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GRAY CODES IN GRAPHS 

MARTIN KNOR 

(Communicated by Pavel Tomas ta ) 

ABSTRACT. This paper deals with special Gray codes associated with graphs. 
We examine labellings of a given graph where two labellings are considered suc­
cessive whenever one can be obtained from the other by interchanging at most k 
edges. 

Introduction 

The codes which are now commonly known as Gray codes were invented and 
patented by F . G r a y in 1953 [9]. For a given set X and a symmetric relation 
R of "small difference" on X, a Gray code is an ordering of all the elements of 
A' such that every two immediately successive elements are in R. 

Gray codes were examined for such sets as subsets of a given set ([7] and [12]), 
permutations ([11] and |19]), combinations ([4], [5], [13], and [17]), partitions of 
a natural number ([18]), binary trees ([10], [15], and [16]) etc. (See also [2], [3], 
and [G].) 

The concept of a Gray code is easily explained in graph-theoretical terms. Let 
A (A) be a graph with the vertex set X where two vertices x and y are joined 
by an edge whenever x and y are in the "small difference" relation. Then the 
problem of finding a Gray code on X is equivalent to the problem of finding a 
Ilaniiltonian path in A(X), whereas the problem of finding a closed Gray code is 
equivalent to the problem of finding a Hamiltoriian cycle in A(X). This method 
was used in 1958 in the pioneering work of E . N . G i l b e r t , who examined 
the Hamiltoniari paths on rc-cube instead of finding the Gray codes on subsets 
of a given set. 

In this paper, we examine closed Gray codes on the set of all nonisomorphic 
labellings of vertices of a given graph F . If we remove an edge from F, we can 
have more possibilities for inserting a new edge such that the resulting graph is 
isomorphic to T . In this way, from a labelling Fx of T we get a new labelling 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C45 . Secondary 94A29, 05A05. 
K e y w o r d s : Graph, Gray code, Hamiltoniari cycle, Labelled graph. 
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Ty , and these labellings are in the relation "small difference" (see Definition 1.1). 
This relation has the following real-life motivation: Assume that we have n users 
in a network. By successive interchanges of just one line we want to generate 
all possible "realizations" of the given type of network in the way that no two 
configurations are repeated until the first is identical to the last. (In the case 
when T is a path or a cycle, we can regard our task as generating of Hamiltonian 
paths or Hamiltonian cycles, respectively, in a complete graph.) 

Let r be an arbitrary grap>h; VT and FT are used for the vertex set and 
the edge set of F , respectively. The complement of F will be denoted by T. 
By G(T) we denote the automorphism group of T. Permutations of the set 
{Oi, O25 • • • ?

 an} a r e given by the position of the elements a\, O2,.... an . So 
(Oi,O3,a2) means a\ i—» a\, 02 t-> O3 and O3 1—> O2. Composition of mappings 
is always to be understood from right to left. 

1. The k-copylist of a graph 

In this section, we give precise definitions of basic notions and some elemen­
tary observations. 

Let r be a graph with vertices u\, u2l..., un . In this way, we ordered the ver­
tex set of r . Let x = (x\,X2, • •., xn) be any permutation of the set {V 2 n}. 
Then the labelling of T by x, Tx , is the bijection 

V* : {Hi, H2, • •. , un} -+ { 1 , 2 , . . . , n} 

such that Tx(ui) = X{ for all i, for which 1 < i < n. We remark that by F r we 
denote also the graph T with vertices labelled by Tx; the meaning of Tr will 
always be clear from the context. 

Let G(T) be the automorphism group of T. Two labellings r^ and Ty of T 
are T-equivalent if and only if there is g £ G(T) such that Tx = g o Ty . 

Let us introduce the relation "small difference" on the labellings of F . 

DEFINITION 1.1. Two labellings Tx and Ty are in the relation Rf if and 
only if there is a set A of l mutually different edges of Tr and a set B of / 
mutually different edges of Tx such that (ETX — A) U B = ETy, where x and 
y are the permutations of the set {1, 2 , . . . , n} , n = \VT\ and / > 0. 

Clearly, the relation Rf is symmetric. 

