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(Communicated by Stanislav Jakubec) 

ABSTRACT. A new type of the Kummer system of congruences is considered 
and some equivalent systems are discussed by using a polynomial identity. Further 
we define a special Stickelberger subideal in a certain group ring and transfer the 
Fueter type system into the group ring. Afterwards, by evaluating the determinant 
of a special matr ix we deduce the index formula between the group ring and the 
Stickelberger subideal in terms of the relative class number of the Ith cyclotomic 
field (where I > 5 is an odd prime) . 

1. Introduction 

Let I > 5 be an odd prime, Z the ring of integers, Q the rational number field 
and Q(C) the cyclotomic field over Q defined by a primitive Zth root of unity 
£ = e2™/'. Further let T = {NXiN2,... ,Nn} be the set of positive integers 
iV 1 , iV 2 , . . . ,N n (1 < n < 1-2) such that 2 < N. < / - 1 (i = 1,2, . . . , n ) and 
Nt 7-- Nj if i jL j ? B^ the m t h Bernoulli number defined by 

л'T, 
oo „ 

Dm m 
I X 

л m\ 
m=0 

and <fk{x) the Mirimanoff polynomial, i.e., 

i - i 

M*) = Y,vk~lxV (kez). 
v=l 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11D41, 11R54, 11B68. 
K e y w o r d s : Stickelberger ideal, Kummer system of congruences, class number formula, cyclo­
tomic field, Bernoulli number, Mirimanoff polynomial. 
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TAKASHI AGOH 

The following system of congruences (in equivalent form) was first introduced 
by K u m m e r [K] in connection with the first case of Fermat's last theorem: 

<rViW = 0 ( m o d / ) , 

S 2 m ^ _ 2 m ( t ) = 0 (mod /) ( 1 < m < (I - 3 ) / 2 ) . ( K ) 

This system has many interesting variations and consequences (see, e.g., [AJ, 
[A2], [G], [R]). In S k u l a ' s papers [SJ, [S2] this system was investigated from 
the viewpoint of the Stickelberger ideal in a certain group ring. 

We now consider the following new system of congruences: 

(K(Г)) 
^ . _ x ( t ) = 0 (mod I), 

-*2mV.-2m(t) = 0 (mod I) ( 1 < m < (I - 3 ) / 2 ) , 

where 

Blr)=U(NK-l)-^- ( fc>l ) . 
Ner K 

The system (K(F)) was first observed by B e n n e t o n [B] in the case 
r = {2} (for another approach, see [S3]), and it was recently investigated 
for the cases # F = 1 and 2 in [AS] and [AM], respectively, by means of the 
Stickelberger subideals. 

It is easily seen that if F' (7-= 0) is any subset of F, then the solution r of 
(K) or (K(F ')) is also a solution of (K(F)). Further we may state that if all the 
elements of F are primitive roots mod /, then the systems (K), (K(F ')) and 
(K(F)) are mutually equivalent, in other words, these systems have the solutions 
in common. In addition, we note that if ir(l) = #{m | B^J, = 0 (mod / ) , 
1 < m < (I — 3)/2}, then the number of non-trivial congruences in (K(F)) is at 
most ( / - l ) / 2 - z r ( Z ) . 

The main purpose of this paper is to investigate a Stickelberger subideal 
relating to the K u m m e r type system of congruences and deduce the index 
formula of this subideal in the group ring Z[G], where G is a cyclic group of 
order / — 1. 

Section 2 is devoted to deducing various systems of congruences equivalent to 
(K(F)) by using a certain polynomial identity including all the terms in (K(F)). 
In Section 3, a special Stickelberger subideal Br in Z[G] is introduced and one of 
systems (the Fueter type system) equivalent to (K(F)) is observed by means of 
this subideal. In Section 4, we define a matrix K r with the entries concerned in 
the Fueter type system and evaluate its determinant in terms of the relative class 
number h~ of Q(C) • Using these results, we finally deduce the index formula of 
the Stickelberger subideal Br in Z[G]. In addition, using the I w a s a w a class 
number formula we calculate some indices between the Stickelberger subideals. 
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2. Some systems equivalent to (K(r)) 

In this section we will exploit various systems of congruences equivalent 
to (K(F)) using a certain polynomial identity which includes all the terms 
in (K(T)) . 

For a fixed non-empty set r as stated in the Introduction, let V = V(r) be 
the power set of r and put for an element P £ V 

(1 i f P = 0, 

V(P) = \ Yl N otherwise. 
I NeP 

Also we define 

^ ^ r j ^ f - l l ' ^ r ^ M P ) ) (m>0, n>l), 
Pev 

where P = r \ P for each P e V and Sm(k) = l m + 2 m + • • • + km. 
We first deduce the following polynomial identity, in which all the terms of 

the system (K(F)) are included: 

PROPOSITION 2 .1 . Let 1 < k < I - 1 and m < I - 3 . Then 

Ner 

l-2-m + Ë ('~iì~í
m)^У~"m~i{вP^} 

3=2 ^ J ' 

