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COMPARING THE NUMBER OF 

ABELIAN GROUPS AND OF SEMISIMPLE 

RINGS OF A GIVEN ORDER1 

M A N F R E D KUHLEITNER 

(Communicated by Oto Strauch ) 

ABSTRACT. In this article, we s tudy the ari thmetic function §^y , where a(n) 
denotes the number of non-isomorphic abelian groups of order n G N, and S(n) 
the number of non-isomorphic semisimple rings of the same order. We establish 
an asymptotic formula for the Dirichlet summatory function of ^& , up to an 
order term which is best possible on the basis of the present knowledge about the 
zeros of the Riemann zeta-function. 

1. Introduct ion 

Let a(n) denote the number of non-isomorphic abelian groups of order n G N. 
The study of the average order of this arithmetic function has been initiated by 
E r d 6 s and S z e k e r e s [1]. Subsequently, various authors contributed to 
the subject; for an enlightening historical survey, see K r a t z e l [5; ch. 7.2]. 
The hitherto sharpest result is due to L i u H o n g - Q u a n [4] and reads 

J2 a(n) = dx + C2x* + C3xi + 0(x^+£) . 
n<x 

(Here C\ , C2, C3 are computable constants.) Another arithmetic function which 
shares some properties of the counting function of abelian groups is S(n), the 
number of non-isomorphic semisimple rings of a given order n G N. In order 
to derive the product representation for the generating Dirichlet series of S(n), 
we note that each semisimple finite ring can be expressed as a direct sum of a 
finite number of simple finite rings, in a way that is unique up to permutation. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11N45, 11N37. 
K e y w o r d s : counting function, Abelian group, semisimple group, Dirichlet series, 

asymptotic expansion. 
1 This article is par t of a research project supported by the Austrian Science Foundation 

(Nr. P9892-PHY) . 
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A simple finite ring R, however, is isomorphic to a full matrix ring Mn(K) over 
a finite field K. Thus K is a finite Galois field GF(pk) for some prime power 
pk and card(iJ) = pkr}2. Therefore (see I v i c [2; p . 38]), 

E ¥ = n n « ^ ) (M*)>I)-
n = l fcGNmGN 

(For the algebraic background, cf. N o r t h c o 11 [7].) Hence, the generating 
functions of S(n) and of a(n) are identical up to a factor which possesses an 

absolutely convergent Dirichlet series for Re(s) > —. Therefore, there is little 

hope to obtain any asymptotic result about ~~] S(n) which is not completely 
n<x 

analogous (in statement and proof) to the case of ~~] a(n). 
n<x 

2. Subject and result of this paper 

One way to establish a result which (in a quantitative sense) compares be
haviour of the two arithmetic functions a(n) and S(n) is to investigate the 

average order of the ratio , { . The aim of this note thus is a proof of an 
S(n) 

asymptotic formula for the Dirichlet summatory function of , { , up to an 

order term, which is best possible on the basis of the present knowledge about 
the zeros of the Riemann zeta-function. 

T H E O R E M . AS X ^ OO, 

M(x) 
a(n) 
~Щ 

n<x v ' k=0 

^ SM = Ax+XA ~iZ Ak(^ogx) 6 k+o(x* exp(-c(logx)5(loglogx) *)) , 

where 

M(x) = [c0(logx)f (loglogar)-S] (2.1) 

and Ak *C (b*k)k with a certain positive constant 6*. 
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3. Preliminaries 

Throughout the paper, b and c (also with a subscript or a dash) denote 
positive constants. 

Let H(s) be any analytic function without zeros on a certain simply con

nected domain S of C which contains the real line to the right of s = an, where 

o"o = 1 or —. Suppose that H(s) G R + for real s > a$, and let a G R arbitrary. 

Then we define (H(s)) on S by 

(H(s))a =eXp(a(log(H(2)) + J ^ dz)\ 

the path of integration being completely contained in S but otherwise arbitrary. 
In our analysis, S will usually be a domain symmetric with respect to the 

real line, with a "cut" along F = {s G M : s < a0} (such that S H L = 0). 
We shall join in the common abuse of terminology to think of an "upper" and a 
"lower edge" of L fl dS, on which (H(s)) are attributed two different values, 
depending on whether L is approached from above or from below. 

In our first lemma, we summarize the present state of art about zero-free 
regions of the Riemann zeta-function. 

LEMMA 1. Define for short 

i/j(t) = (logt)i(\oglogt)i (t>3) 

and, for positive constants bi > 3 and b2. 