Each class of r-equivalent labellings will be represented by a single labelling. 
Now we are able to introduce the basic concept of this work. 
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DEFINITION 1.2. Let T be the set of all classes of T-equivalent labellings of 
a graph F . The k-copylist of the graph T, Bk(T), is the graph for which 

VBk(T) = {Tx; Tx e T} and 

EBk(T) = {[Fx, Ty] ; Tx,Ty eT, Tx^Ty and there is I < k 

such that Tx Rf Ty } , 

where A: > 0. 

It is easy to see that this definition is correct for all k > 0. Note that 
Bk(T) = Bl(T) if k and I are greater than or equal to |£T | . 

Clearly, Bk(T) is a regular graph. The classes of T-equivalent labellings Tz 

such that r~ Rj T ^ , where Tz ^ T ^ and / < k, are called generators of Bk(T). 
The generators can be determined by the sets A and B from Definition 1.1. 

The elements of VBk(T) depend on the ordering of F T , but the structure 
of Bk(T) does not. 

LEMMA 1.3. Let T and T' be isomorphic graphs. Then Bk(T) is isomorphic 
to Bk(T') for all k>0. 

P r o o f . Denote by ip the graph isomorphism between T and T'. Then (p 
maps labellings of T to labellings of T'. So cp induces an isomorphism between 
Z?A'(F) and Bk(T'). D 

Now wre introduce two basic lemmas. 

LEMMA 1.4. The k-copylist of a graph T is a vertex transitive graph. 

P r o o f . Let T be the set of all T-equivalent labellings. It is easy to see that 
[TU1TV} e EBk(T) if and only if [ r ^ , ^ ] G EBk(T) for any permutation z 
of the set {1 ,2 , . . . , n } . 

Since Txox-ioy = Ty, the mapping (p: T —> T defined for all Tz 6 T as 
p(Tz) = Tzox-ioy is an automorphism of Bk(T) which maps Tx to Ty. • 

Thus, the structure of Bk(T) in any vertex is completely determined by the 
set of generators. 

LEMMA 1.5. Bk(f) is isomorphic to Bk(T). 

P r o o f. Let |VT| = n. Denote by tz1? H2? • • • •> un the vertices of T and T 

such that r U r = Kn, where Kn is the complete graph on n vertices. 

Since G(T) = G(T) , we have VBk(T) = VBk(f) . 
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Let z be a generator of Bk(Y). Then there are /-element sets A and B such 
that (EYid - A) U B = EYZ , where I < k. But since A f l B = i w e have 

EYZ - (EY,ld -A)UB= (EYid u A) n B = (FT^" - S) U A , 

so z is also a generator for Y. Since the generators of L?fc(r) are just the gener­

ators of Bk(Y), we see that EBk(Y) = EBk(T) . Thus, Bk(Y) is isomorphic 

to Bk(Y). • 

The following trivial assertions can be helpful in understanding the notion of 
fc-copylist. 

PROPOSITION 1.6. For any graph Y we have 

VBk(Y) = VBl(Y) and EBk(Y) 2 EBl(Y) if 0 < I < k . 

PROPOSITION 1.7. Let Y be a graph, n = \VY\, m = \EY\ , r = \G(Y)\ . and 

m p = —- . Then 
r 

B°(Y) = Dp and Bm(Y) = Kp , 

where Kp and Dp are the complete and discrete graphs, respectively, on p cer-
tices. 

PROPOSITION 1.8. We have 

Bk(Kn) = K\ for all k > 0 , 

B (Kn — e) = Kfn\ , where e is an edge of Kn , 

Bn'\KnA) = Kn+1 and B"-2(KnJ) = Dn + l 

In the following sections we ahvays choose a certain representation of r-equiv-
alent classes. We thus consider only some simple labellings and not the classes 
of labellings. For brevity, the labelling Yx will be denoted just by x in what 
follows. So, the labelling x means Yx while the permutation x means just x. 
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2. Paths and circuits 

This section is devoted to finding Hamiltonian cycles in B1(Pn) and 
B2(Cn+i), where n > 3, Pn is a path on n vertices, and C n + i is a circuit on 
n -\- 1 vertices. 

Let us denote the vertices of P n as follows (see Fig. 2.1): 

Pn: „ _ _ ^ _ . _^_^ 
«1 "2 "3 « n - l « n 

Figure 2.1. 

Then G(Pn) = {id,w}, where 

id = (ui,u2l. • . ,un) and w = (un,un-i,.. . ,H i ) . 