= _tsi_2_m(vk;Г)vmЄ. 
V = l 

P r o o f . We set 

x 
B(x) = (the generating function of Bernoulli numbers), 

Wг{x) = l^(-l)*ÞB(Џ(P)x), 
X 

Pev 

Km(^) = {B(x)e~}<pm+1(tek~) - Vm+1(t)B(x). 
Here we have the identity 

i-i / vk \ 

Ak<m(t,x) = x £ £ V * W (cf., [A.; 3.3]). 
v = i \ j = o / 
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Since B(x) ex = x + B(x), it follows that 

Et-D^MP),^'/^)*) 
pev 

= (^(-l)*PBMP)x)eřt'*)Vm+1(t*'*r>*) 
\pev ) 

-^iWEf-1)*'5^) 
vev 

= ( J2(-l)#P{»(P)x + B(»(P)x)}\m+1(tek^*) 
\pev / 

-^m+1(t)^(-l)*PB(fx(P)x) 
Pev 

= x( n (N - 1) + Wr(x) ] vm+1(íe*"<r>*) - xWr(x)ipm+1(t), 

which gives 

I I (-V - 1) + Wr(x) ym+l ( ť e W ) - Wr(x)Vm+1(t) 
,Ner J 

l-\ /vkn(P) 1-1 /vkџ{P) \ 

= J2(-І)*PKP)E( £ eJ>(p)x W-
PЄP v=l V j=0 / 

Since for n > 0 

dxn - — Wг(.r) 
Л ~.n i V / Jæ=0 

= riï E (-D#Рм(IT+1 • вn+1 = *<?. 
. PЄP 

dn 

dx71 Ьг^ + i (*e f c ^) = (MЛ)Vm+„+i(-), 
J æ=0 

we get by making use of Leibniz's theorem for the above functional equality 

350 



STICKELBERGER SUBIDEALS RELATED TO KUMMER TYPE CONGRUENCES 

n(-v-i)-wn)'-2-m^-i(*) 
IVGT 

l-l /kfi(P)v \ 

= _к-i)*pџ(p)_:( _: (мp))i-2-m\vmť 
pev v=i \ j=i 
1-1 

= _]Sl_2_m(vk;Dvmt«. 
V=l 

Noting that B[r) = (-1/2) H (IV-1), this leads to the indicated relation. • 
IVGT 

We shall derive some systems equivalent to (K(JT)) using Proposition 2.1, 
which have similar forms to those of the systems in [A2; Theorem 1] and [AS; 
Theorem 3.3] presented for the systems (K) and (K(F)) with F -= {IV}, respec­
tively. 

THEOREM 2.2. The system (K(F)) is equivalent to any one of the following 
systems of congruences: 

i-i 

Y Si-z(vk; r)vtv = 0 (mod /) (1 < k < I - 1) , (I) 
v=l 

l-l 

Y St_2{vk ]T)tv =0 (mod /) (1 < k < I - 1) , (II) 
v=l 

,_i ( ^ ( ^ E E O (mod/), 

_ £ ^ - 2 - m ( ^ ; J > m * v = 0 (mod /) ( In*) 
v=l 

(2 < m < I — 3; k is any fixed integer with 1 < k < I — 1 ) . 

P r o o f . Suppose that r is a solution of (K(F)). Then we see from Propo­
sition 2.1 that T is a solution of 

i-i 

YSi-2-m(vk'ir)vmtv = 0 (mod/) ( 1 < / C < / - 1 ; 0 < m < / - 3 ) . 
v=l 

This shows that the solution r of (K(F)) satisfies the systems (I), (II) and 
(IIIfc). Conversely, if r is a solution of the above congruence for certain k and 
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m (1 < fc < / - 1, 0 < m < / - 3), then we know from Proposition 2.1 that r 
is a solution of the congruence 

\ n(jv-i)-(wrviw 
Ner 
l — 2 — 771 /1 r% \ 

+ E ( .^^(Mnr-^KViWj^oímodz). 
i" = 9 \ -l / 

For a fixed integer m with 0 < m < / - 3, let D = [%]i<;, j<{_2-m ^ e a S ( l u a r e 

matrix of order / - 2 - m with the entries a- • = ij . Since det D is a determinant 
of the Vandermonde type, it is easily seen that det D ^ 0 (mod / ) . Therefore, 
we see that if r is a solution of (I) or (II), then r is also a solution of (K(F)) . On 
the other hand, for a fixed integer k with 1 < k < I - 1, by taking successively 
m = / — 3, / — 5 , . . . , 2 in the latter congruence one knows that r is a solution 
of (K(F)). This completes the proof of the theorem. • 

Next, we shall discuss the Fueter type system of congruences. 

PROPOSITION 2.3 . Suppose that r = 1 (mod /) is not a solution of (K(F)) 
only for the case # F = 1. Then r is a solution of the system (K(F)) if and 
only if r is a solution of the system of congruences 

EÍ£(-i)# ŕ-V(p)[^ 
v=l \P€V L 

(1 < k<l- 1 ) , 

-ť = 0 (mod l) 
v ( p ( Г ) ) 

where [x] is the greatest integer < x for a real number x. 

