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THE MEASURE EXTENSION THEOREM 
FOR SUBADDITIVE MEASURES 

IN or-CONTINUOUS LOGICS 

PETER VRABEL 

The quantum theory requires the study of measures on logics (see [1], [6]). The 
basic problem of the extension of measures on logics has not been solved so far. 

There are some results in [2], [3], but for modular lattices only. B. Riecan 
proved the extension theorem for subadditive probability measures in [5]. 
B. Riecan assumes the given measure to be a probability measure defined on an 
orthocomplemented sublattice of a logic. Every orthocomplemented sublattice of 
a logic is a ring. 

In this paper we prove an extension theorem for subadditive a-finite measures 
defined on rings. 

Notations and notions 

If f̂ is a lattice, we shall write xn/x, if xn-Sxn+1 (n = 1,2,...) and x = \Jxn, 
n - l 

similarly for xn\x. A a-complete lattice will be called a-continuous if xn/x, yn/y 
implies xnAyn/xAy and respectively. 

By an orthocomplementation of a lattice 3€ with the least element 0 we mean 
a mapping J_: a—>a"L of ffl into itself such that 

(i) a^b implies b±^a±, 
(ii) (a^Y = a for all a, 

(iii) flAfli = 0 for all a. 
A a-complete lattice %€ with an orthocomplementation _L is said to be a logic in the 
following case 
(iv) if a, beW and a^b, there exists an element de$t such that d^a± and 

b = avd. 
The element d in (iv) is unique and is equal to b Aa± (see e.g. [6]). If au a2, ... is 
a sequence of elements of a logic, then 
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(Vfln)± = Afln and (A«.)X = Vaí . 
\ n / n \ n / n 

Two elements a, b of a logic are called orthogonal (tf±fc)ifa_-ife±. If p_Lfc and 
a^c, then (flvft)Ac = av(bAc). 

A subset ^ of a logic is called a ring (J^-ring) if a, b esi (an esi, n = 1, 2,...) 

implies flv6e^(Vfl«e^),flA6e^, aAb±esi. A mapping m: ^/—>(0, oo) is 

called a measure if the following statements are satisfied: 
(a) m(0) = 0 

((3) if fl„ei (n = \,2,...) and 0rt are pairwise orthogonal and \/anesi, then 
n 

™ (V«n) = Y,m(an). 
\ n / n 

A measure m is called subadditive if m(a v 6) ̂  m(a) 4- m(b) for every a, be si. 

Preparatory constructions 

Let 9€ be a a-continuous logic. Let i c ^ b e a ring, let m: ^—> (0, oo) be 
a finite subadditive measure. We want to extend it to the .T-ring Z(si) generated by 
si. We shall prove the main theorem in the case of m being a-finite. 

Let st = {be$C\ 3bnesi, bn/b}. It is easy to prove that a mapping m+ : 
si+-^>(0, oo) is well defined by the formula 

m+(6) = lim m(bn), bn/b 
n 

Now put 
m*(jc) = inf {m+(b);besi+,x^b}, xeW. 

Similarly can be defined si~, m~, m*. It is easy to prove that m+, m" are 
non-negative extension of m, m+ is non-decreasing, subadditive and upper 
continuous, m* is non-decreasing and subadditive and m* is an extension of m+. 

Lemma l.Letaesd~, best, a^b. Then m~(a)^m+(b). 
Proof. It is sufficient to consider m+(6)<oo. Let an, bnesi (n = l,2, ...), 

an\a, bn/b. If K = atvb, then a\ K,KAa±esi+, m+(K)<oo, 

m+(K) = lim m(aiv6n) = lim m(an) + lim m((axvbn)/\at) = 
n n n 

= m~(a) + m+(KAa±), 
K = av(KAaJ-)~~bv(KAa±)~iK: 

If m~(a)>m+(b), then m+(K)~~m+(b) + m+(KAa±)<m~(a) + m+(KAa±) = 
= m+(K). This is a contradiction. 
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Corollary. For every x e ^ m * ( x ) = m*(jt). 

Lemma 2. If aesd~, besd+, a = fc, then m+(b) = m~(a) +m+(bAa±). 
Proof. Let bn/b, an\a, an, bnesd (n= 1,2, . . . ) ; then 

m+(b) = lim m(bn)=lim m((bn A am) v(bn A at)) = 
n n 

= lim m(fc„Aam) + lim m(b„Aam) = 
n • n 

= m+(b Aam) + m+(b Aatn)^m~(a) + m+(b Aat)-

Taking m —> oo we obtain 

(1) m+(b)^m~(a) + m+(b Aax). 