So. \\^Bi(P71)\ = f. 

The classes of Pn-equivalent labelling;s will be represented by simple labellings 
./•, where the elements 1 , 2 , and 3 are in ordering 1,2,3 or 2,3,1 or 3,1,2 in 
the permutation x. (There can be some other elements between 1 , 2 , and 3.) 

In Bl(Pn) we have just three possibilities for choosing A and B to create 
the generators (see Fig. 2.2): 

(a) A= {[ui,Ui+i]} , B = {[u^ui+i]} , where 2 < i < n - 1, 

(b) A = {[ui, Ui+i}} , B = {[u.j,un]} , where 1 < i < ra - 2 , 

(c) A = {[ui,Ui+i]} , B = {[ui,un]} , where 2 < i < n - 2 . 

M, U t + 1 U , + 2 

• ^ . 

^ > 

( a ) « i W2 

( t > ) Ui U 2 Ui Ui + iUi + 2 

\C) « 1 « 2 Ui U. + i t t , + 2 

Figure 2.2. 

We now present an algorithm for finding a Hamiltonian cycle in Bl(Pn). 
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ALGORITHM 2.1. 

STEP 1 i : = 0 , A,+i := ( 1 , 2 , . . . , n ) . 

STEP 2 i:=i + l. Now A{ = ( n , n - l , . . . , k+\, ah , a , 2 , . . . , a . j n where 
a2l 7̂  k (but it is also possible that k = n , i.e., 
A, = (ai^a^,. . . ,«»„), where O?1 ^ n ) . 

STEP 3 If k = 2 then go to STEP 5. 
STEP 4 AU+i := (ai2,ai3,..., a2fc, aH , AH-1, k+2,.. ., n ) , go to STEP 2. 
STEP 5 A*+i := (1, 2 , . . . , n ) , end. 

Here a2l, a ^ , . . . , a^ stand for the elements of the set {1, 2 , . . . , n} . Algo­
rithm 2.1 acts on permutations, but we can view these permutations as labellings 
(see Section 1). 

PROPOSITION 2.2. The sequence of labellings Ax, A2,. . . , An±, Ani + 1 con­

structed by Algorithm 2.1 is a Hamiltonian cycle in B1(Pri) for all n > 3 . 

P r o o f . Clearly, Az- G VB1(Pn) for all Ai constructed by Algorithm 2.1. 

We divide the proof into three steps. 

1. In each permutation Ai constructed by Algorithm 2.1 the elements V 2. 
and 3 are in ordering 1, 2, 3 or 2, 3,1 or 3,1, 2. 

This assertion is true if i — 1, and it is easy to see that this ordering cannot 
be reversed either in STEP 4, or in STEP 5. So we have A? 7- w o Aj for all A, 
and Aj constructed by Algorithm 2.1 since the elements 1, 2, and 3 are in 
ordering 3, 2,1 or 1, 3, 2 or 2 ,1, 3 in w o Aj . 

2. [A,, A i + i ] _ EB1(Pn) for all i, for which A{ and A%+\ are constructed 
by Algorithm 2.L 

But Ai+i can be constructed only in STEP 4, or STEP 5. (In the second case. 
Ai = (n, n - 1 , . . . , 3,1, 2).) In both these steps [Ai, A z + I] is an edge of Bl(Pn ) 
created by a generator of (b)-type (see above). 

3. Ai, A2l. . . , An!, Ani + i is a Hamiltonian cycle in Bi(Pn). 
2 2 ' x 

Let A = („i, a2j . . • , an) be a permutation constructed by Algorithm 2.1 
such that ak = n , where 1 < k < n. Then A was constructed from B -• 
(ak+i, • • • , « n , Oi, a2,. . . , afc_i,n) after n - k (STEP 2 - S T E P 4)-cycles of Algo­
rithm 2.1. 

