
Mathematica Slovaca

Milan Medveď
Almost Floquet linear difference equations

Mathematica Slovaca, Vol. 37 (1987), No. 4, 367--373

Persistent URL: http://dml.cz/dmlcz/129776

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/129776
http://project.dml.cz


Math. Slovaca 37, 1987, No. 4, 367—373 

ALMOST FLOQUET LINEAR DIFFERENCE 
EQUATIONS 

MILAN MEDVED 

The Floquet theorem for linear differential equations (see, e.g., [2] and [3]) is 
formulated as follows: 

Theorem 1. Let @(t) be a fundamental matrix of the linear differential equation 

(1) x = A(t)x 

where xeCn, A: R-+ Mc(n) (Mc(n) is the set of matrices of type nxn with 
complex elements) is a piecewise continuous function which is T-periodic, i.e. 
A(t + T) = A (t)for all teR. Then there exists a constant matrix R and a T-period-
ic map P: R-+ Mc(ri) such that 

(2) 0(t) = P(t)eRt for all teR. 

Is it possible to extend the class of matrices A(t) of the system (1) for which 
a type of the Floquet theorem holds? This problem is solved in the papers [1], 
[4] and in the book [5]. A theorem analogical to the Floquet theorem (see, e.g., 
[7]) can also be formulated for linear difference equations as follows: 

Theorem 2. Let Yn be the normed fundamental matrix of the linear T-periodic 
difference equation 

(3) yn+\ = Ayn 

(i.e. An + T = Anfor alln^O where T is a natural number), i.e. Yn +1 = An Yn, n = 0, 
Y0 = I — the unit matrix where all matrices An, n = 0 are supposed to have 
complex elements. Then there exists a regular T-periodic, matrix valued function 
Tn and a regular constant matrix B such that 

(4) Yn = TnB
n for all n = 0. 

In the present paper we introduce a class of linear difference equations of the 
form (3) (nonperiodic in general) for which the normed fundamental matrix Yn 

(Y0 = I) has the form (4) (7; is not periodic in general). Results of such type are 
important for solving stability problems of linear as well as nonlinear difference 
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equations (see [7]). As a specimen of the application of our results we will prove 
a stability theorem concerning a linear perturbation of the difference system (3). 

H . I . Freedman [4] has extended the Floquet theorem for the so-called almost 
Floquet systems (AFS) which are defined as follows: The system (1) is called an 
almost Floquet system if there exists a r > 0 such that [B(t, r), <P(t)] = 0 for all 
teR where [[/, V] = UV — VU, <P(t) is a fundamental matrix of the system (1) 
and B(t, r) = A(t + r) — A(t). Obviously, if the matrix function A(t) is r-perio-
dic, then the system (1) is almost a Floquet system. 

• 

Definition 1. Let all matrices A n , n ^ 0 in the equation (3) be regular, 0n be the 
normed fundamental matrix of this equation and let r be a natural number. We 
shall say that the system (3) is a T-almost Floquet system (r-AFS) if 

(5) [Bn(T\ 0n] = O 

for alln = 0 where Bn(T) = An'An^x and [U, V\=UV- VU. 
Obviously, if An + T = An for all n = 0, i.e. the equation (3) is r-periodic, then 

Bn(T) = / f o r all n _̂  0 and hence the condition (5) is satisfied. This means that 
every r-periodic system of difference equations of the form (3) with An regular 
is a r-AFS . 

Theorem 3. Let the system (3) be a r-AFS, On be its normed fundamental 
matrix and let %(T) be the normed fundamental matrix of the system 

(6) yn+l=B„(T)y„. 

Then 

(7) 0„ + T=0„%(T)0T for all n = 0. 

P r o o f . Let us define Y„(T) = 0~x0n + T, n = 0. Then 

Yn + , (T) = <2V+ , <Z>„ + r+ , = 0-XA„-xA„ + t0„ + T = (<P„-XA„-XA„ + T0„) 0„-x0„ + T. 

From the equality (5) it follows that ®;XA;XA„ + T®„ = A~XA„+T = B„(T) and 
thus we have Y„ + ](T) = B„(T) Y„(T). Since 1^(T) = &T, %(T) = / we obtain that 
Y„(T) = %(T)0Tand thus 0~x0n + T = %(T)0T, OT0n+T= 0„%(T)0T. 

Theorem 4. Le( the system (3) be a r-AFS, &n be its normed fundamental 
matrix and 

(8) [C(r), Bn(T)] = 0 for all n = 0 

where C(T) = (<Pr)
1/T. Then there exists a matrix function Tn and a constant ma

trix B such that 

(9) 0„ = T„B" 
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(10) Tn + r=Tn%(r) 

for all n = 0 where %T) is the normed fundamental matrix of the system (6). 
Moreover, yn = Tnxn transforms the system (3) into the form 

( i i ) yn+i = fy*-

We remark that the matrix 0T is regular and therefore from [6, Theorem 5. 
4. 1] it follows that the matrix C(r) = (<2>T)

1/r is well defined. 
If the system (3) is r-periodic, then the assumption (8) is satisfied, %(T) = I 

for all n = 0 and thus the assertion of Theorem 4 is in coincidence with the 
assertion of Theorem 2. 