A(í) 

l - Ь ° = 1-Ш) *r|*|<6-, 

^ ш îorЩ-Ьi-
Then there exist values of bi. b2, b3 such that for all s = a + i t with 

a > X(t) 

it is true that 

and 

Ф) Ф o 

(Cí»г1<(i°g(- + |í|)) ьъ 

P r o o f . This result is contained in the textbook of W a 1 f i s z [13]; see 
also M i t s u i [6]. The very last assertion is readily derived on classical lines: 
see, e.g., P r a c h a r [10; p. 71]. • 

Our next auxiliary result provides an asymptotic expansion for a certain 
contour integral, which is essential in the type of problem under consideration. 
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LEMMA 2. Let H(s) be a holomorphic function on the disk 

{ s G C : \S - 1| < 2b0} (bo > 0 fixed), 

and let a E R \ Z . Let Co denote the circle \s — l\ = bo, with positive orientation, 
starting and ending at 1 — bo. For a large real variable w, it follows that 

K í(s - l)-aH(s)ws ds 
2тr 

C0 

M(w) 

w Yl ӣíI~k)^0ëW^~k~1 + o ( гüexp( -c" ( logw)f ( log log t i ; ) - i ) ) Г(a - k) 
k=o v ' 

( c " > 0 ) , 

where M(w) is defined as in (2.1). /?*. are the coefficients in the Taylor ex
pansion of H(s) at s = 1. By Cauchy's estimates and standard results on the 
Gamma-function, they satisfy 

P--- < 6r7*T(l - a + k) max \H(s)\ <^ (b'1^ max \H(s)\. 
F(a-k) u y | 5 - i | = 6 0 | s - i | = 6 0 

Tbe constant c" and the ^-constants depend only on a. 

P r o o f . This result is derived (in a special context) in [9; formula (3.5) 
and sequel]. • 

4. Proof of the Theorem 

Our analysis is based on the ideas of S e 1 b e r g [12], D e K o n i n c k and 
I v i c [3], and N o w a k [8]. We note that S(n) is multiplicative and prime-
independent, and that a(pk) = S(pk) for k < 3, while a(p4) = 5, S(p4) = 6. 
Consequently, for Re(s) > 1, we have 

-м-f:§$»~ 
n = l v J 

= Ф) П a -Í>~S)(I+p~s+p~2s+p-3s + Џ~4s + E җ^p~ks) 
P t lг лC^̂ O 

= Ç(s)(Ç(4s))-°U(s), 
(4.1) 

where U(s) has a Dirichlet series absolutely convergent for Re(s) > —. We 

define 

F(s) = (C(4s))-'U(s) = Y,9(n)n~s, (4.2) 
П = l 
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where the last equality holds for Re(s) > -j. From this, we infer 

J$ = E«M- («) 
m\n 

The idea behind this step is, that we cannot apply complex integration directly 

to y ^ cf ^ , but only to N O ( n ) > a n ( l that we have to combine this technique 

with an elementary convolution argument. 

LEMMA 3. For u —• oo, 

G(u) = J^g(n) = I(u) + R(u), 
n<u 

where 

'M-SI / 'GHT-
CO 

and 
R(u) < u*8\(u) 

for some c\ > 0. Co is the circle \s — 1| = bo (bo /rom Lemma 1), wi£b positive 
orientation, starting and ending at 1 — bo. Here and throughout the sequel, we 
write for short 

8k(u) = exp(-Cfc(log(3 + tx)) f (loglog(3 + u ) )~*) 

/Or u > 0 ana7 suitable positive constants ck . 

P r o o f . By a version of Perron's formula, 

u 2+ioo 

1 2-ioo 

We replace the line of integration Re(w) = 2 by the path C = C\ U C0 U C2, 
where C\ denote the path from 1 — i oo to 1 — bo, C2 the path from 1 — bo to 
1 + ioo, both along a = X(t). (b0 and X(t) are defined as in Section 3). Defining 

T= 1 

62(u) 

(with suitable C2 > 0), a short calculation gives that the contribution from Ci 
and C2 is «C u28s(u), hence 

G\(u)=I\(u) + 0(u283(u)), (4.4) 
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where 

UU) = J- [F(~) J*a+\. ds. (4.5) 
u ; 27ri j V 4 / 5(5 + 1) v J 

Co 

Employing a technique due to R i e g e r [11], we put, for w > 1, 

f(w) = G(w4)-I(w4) + (l(l)-G(l)). 

Now f(w) fulfils the necessary requirements of [11; Hilfssatz 2] ( R i e g e r ) since 
(4.4) implies that 

u 

I f(w) dw <<u263(u). 