Let B = (bi,b2,..., 6n_i, n) and b/ = n — 1, where 1 < / < n — 1 . Then /i 
was constructed from C = (b/+i,.. ., bn-i, ^ 1 , . . . , b/_i, n —V n) on (n — 1 — /) • n 
cycles of Algorithm 2.L So, A was constructed from C on ((n — 1) — /) • n + n -- k 
cycles of Algorithm 2.L 

But since (2, 1 ,3 , . . . , n) cannot be constructed by Algorithm 2.1 (see part 1 
of this proof), the permutation A was constructed from ( 1 , 2 , . . . , n) on rn cycles 
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of Algorithm 2.L 
Since 

(n - 1) + (n • (n - 2)) + • • • + n • (n - 1) • . . . • 4 • 2 

n • ((n - 1) • (.. . • (4-2 + 3) + . . . ) + n - 2) + n - 1 

. . . | ' < l ^ _ 1 ) + , . _ 1 . . . ) + - _ 1 - 2 ! _ 1 . 

77' n ' 

in is at most —- — 1. So there is just one i < -~ such that Ai = _4, for 
any permutation A with 1, 2, and 3 in allowed ordering (i can be strictly 
computed). 

Since Ani = (n,n — 1 , . . . , 3 ,1, 2), we have -4n!+1 = ( l , 2 , . . . , n ) , and 

_lj, . 42 , . . . , i n ! + 1 is a Hamiltonian cycle in B1(Pn). 

nf 

Clearly, the algorithm, finishes in STEP 5 with i = -1-. • 

Now we find a Hamiltonian cycle in B2(Cn), where n > 4. Let us denote 
the vertices of Cn as follows (see Fig. 2.3): 

c» 
"1 « 2 « 3 « n - 2 « n - l 

Figure 2.3. 

Since G(Cn) is the dihedral group, we have 

\G(Cn)\ = 2n and \VB2(Cn)\ = ^ ~ 1 ) ? . 

(n — 1)! 
Note that JB

1(Cn) = _Dm , where m = -—-r—-^ • The classes of Cn^-equivalent 

labellings will be represented by simple labellings x, where the element n is in 
the nth position and the elements 1 , 2 , and 3 are in ordering 1,2,3 or 2,3, 1 
or 3, V2 in the permutation x. 

Then ^: VB2{Cn+x) -> VB1(Pn)1 where n > 3, defined as 

(^(ai,a2, • • • , a n , n + l ) = (ai,O2, • • • ,an) 

is a bijection between VB2(Cn+1) and VBl(Pn)-
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LEMMA 2 . 3 . Let n > 3 , and [c, d] be an edge of B1(Pn) created by a generator 

of(b)-type. Then [(^_ 1(c), (f~1(d)} is an edge of B2(Cn+v). 

P r o o f - Let c = (Ci, c 2 , . . . , c n ) . Since the edge [c, d] is crea ted by a gen­

era tor of (b ) - type , we have 

d = ( c i , c 2 , . . . ,C fe , c n , c n _ i , . . . ,Cfc+i) or 

d = (cfc+i,Cfe+2- • • • jcnjCk jCfc - l j • • • ?Ci) , 

depending on the ordering of 1, 2 , and 3 , where 1 < k < n — 2 . 

In bo th these cases, it is sufficient to choose A = {[un, un+\], [UA-, '^k+i] } a n ( ^ 

B — {[Hfc,Hn], [HA:+i,Hn+r]} in Definition 1.1, and we see that | y _ 1 ( c ) . >^-1(.7)] 

is an edge of J?2(Cn+i) (see Fig. 2.4). • 

W * + l un ( \ « * + l « » 
o—o— —o o— —o 6—o— —q o— —o 
« 1 « 2 U*V / W i U 2 UjX. / 

Figure 2.4. 

Let Algor i thm 2.4 be crea ted from Algori thm 2.1 by replacing all the per­

mu ta t i ons (x i , x>2, • • • i ̂ n ) by the pe rmu ta t i ons (x i , a:2 •<>• ll- + 0 • Then we 
have the following consequence of Proposi t ion 2.2 and L e m m a 2.3: 

PROPOS ITION 2 .5 . Algorithm 2.4 finds a Harniltonian cycle in B2(Cn + i) for 

all n > 3 . 

We remark that L32(Cn+i) is no t isomorphic to Bl (Pn) if n > 4 . 

3 . B i p a r t i t e g r a p h s 

This section is devoted to finding Hamil tonian cycles in Bn) + n~2(I\nK,,) . 
where m > n and KniJl is t he complete b ipar t i te graph. 

Let us denote the vertices of VKniin as shown in Fig. 3.L 

Then \G(Kni^)\ = m! • n! if m> n , and | G ( A m m ) | = 2 • (n!) 2 if in = //. 