P r o o f of T h e o r e m 4. If we define Tn = 0nB~n for n = 0 where B = 
= C(r), then obviously 0n = TnB

n. Let con = [B, %(T)] where %(T) is the normed 
fundamental matrix of the system (6). The using the equality (8) we obtain that 

con + ] = [B, % + ](r)] = B% + l(T)- %+X(T)B = 

= BBn(T) %(T) - Bn(T) %(T)B = Bn(T)B%(T) -

-Bn(T)%(T)B = Bn(T)COn. 

Since co0 = [B, %(T)] = 0, we obtain that [B, %(T)] = 0, i.e. B%(T) = %(T) B for 
all n ̂  0. This implies that 

(12) %(T)Bn = B-n%(T) for all n = 0. 

Using (7) and (12) we obtain that 

Tn + T= 0n+TB-n* = 0nVn(T)0TB-*B-n = 

= 0n%(T)BTB-*B-n = 0nB'n%(T) = Tn%(T), 

i.e. the equality (10) holds. If yn = Tnxn, then 

(Tn + l)-
iAnTn = (0n + lB-B-y]An0rB-n = B for all n = 0 

and thus the equality (11) holds. 
Now we prove two theorems giving criteria for the system (3) to be a r-AFS, 

which are similar to these formulated by Freedman [4] for almost Floquet 
systems of differential equations. 

Theorem 5. Let all matrices A„, n = 0 be regular, T be a natural number and 
[Bm(T), An] = 0 for all m,n = 0 where Bm(i) = Am

lAm + T. Then the system (3) is 
a r-AFS. 

P roof . If we define an(m, r) = [Bm(T), 0n] for m,n = 0, then 

an + l(m, T) = [Bm(T), 0n+l] = Bm(T)An0n - An0nBm(T) = 
= AnBm(i)0n- An0nBm(T) = Anan(m, r). 
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Since a0(m9 r) = [Bm(i)9 I] = 0 for all m = 0, we obtain that [Bm(T)9 0n] = 0 for 
all m9n = 0 and in particular [Bn(T)9 0n] = 0 for all n = 0, i.e. (3) is a r-AFS. 

Theorem 6. Let all matrices An9 n = 0 be regular, r be a natural number and 
let Bn(T) = An

xAn + xbe such that [Bn + i(T)9 An] = 0 for alln = 0 andi = 0, 1, ..., 
..., k. Suppose that for any n = 09Bn(T) satisfies the following difference equation: 

,, ^ Ln(Zn) = CnZn + k + CnZn + k_ ! + ... + CnZn + Zn + kDn + 
+ Zn + k _ ! Dn + ... + ZnDn = Fn 

where the matrices Cn9 Dl
n9 Fn9 i = 0, 1, ..., k commute with the nor me dfundament

al matrix 0n of the system (3). Then the system (3) is a r-AFS. 
Proof. Let C/„(r) = 0n

xBn(T) On for n = 0. Since Bn + ](T)An = AnBn + ,(r), 
we have that 

Un + l(T) = 0-+
]
]Bn + l(T)0n + l = 0-lA-'Bn + ](T)An0n = 

= 0n'Bn+x0n. 

One can easily show by induction that 

(14) Un + i(r) = O-'Bn + i0„ for i - 0, 1, ..., k. 

Therefore from the commutability hypothesis we get 

Ln(Un(T)) = 0n
xLn(Bn(T)) 0n = 0~lFn0n = Fn9 

i.e. U„(r) is a solution of the difference equation (13) with the same initial 
conditions as BK(T) and hence U„(T) = B„(T)9 or [B„(T)9 0n] = 0 for all n = 0, i.e. 
(3) is a r-AFS. 

Example. Let B„(T) = B09 i.e. An + T= B0An for all n = 0, where r is a natural 
number, B0 is a constant matrix and assume that 

(15) [B09 An] = 0 for all n = 0. 

Then by Theorem 5 the system (3) is a r-AFS. Since the normed fundamental 
matrix of the system (6) with B„(T) = B0 is %(T) = B09 Theorem 3 implies the 
equality 

(16) 0n + T = 0nB
n0x for all n = 0 

where 0n is the normed fundamental matrix of the system (3). Using Theo
rem 3 and the equality (16) one can show by induction that 

n + -m(m — 1) T 

(17) <P„ + mt=(P„B0
 2 Bmr for all m, n _ 0 

where B = (<Pr)
1/r. This formula implies that the stability properties of the system 
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(3) substantially depend on whether the matrices B0 and B have eigenvalues 
inside or outside the unit circle. 

As a specimen of application of the previous results we prove a theorem 
concerning a linear perturbation of the system (3). To state the theorem and give 
its proof we need to introduce one notion and then to prove a lemma. 

