies ol
SL in S§. Since we get Ky by contraction of all the copies of S. in S{. using

the arguments from the assertion 2 of the previous proof, we obtain that S/ is
Hamiltonian-connected.

So the graphs 5], are Hamiltonian-connecred if n € {5.6}. But then the
assertion 5 of the previous proof completes the proof. O

We conclude this section with the following proposition:
PROPOSITION 4.3. BY(F,) is Hamiltonian-connected.
We remark that the proofs of Lemma 4.1 and Lemma 4.2 can be used for
finding Hamiltonian paths between any two given vertices of B'(F,).
Concluding Remarks

It would be interesting to characterize those graphs ' for which B¥(I') is
connected for “small” k. Such k express some sort of stability property of I'.

(The concept of semi-stable graph (e.g. [8]) is in close relation to such an idea
of stability.)
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