The classes of ATm^-equivalent labellings will be represented by simple la-

bellings x = ( a i , a2 , . . . , a m + n ) , where Oi < a 2 < • • • < a7n and a „ + i < a m +2 < 
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< am+n. Moreover, we claim t h a t Oi = 1 if m — n. 

•K-m,n ' 

Figure 3.1. 

We have only one type of genera tors in Bm+n~2(Km^n) if m > n+2 or m = n 

(see Fig. 3.2. (a) - reversing an edge of Knhn). We call it a generator of (a ) -

type . Certainly, t he genera tor of (a ) - type is also a genera tor for Bm+n~2(Kmm), 

where m = n + 2 or m = n+1. However, we have still one more type of generator 

in Bm+"~2(Km,n) if m = n + 2 (see Fig. 3.2. ( b ) ) . We call it a generator of 

(b ) - type . 

It is easy to check that Bm+n~~3(Km,n) is a discre te graph whenever 

/// ^ 7/ -f 1 (use L e m m a 1.5). Bu t Bn(Km,n) is no t discre te if rn = n + 1 

since in Bn(Kn+i,n) we have a genera tor of (c) - type (see Fig. 3.2. (c)) . 

(a) 

Figure 3.2. 

In the following, we use only genera tors of (a ) - type . 

Deno te by Ckj the g raph wrhose vertex set is the set of all /-element combi­

na t ions of a k-element set, where two vertices are joined by an edge whenever 

t hey differ as sets in jus t one element. T h e n we have: 

L E M M A 3 . 1 . There is a graph homomorphism from Ck,i into Bm+n~2(Kmm) 
for some k and I depending on m and n. 

P r o o f . We dist inguish two cases. 
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1. rn > n. 

Let p: C m + n ^ m —> - B m + n ~ 2 ( - v m , r i ) be a mapp ing defined as 

(D{ai, a 2 , . . . , a m } = (61, 6 2 , . . . , 6 m , 6 m + i , o m + „ ) . 

where {alla2,..., a m } = {61, 6 2 , . . . , 6 m } , 61 < 62 < • • • < Om < bm + i < bm+2 < 
• • • < 6 m + n and {b i , . . . , 6 m + n } = { 1 , . . . . m-\-n} . T h e n + is a bijection from 

V Crn+n,m 1° VB7n a (Kmm) . 

Two vertices A and A' are joined by an edge in Cm+7l.m whenever they differ 

in jus t one element. Bu t then p(A) and p(A') are joined by an edge created by 

a generator of (a ) - type in Bm^'n~2(Kmm) . So p is a graph homomorph i sm. 

2. rn — n. 

Let p: C2n~i.n-i - * B2n~2(Kn,n) be a mapping defined 

p){ai,a2,.. . , a n - i } = ( l , b 2 , » 3 , . • • ,bn,bn+i,. . . ,b2n) • 

where {a i ? a 2 , • • . , a n _ i } = { b 2 - l , b3-l,..., bn-l} , b2 < • • • < b„ , 6„ + 1 < 
• • • < b2n and {b 2 , . . . , b2n} = { 2 , . . . , 2n} . 

Then it can be shown t h a t p is a bijection from VC2n-\.n- 1 to V£?2" - 2( 'A', , . , ,) 
which is a graph homomorphism by a rguments similar to the previous ones. • 

In [4], P . J . C h a s e gives an algor i thm for finding a Hamil tonian cycle in 

Ckj for all k and I such t h a t k > I > 0 (see also [5]). G . E h r l i c h gives 

another a lgor i thm in [6]. Thus , L e m m a 3.1 can be used for finding Hamil ton­

ian cycles in B m + n _ 2 ( A m , n ) from those in Ckj. However, since Ckj can be 

decomposed into two graphs F and V isomorphic to Ck-u and CV_-i./-i- re­

spectively, and C/++/ is isomorphic to A/+r and Ck+ is isomorphic to Kk . it 

can be proved t h a t Ck,j is Hamil tonian-connected by induct ion (see Section 1. 

par t 3 of proof of L e m m a 4.1). Thus , Bm+n~2(Knijh) is Hamil toniai i -connected 

graph as well (see Section 4 for the not ion of the Hamil tonian-connect iv i ty) . 