1 

In order to estimate the difference / ( iv i ) — f(w2) for w1 > w2, we see from 
(4.3) that g(n) is multiplicative and 

k. _ a(pk) a(pk~1) 
g(pk 

S(pk) 5(pfe-

for every prime p and every integer k. From this, it is clear that g(p) = g(p2) = 
g(p3) = 0 for every prime p. Furthermore, |g(^)| < 1 for every n E N, since 
a(n) < S(n) is immediate from the respective generating functions. Conse
quently, if Q(v) denotes the number of 4-full integers < U, we obtain 

\G(Wl
4) - G(w2

4)\ < Q(Wl
4) - Q(w2

4) <Wl-w2+ w* , 

where the last estimate is an immediate consequence of the asymptotic formula 
for Q(v) (see K r a t z e l [5; ch. 7]). Furthermore, 

W2 ( \ 
I(w4) - I(w4) = J l ^ J F^u8-1 ds) du<:Wl-w2. 

w1 ^ Co ' 

This follows by replacing Co by CQ(U) which we define as the boundary of 

( 5 G C : | 5 - l | < b 0 , Re(s) < 1 + ) \ 
I log(2H) J 

with positive orientation, starting and ending at 1 — b0. [11; Hilfssatz 2] ( R i e 
g e r ) implies therefore that 

G(w4) = I(w4) + 0(w64(w)). 

Putting u = w4, we complete the proof of Lemma 3. 
We now define 

y = y(x) =x65(x), 

514 



COMPARING THE NUMBER OF ABELIAN GROUPS ... 

with a positive constant c5 remaining at our disposition. We recall (4.3) to 
conclude that 

E$hE«M[£] + £e(f)-eM 
n<x m<y k<-

— — * — y 

Writing {•} for the fractional part, we see that 

E •*»>[£] = E - » £ - E •*»>{£} 
m<y m<y m<y 

We note that 

£<7(™){f}| <<?(</) «2/"-
m<y 

Furthermore, 

E^wf-E^-E 
m<y m=l m>y 

The second part yields 
oo 

9І™) 
m 

ygM= fidG{u) --—' m J u v ' 
T»y y 

OO OO 

= Jh'(u)du + Ju-dR(u) 
y y 

OO OO 

= J h'(u) du - ±R(y) + J ±R(u) du 
y y 

OO 

= Jh'(u)du + 0(y-U1(y)). 

Thus we obtain 

a(n) 

n<x 

with 

00 

T,^=A*-*[Ínu)du+Y,G(f)-G(y)[?-}+0(XÍ66(X)) 
n<x y J í k<§ 

^=E 9І™) 
m 

by a suitable choice of c 5 and CQ. (Note that A > 0 by the Euler product 
representation.) 
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In view of Lemma 3, one has 

Y,R(f)«xiS7(x) 
k<* 

— У 

and 

Ľ'(!)=/'(!)* 
k<z i 

HУ) + x y>® du 

/w[fl+*//»df-*/,'(f)Mdu 

X_ :„ 

U 
by the substitution v = — in the last but one integral. Using this, we arrive at 

$±=Ax-x [l'(u)^-x 
S(n) J u 

X 1 n<x 

where 

OO y 

•.Jľ(u)f-XJľ(^)^-du + 0(xh8(x)), 

/'(„) = J_ / F(s)us~1 ds. 
27T1 / 

4 CO 

It remains to evaluate these two integrals. We consider first 
O O O O 1 X 

I^T-lísil"^-1"-)^ 
X X V IGo 

= 2 Í l / f ' ( S > ( / » * " 2 d » ) d ' 
\C0

 X x ' 

27T1 J 5 - 1 
І C O 

Similarly, 
ҙ_ э_ 

M)#*-á/ғ<WM*')<-
1 ІCo Ч 1 ^ 
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In view of the well-known identity 

00 

/ < 
{uju-*-1 du = l C ( S ) 

s - 1 
1 

(valid for Re(s) > 0), we obtain 

E | ^ = ^+I*(*) + ^ / I ^ ) ( / 
_ \C0 § 

(4.6) 
where 

r ( x ) = ^ i /cOOI^K^. (4-7) 
4 CO 

Our penultimate step is thus to estimate the remaining integral in (4.6). 

^ - xs du] ds < 1/4 < x4f59(x), ( 00 

/ - « • • • , 
4°0 „ 

This follows by replacing -jCn by ~[Co*(x) defined as in Lemma 3, and by the 

fact that F(s) is bounded on — CQ*(X). 

Applying Lemma 2, we obtain for the integral I*(x) (defined in (4.7)) the 
asymptotic expansion (as x —> 00) 

M(x) 

/*(x) = xi J2 Ak(\ogx)-7*-k + 0(xi61Q{x)) . 
k=0 

This completes the proof of our Theorem. • 

R e m a r k . By the same proof, we can generalize this result to an arbitrary 

r-th power moment of , *• (r any fixed positive real number). Instead of 

(4.1), we now have (for Re(s) > 1) 

=<w n (i - P-) (1+P-+p--+P-3S+(f) v - + g (§p) > • ) 

= ((s)(a*s))-aUr(s), 
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where 

< • - - ( ! ) ' • 

and Ur(s) has a Dirichlet series absolutely convergent for Re(s) > — . Repeating 

our argument, we readily obtain 

a(n) £ 
П < X 

M(x) 

= A^x + x* ^ ~ A(^\logx)~a~1~k + o(x* exp(-c(logx)s (loglogx)~*)) 
k=0 

with M(x) given as in (2.1). 
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