Further 
(amv(bnAat))/(amv(bAax))žb, 

m+(b)^m+(am\/(bAa±)) = lim m(amv(bnAat)) = 

;= m(am) + m+(b Aa~), hence 

(2) m+(b)^m~(a) + m+(b Aa~). 

The assertion follows from (1) and (2). 
Let us denote L = {xeW\ m*(x) = m*(x)<™\. 

Lemma 3. Let ye W, xeL, x = y. Then m*(y) = m*(x) + m*(yAx~). 
Proof. It is sufficient to consider m*(y)<oo. If e>0, then there exist aesd~, 

besd+ such that a = Jt, y^b and 

Further 

m*(x) = m*(x)<m~(a) + e, m+(b) - e <m*(y), 
m*(yAx~)tlm+(bAa-). 

m*(x) + m*(y Ax~)<m~(a) + m+(b Aa~) + e = 
= m (b) + e<m*(y) + 2e, hence 

m*(x) + m*(yAx~) = m*(y). 

The opposite inequality follows from the subadditivity of m*. 

Proposition 1. If x, y eL and x = y, then yAx~eL. 
Proof. To any e>0 there exist a, cesi~ and b, dest such that at^xfkb, 

c;=y = d, age, b^d and 
•» 

,,,. m+(b)-m~(a)<e 
( } m+(d)-m-(c)<E. 

Obviously cAb±^yAx±^dAax, CAb^esd' and dAa±esi+. Further 

((dAC i)v(f tAfl i)) i = (d1Vc)A(61Vfl) = 
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= av((d^vc)Ab±) = avd±v(cAb±) = 
= (dAa^)±v(cAb±) = ((dAa±)A(cAb±y)\ 

hence 
(.iAC i)v(6A.J i) = ((.Afl i)A(cA61) i . 

We have by Lemma 2 and (3) 

m+(dAa±)-m~(cAbL) = 
= m+((dAa±)A(cAb±)±)-~m+(dAc±) + m+(bAa±) = 

= m+(d)-m~(c) + m+(b)-m~(a)<2e, 

hence it follows that m*(yAXX) = m*(yAX~). 

Proposition 2. Ifz„eL (n = 1, 2, ...), - „ / - (zn\z), z eHand Iim m*(zn)<<x>, 
n 

then zeL and m*(z) = lim m*(zn). 
n 

Proof. The first part of the Proposition can be proved analogously as in [5]. Let 
z„\z; then Zi = z„ = z (n = 1, 2, ...), ZiAz„eL, ZiAZn/ziAz±. From the first part 
we have ZiAz±eL because m*(ziAz±) = m*(zi)<c°. Further 

z = ZiA(ziAz±)±eL, m*(zi) = m*(z) + m*(ziAz±), 
m*(z) = m*(zi)- m*(ziAz±) = m*(zi)- lim m*(zi Azt) = 

n 

= lim m*(zi A (zi A £„-)-") = lim m*(zn). 
n n 

Proposition 3. The mapping m = m*\L is additive, i.e. x, yeL, y^x± implies 
m*(xvy) = m*(x) + m*(y). 

Proof. Let x, yeL, y = xx; then by Lemma 3 we have 

m*(x vy) = m*(x) + m*((x vy)Ax±) = m*(x) + m*(y). 

Definition. Let X be a o-continuous logic, AczW. By 1(A) (<f(A), o(A), 
3)(A)) we shall denote the S-ringgenerated by A (the smallest monotone system 
containing A; the smalttst ring containing A closed with respect to the least upper 
bounds of any sequences of elements of o(A ) upper bounded in o(A ) ; the smallest 
system containing A closed with respect to the limits of any decreasing sequences 
and the limits of any increasing sequences of elements ofQ)(A) upper bounded in 
0(A)) . 

Lemma 4. Let 2€be a o-continuous logic and let si a X be a ring. Then Sf(s£), 
9)(si) are rings and y(s4) = Z(si), 3)(si) = o(si). If aeSf(si), be3)(si) and 
a^b, then ae2)(si). 

Proof. See [4]. 
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Main theorem 

Theorem. Let 26 be a o-continuous logic. Let tflczffl be a ring and let m: 
$1—> (0, oo) be a o-finite, subadditive measure. Then there is exactly one measure 
m: Z($l)—»(0, oo) that is an extension of m. The measure m is a o-finite 
subadditive measure. 

Proof. First let us suppose that m is a finite measure defined on a ring sdczffl. 
From Proposition 2 and the inclusion s4aL it follows that 3)(s4)czL. Let us 
denote 

3(s4) = {xeL;Зxnє 3)(s4), xn/x, lim m*(xn) < oo}. 