As we ment ioned above, B'm,+n~s(K.m,7l) is a discrete graph for rn +- n — 1 . 

while BmJrn~2(Kmm) has a Hamil tonian cycle. Bu t if rn — n-\-1 . even the graph 

B n ( A r
n + i i n ) is not discrete . In B"(Kn+i,n) > edges are created by the generators 

of (c ) - type . 

Two vertices (Oi, a2 a2n+i) and (bi. b2, . . . . b2n ; 1 ) are joined by a gen­
erator of (c) - type in Bn(Kil + Un) whenever 

| { a i , a 2 , . . . ,a ? ,+ i } 0 {o i ,o 2 , bn+{}\ = 1 . 

It means t h a t 

\{an+2, fln+3, • •. , a 2 n + i } n {6 n + 2 , o n + 3 , . . . . 6 2 n +! }| = 0 . 
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Figure 3.3. 

Thus, Bn(Kn+i,n) = O n + i , where On+i are the odd graphs (see [1] and 
[14]). The odd graphs have been studied intensively. It is known that On has 
a Hamiltonian cycle for n E {4,5,6,7} ([14]), but for n > 7 it is still an open 
problem. However, B2(K^^) — O3 has no Hamiltonian cycle because O3 is the 
well-known Petersen graph (see Fig. 3.3). 

4. Forks 

This section is devoted to finding Hamiltonian cycles in 1-copylist of the fork 
Fn , where n > 5. 

Fork Fn is a tree consisting of a path o n n - 2 vertices, (n — 2 > 3), with 
two new vertices adjoined to one end of the path. Let us denote the vertices of 
Fn as shown in Fig. 4.1. 

Then G(Fn) = {idJvj}1 where 

id = („1, _2, • • •, un) and 

W = ( t X l , T X 2 , . . . , _ n - 2 , ^ n - ^ n - l ) 

So, \VBl{Fn)\ = ^ 

Fn: U\ « 2 u 3 W n _ 3 W n - 2 

Figure 4.1. 

The classes of Fn-equivalent labellings will be represented by simple labellings 
x = {;T!,. . ., _*n_i, xn} , where xn-i < xn . 

In Bl(Fn) we have three types of generators: 
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(a) A = {[ui-i,Ui]} , B={[u1,ui]}, where 3 < z" < n —2 . 

(b) A = { [ u n _ 4 , w n _ 3 ] } , B = {[Hn_4,Hn__i]} , or 

A = { k - 4 , % - 3 ] } , B = {[un-4,un]} , 

(c) A = { [ ? i n _ 2 , H n - i ] } , B= {[u2,un-i]}, or 

A = { [Hn_2, U„] } , B = { [H2, ^n] } , 

where A and B are t he sets from Definition 1.1 (see Fig. 4.2). 

(a) £- °— —° ^ °— 
V / Ui U2 U i _ i Ui Ui + i 

(b) 
« 1 U2 U3 « n - 4 " n - 3 « n - 2 

(c) 0 <£ 0 — — < > ° — — _ 
Ui U2 U3 U n _ 3 U „ _ 2 

Figure 4,2. 

We recall t h a t a g raph F is Hamil tonian-connected if and only if there î  a 

Hamil tonian p a t h between any two dist inct vertices of F . It is easy to see that 

there is a Hamil tonian cycle in F if F is Hamil tonian-connected and | I T ; > 2. 

L E M M A 4 . 1 . B1(Fn) is Hamiltonian-connected if n > 7 . 

P r o o f . We divide the proof into five steps. 

1. The maximal connected subgraphs S7 of Bl(F\) with edges created only 

by generators of (a ) - type are Hamil tonian-connected. 

We remark thai all such graphs S? are mutual ly isomorphic and IKUV 
(7 — 3)! — 24 vertices. One of the graphs S 7 is in Fig. 4.3. The vertices A Z 
are labellings of Fj and below wre give the first four members of these la-
bellings, since the last th ree are ahvays 5 , 6 , 7 in this ordering. So. instead of 
Z = ( 1 , 2 , 3 , 4 , 5 , 6 . 7 ) we simply write Z = 1234. 