Definition 2. A norm \\ • || on Rn is called adapted to given continuous linear maps 
Pi:R

n-+Rn,i = l,2,iy||J?|| =max(<T, £>), i = 1, 2 where o= max(|A,|, \^\9 ..., 
..., |A„|), Q = maxflv-l, |v2|, ..., \v„\), A,-, vh i = 1, 2, ..., n, are eigenvalues of Px 

and P2, respectively and \\S\\ = sup ||Sx||. 
\\x\\ ^ 1 

Lemma 1. Let two linear and continuous maps Pt: R
n -• Rn, i = 1,2, be given. 

Then there exists a norm on Rn adapted to these maps. 
Proof. By [8, p. 312] there exist norms ||-|li, IHI2 on Rn such that 

ll^illi = 
= a and ||P2||2 = Q where ||S||. = sup ||Sx||, i = 1, 2. The function x -•max-

11*11 ^ 1 
•(11*11.9 11*112) is the wanted norm on Rn. 

Theorem 7. Let the system (3) be a r-AFS with Bn = A~lAn + T = B0for all 
n = 0 where B0 is a constant matrix. Assume that the matrices B = (<2>T)

1/r and B0 

have all their eigenvalues inside the open unit circle where &n is the normed 
fundamental matrix of the system (3) and let [2?, B0] = 0. Then the system 

(18) xn+] = (An + Dn)xn 

is asymptotically stable provided 

(19) £ klin)-rin + l)\\Dn\\ < 00 

where k = max(cr, Q), 0= maxflAJ, |A2|, ..., |AJ), Q = max(|v,|, |v2|, ..., |vj), 
A,, v„ / = 1, 2, ..., n are eigenvalues of B and B09 respectively, || • || is a norm on 
R" adapted to the maps B and B0, y(n) = /3(n) x + \P(n)[p(n) - 1] r where 
a: N -> Nn[0, r) and fi:N -+ N are such functions defined on the set N of natural 
numbers that any nsN can be written as n = a(n) + P(n) r. 

Proof. By [7, p. 36] the solution of the nonhomogeneous difference equa
tion 

(20) xn + x=Anxn+fn 

satisfying the initial condition x„ = £ has the form 

(21) xn = 4>,tfT'.f + "£ W71 ifv 
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By this variation of the constant formula we can write the solution x„ of (18) 
satisfying the condition xn = £ as 

n-\ 

(22) xn = 0n 0-'c; + X ®«<P,"+ . Dvxv. 
v = 0 

Let Mx = max ||<PJ| and M2 = max \\&„ '|| where || • || is a norm on R" adap-
0 = « ^ r 0 = / ? ^ r 

ted to the maps B and B0. By Lemma 1 such an adapted norm on R" exists. 
Using the equality (17) and the assumption [B, B0] = BB0 — B0B = 0 we obtain 
that for any m, n = 0 

i ^ a(n) + \p(n)W{n)-\]r -a(m) - ]- flm)\fi(m) - 1 ] r 

<-\<-V = ®a(n)B0
 2 .BKn)*.B-PW.B0

 2 f>-] 

i.e. 

(23) 

•Фт\ 
^a(m) 5 

where the functions a, /J are as in theorem and 8(i) = \P(i)[P(i) — 1] r. Since 
||.fi0|| = k < 1 and ||fi|| = k < 1, we obtain from (23) that 

(24) \\®n®mx\\ ^ MxM2>km-*m) for all m, n = 0, n = m 

where the function y is as in the theorem. Substituting (24) in (22) gives 

| |xj | £MxM2.k
m-™ + n^MxM2.k^-^^\\Dv\\ \\xv\\ 

v = 0 

for all n = n0 and this implies that 

k-«H)\\xH\\ =MxM2.k~m)+ X MxM2.k«v)-«v+l)\\Dv\\(k-«v)\\xv\\). 
v = 0 

From [7, Corollary 1], which is an analogy of the Gronwall inequality, it follows 
that 

k-m\\xj < MtMyk-^-exp \мxM2 ҐŞife^-^+^II .Oj) 

for all n = n0 and thus we have 

(25) \\x„\\<M-k«n) for all n > nn 

where M = MxM2-k n°'-exp -rt«o) \MXM1(YJ 
L \v=o 

kм-*v+x)\\Dv 
The assump

tion (19) implies that M < oo. Therefore the theorem follows from the inequal
ity (25). 
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СИСТЕМЫ ЛИНЕЙНЫХ РАЗНОСТНЫХ УРАВНЕНИИ ПОЧТИ ФЛОКЕ 

МПап МеаЧесГ 

Резюме 

В статье введен класс разностных линейных систем почти Флоке и доказано обобщение 
теоремы Флоке для линейных разностных систем. Использованием этой теоремы доказана 
одна теорема об устойчивости, которая касается линейного возмущения данной разностной 
системы почти Флоке. 
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