By Lemma 4 and Proposition 2 it can be easily proved that 3(s4) is a lattice, 

3(s4)cz3)(s4)czZ(s4) and 3(s4)czL. If xeZ(s4), y e3(s4) and jc^y, then 

xe3(s4). Indeed if yn/y,yne3(s4) and lim m*(yn)<oo, then y n / \ x / x , y n A J C ^ 
n 

= y«, yn*xei:(s4) = 9?(s4) and by Lemma 4 we have ynAxe3(s4). Evidently 

limm*(ynAjc) =i lim m*(yn)< oo, consequently JC e3)(s4). 
n n 

Now let us define m on Z(s4) in the following way: 

If x e 3)(s4), then m(jc) = m*(jc), if JC £ 3)(s4), then m(jc) = oo. The mapping m is 

non-decreasing. Namely, if x^y and y e3(s4), then xe3)(s4) and m(jc)=m*(jc)^ 
^ m*(y) = m(y). The mapping m is upper continuous. Let jcn, JC eZ(s4) (n = 1, 

2, . . . ) , x n / x . Evidently lim m(jcn)^m(jc). If lim m(jcn)<°°- then xne3(s4). Let 
n n 

xnm/xn, xnme3(s4), lim m(xnm)<oo (w, m = 1, 2, . . . ) . The sequences are chosen 

already so that jcnm^jcrm for any integers n, r, m, n<r. If yn=xnn, then 

Vy« = V x n = x, yn/x, lim m(yn) ^ limm(jcn)<oo hence jce®(,s#)c:L. Thus 
n n n n 

lim m(xn) = lim m*(jtn) = m*(jc) = m(x). 

The mapping m is additive. Let JC, yeZ(s4), xLy, x, ye3(s4)\ then 

xvye3(s4) and m(jcvy) = m*(jcvy) = m*(x)-\-m*(y) = m(jc) + m(y). If 

JC £ ® ( ^ ) or y £ 2 ) (^ ) , then JC vy £ ^ ( ^ ) and the additivity of m is evident. The 
subadditivity of m is proved analogously. The mapping m is non-decreasing, upper 
continuous, subadditive, additive hence m is a subadditive measure on Z(s4). 
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Now let m.be a G-finite subadditive measure defined on a ring 3l<zz%€. If 
sd= {x e 31; m(jc)< oo}, then si is a ring. According to the preceding part of the 
proof we can extend m to Z(sd), but Z(sd)~Z(Jl), because if JC e Jl, then there 

exist xnes£ (n = \, 2 , . . . ) , xn/x. The system T= {cel($l); c^\fan, anesd, 
n 

n = 1,2, ...} is monotone and it contains Whence T = I((7l) and m is a-finite. 
Now we prove the uniqueness of the extension. Let p be a measure defined on 

I(sd) and p(x) = m(jc) for every xesd. Let Q = {xeX(sd); p(x) = m(jc)<oo}. 
Evidently .<4czQ If xn/x, yeQ, jc = y, xn e Q (n = \, 2 , . . . ) , then m(jc) = 

= lim m(jc„) = lim/7(jcrt) = p ( j i )^p(y)<oo , hence xeQ. If Jc„eO, JC„\JC, then also 

j ceO and 9(sd)czQ. If xe£>(sd), xn/x, xne3)(sd) (n = \, 2 , . . . ) , then p(jc) 

= limp(jcn^ = limm(jc„) = m(x)<<*>, hence 3)(sd)czQ. Let xel(s4); then 
n n 

there exists a non-decreasing sequence {an}Z= \ of elements of sd such that x1k\J an. 

Then JC = V U A an), xAan^ane 3)(sd), hence JC A an e 3)(s4) and 
n 

m(x) = lim m(x Aa„) = lim p(jc Aan) = p{x). 
n n 

The proof of Theorem is complete. 
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ПРЕДЛОЖЕНИЕ О ПРОДОЛЖЕНИИ МЕРЫ 
ДЛЯ СУБАДДИТИВНЫХ МЕР В а-НЕПРЕРЫВНЫХ ЛОГИКАХ 

Петр Врабел 

Резюме 

Пусть Ж— ^-непрерывная логика, т — а-конечная субаддитивная мера на кольце РЛаЖ. 
Пусть 10Щ наименьшее а-полное кольцо, содержащее 9Л. Тогда существует единственная мера 
т: 1(?Л)-*(0, оо), являющаяся продолжением меры т. Мера т а-конечна и субаддитивна. 
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