The asser t ion 1 will be proved by simple enumera t ion of Hamil tonian path^. 
Since S7 is ver tex- transi t ive, it is enough to find Hamil tonian p a t h s from all the 
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vertices of SV to the vertex Z (see Fig. 4.3): 

ABCDEFGHIJKLMNOPRSTUVXYZ A = 2134 

BGHIVXYPRJKLMNOCDEFSTUAZ B = 4312 

CBGFEDKLMHIJRSTNOPYXVUAZ C = 3412 

DCOPYXEFGBAUVIHMNTSRJKLZ D = 1432 

EFGBCDKLMHIJRSTNOPYXVUAZ E = 4132 

FGBC DEXY PONTSRJ KLM H IVU AZ F = 3142 

GBCONTSFEDKLMHIJRPYXVUAZ G = 1342 

HIJKLMNTSRPOCDEFGBAUVXYZ H = 2431 

IVXYPONMHGFEDCBAUTSRJKLZ I = 4231 

JIHMLKDEFGBCONTSRPYXVUAZ J = 3241 

KJRPYXVIHGBAUTSFEDCONMLZ K = 2341 

LMHIJKDEFGBCONTSRPYXVUAZ L = 4321 

MNOCDEFSTUABGHIVXYPRJKLZ M = 3421 

NTSRJKDCOPYXEFGBAUVIHMLZ N = 1243 

OPRSTNMLKJIHGFEDCBAUVXYZ O = 2143 

PRJ KLMNOCDEFSTU ABGHIV XY Z P = 4123 

RPONTSFGHMLKJIVUABCDEXYZ R = 1423 

STNOCBGFEDKLMHIJRPYXVUAZ S = 2413 

TSRPON MLKJ1HGFEDCBAUV XY Z T = 4213 

UTSFEDCONMLKJRPYXVIHGBAZ U = 3124 

VUTSFGHIJRPYXEDKLMNOCBAZ V = 1324 

XVIHGBAUTSFEDCONMLKJRPYZ X = 2314 

YXVUTSRPONMLKJIHGFEDCBAZ Y = 3214 

2. The maximal connected subgraphs S„ of B1(F„) with edges created only 
by generators of (a)-type are Hamiltónian-coimected if n, > 7. 

We prove this assertion by induction. 

If n > 7, the graph S„ consists of n — 3 copies of _'„_] joined by edges 
created by the generator z with A = {[«.„_3, ?/„_2]} and B = {\u\. :i,,-•/•,} 
(see Definition 1.1). The edges created by the generator z form a linear factor 
in .S'„ and between any two distinct copies of <S'n_i in Sn there are exactly 
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(n — 5)! edges created by the generator z. (We fix the elements in the first. 
(n — 3)rd, . .. , nth positions in labellings.) In this way, we obtain Kn-s from Sn 

by contraction of all the copies of Sn-i into single points. 

For any AL, B _ VSn we find a Hamiltonian path from A to B in Sn . We 
distinguish two cases: 

a. A and B are in the same copy of Sn-\ (see Fig. 4.4). 

We can find a Hamiltonian path 7i from A to B in Sn-\_ by induction. Since 
the edges created by z form a linear factor, there are two successive vertices on 
7i, say X and Y, such that z o X and z o Y are in distinct copies of S,, __ i 
in Sn. Let us order the remaining copies of Sn-i arbitrarily. Since n > 7. we 
have (n —5)! > 2. Thus, we can choose nonadjacent edges between the copies of 
Sn-i which join them in the required order (see Fig. 4.4). Then we can complete 
H, — [X, Y] to a Hamiltonian path in Sn using induction. 

b . A and B are in distinct copies of Sn-i. 

Let us order the copies of Sn-\ such that the one containing .4 will be 1 he 
first and that containing B will be the last. Then we can find a Hamiltonian 
path in Sn as in the previous case. 

5 7 : 

S„: 

Sn-

Sn-i 

Figure 4.4. 

3. There is a path from B to C in Ck,2 traversing all the vertices of (?'/,•._ 
just once and missing the vertex A for all mutually different A, B. C. where 
A,B,C eVCk92 and k > 3. 

Here, Ck,2 1S the vertex-transitive graph defined in the Section 3. Again, we 
prove this assertion using induction. 

If k = 3, then Ck,2 — -K3, and the assertion trivially holds. 

Let k > 3 . Then Ck,2 can be decomposed into two graphs F and V (all 
combinations in V contain the element fc, but those of F do not), where F is 
isomorphic to Ck-1,2 a n d r ' 1S isomorphic to /_&__ (see Fig. 4.5). Since C'k.2 
is a vertex-transitive graph, we can suppose that A _ F . We distinguish three 
cases: 
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a) 13,C£VV, 

b) B e vr, c e W 
c) B,cevr. 

a) There is a path H in V traversing all the vertices of V except of A (by 
induction). Let X and Y be two successive vertices on Ft. Then there are 
X'.Y' e W such that X' / Y', and X is joined to X', and Y is joined to 
Y'. (Each vertex from V is joined to exactly two vertices in V7.) Since V is 
isomorphic to K^-i , we can complete Ft — [X, Y] to the required path in C^^i • 

The remaining cases b) and c) can be proved similarly, using the fact that 
each vertex of V is joined to exactly two vertices of V', and each vertex of V' 
is joined to exactly k — 2 vertices of V. 

We remark that the assertion 3 implies that Ck,2 is Hamiltonian-connected. 

Cjt,2 : 

-*-"*-! 

4. Each maximal connected subgraph Sn of B1(Fn) created only by gener­
ators of (a) and (b)-types is Hamiltonian-connected. 

Again, such subgraphs are mutually isomorphic, so the definition of S'n is 
correct. Let all SV,-subgraphs of S'n be contracted into single points. Then the 
resulting graph is isomorphic to Cn_i?2-

Now we can prove the assertion 4 by arguments similar to those used in the 
proof of the assertion 2 . If the vertices A, B of S'n are in the same copy of 
Sn . we use the assertion 3 , and if the vertices A and B are in distinct copies 
of ,SY„ , we use the Hamiltonian-connectivity of Cn-i^-

5. Bl(Fn) is Hamiltonian-connected. 

Let all subgraphs S'n of Bi(Fn) be contracted into single points. Then the 
resulting graph is isomorphic to Kn and so the assertion 5 can be proved by 
arguments similar to those used in the proof of the assertion 2 . • 

The following lemma completes the previous one. 

LEMMA 4.2. Bl(Fn) is Hamiltonian-connected if n _ {5,6} . 

P r o o f . Let S'n be the maximal connected subgraph of Bl(Fn) created 
only by generators of (a) and (b)-types, where n _ {5,6}. 
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The graph S'5 containing the labelling (1,2,3,4,5) is in Fig. 4.6. where 

A = (1,2,3,4, 5), £ = (1,4,3,2,5), C = (4,1,3,2.5). 

D = (4,5,3,1,2), £ = (4,2,3,1,5), F = (2,4, 3.1, 5) . 

G = (2,1,3,4, 5), # = (2,5,3,1,4), / = (5, 2, 3,1.4). 

J = (5,4,3,1,2), K = (5,1,3,2,4), I = (1,5,3,2.4). 

It is easy to verify that S 5 is Hamiltonian-connected. 

Ą : \A \r, A±A 
K * ^ ^ I 

J 

Figure 4.6. 

Denote by T the maximal connected subgraph of Bi(F6) created only by 
generators of (b)-type and one generator of (a)-type with A — {[H3. u.1]} and 
B = {[H1.H4]} (see Definition 1.1). Then F is isomorphic to Sf

5 . So, Sf

6 consists 
of four copies of £5 connected by a generator with A — {[H2.U3]} and B =-
{[1x1,1/3]}. Moreover, there are exactly three edges between any two copies of 
£5 in S'6. Since we get K4 by contraction of all the copies of S 5 in S6. using 
the arguments from the assertion 2 of the previous proof, we obtain that Si is 
Hamiltonian-connected. 

So the graphs S'n are Hamiltonian-connected if n E {5,6}. But then the 
assertion 5 of the previous proof completes the proof. • 

We conclude this section with the following proposition: 

PROPOSITION 4.3. Bl(Fn) is Hamiltonian-connected. 

We remark that the proofs of Lemma 4.1 and Lemma 4.2 can be used for 
finding Hamiltonian paths between any two given vertices of Bl(Ff)). 

C o n c l u d i n g R e m a r k s 

It would be interesting to characterize those graphs F for which Bk'(V) is 
connected for "small" k. Such k express some sort of stability property of F . 
(The concept of semi-stable graph (e.g. [8]) is in close relation to such an idea 
of stability.) 
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