P r o o f . The case # F = 1 was treated in [AS; Proposition 3.5]. So assume 
that # F > 2. Take m = —1 in the polynomial identity of Proposition 2.1: 

\ п (-v- D • (мo)'-Vìtø + È (!• _ì) ЫnУ4 {-5f Vi(')} 
NЄГ j=2 

l-l 

v=l 
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Here, by the von Staudt-Clausen theorem B^l = (1/7) f ] (Nl~l-l)= 0 (mod I) 
Ner 

if # F > 2 . On the other hand, by Fermat's theorem we have 

s^vbn = E(- 1 ) # ^( p ) ' 5 /-i(^( i 5 ) u ) 
pev 

.E(-i) #^)(w)-[^l) 
(mod Z), 

PЄV 

~kџ(Þ)v 
I 

^ ( - i ) ^ - V ( P ) 
Pev 

which implies the result by the same argument as in the proof of Theorem 2.2. 

• 
We note that the following original form of the system (F(F)) was first 

considered by F u e t e r [F] in 1922: 
/ - i 

52[M]I tv=0 (mod/) ( l<fc<.- l ) . (F) 
V=l 

We can say that the solution r of the Kummer system (K) is also a solution 
of (F), hence of (F(F)) . In [S2] the equivalent system to (F) was investigated 
by means of the Stickelberger ideal. Similarly, we shall discuss the generalized 
system (F(F)) for # F > 1 from the viewpoint of the Stickelberger subideal in 
the next section. 

3. A special ideal Br and the system (F(r)) 

In this section we shall define a special element (3r depending on r and 
study some basic properties of (3r. Further, using this element (3r we define 
an ideal Br of the group ring R = Z[G], which is involved in the Stickelberger 
ideal I for the / th cyclotomic field Q(C/)- Subsequently, we shall observe the 
equivalent system to (F(F)) in Proposition 2.3 by means of the Stickelberger 
subideal Br of X. 

Let r be a primitive root mod /, ri the least positive residue of r% modulo /, 
G = {l , 5, s 2 , . . . , 5 / _ 2 } a multiplicative cyclic group of order / — 1 generated 

r l~2 l 
by s and R = Z[G] = < a = J2 aisl I a% ^ ^ f t n e g r°up ring of G over Z . 

^ i=o J 

We now offer the following special elements of i?, which are concerned in a 
basis of the Stickelberger ideal X defined below: 

i=0 i=0 i=0 
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Let R' = {a e R | ( l + s ( / _ 1 ) / 2 ) a e 5Z} be a subring of R. For an 
1-2 

element a = ]T a-52 of i t ' , the equality a- + a J + ^_ 1 ) / 2 — afc + afc+(i_i)/2 

(0 < j , fc < {I — 3)/2) always holds. Here we may state that one of bases of R1 

regarded as a Z -module is given by 

S' = { £ j | 0 < j < ( / - 3 ) / 2 } u { e } (cf.,[S2]), 

where 

£ = S i ( l - S ( ' - l ) ! 2 ) ( i e Z ) and 

( í -3) /2 

є = E *г 

i = 0 

The Stickelberger ideal I of i t is defined by I = Rr\(j/l)R with the Stickel-
berger element 7// in the group ring Q[G] over Q (see [W; §6.2]). Therefore, 
for an element a G l there exists v G R satisfying la = 1/7. It is easily seen 
that T C R' and the above elements 7, 7 f c, <5 belong to the ideal T. Further 
we may assert that these elements satisfy the relation 

7* + 7fc+(/_i)/2 = 7 ~ <5 ( k e Z ) . 

Noticing that 7 = 7(/__)/2 + 5, we present a basis of I given by S k u 1 a [S2; 

Theorem 2.7]. 

THEOREM 3.1. The system {~{k I 1 < k < (I - l)/2} U {5} forms a basis of 
the Stickelberger ideal T considered as alL -module. 

Referring to the form of the system (F(P)) we define the following special 

element (3r of R depending on a non-empty set T: 

1-2 / 

i=o \pev 

ß{P)Г-i 
l 

We will show that the element /3r belongs to J . Without loss of generality, 

assume that P = {NvN2,...,Nk} (?-0) and N. = rmj (j = 1,2,..., k) for a 

given primitive root r mod /. Then, letting m = m(P) = ml -\- m2 -\ h mk 

we have 

ß(P)Г-i = 
Џ{Þ)Г_І 

l l + rm-i, rmт_.= [^үi\l + r. 

Noting that /x(P) == rm (mod I) and 1 < r m < / - 1, these relations offer 

џ{Þ)r_i 

1 
(мñ-o*--. 

+ m 
ß{Þ) 

Г-І + m ( 0 < i < / - 2 ) , 
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which is also valid for the case P = 0 (i.e., fi(P) = 1). Therefore, it follows that 

X-3)' 
Z-2 

Ør = £(£(--)#ŕ-1.-W 
i=0 \PЄV ^ 

/ 
r-i + 

rmr-i 

l 

= £ ( -І) # # -V(P) 
VPЄP 

MI3) 
/ I т + ^ í - i ^ - V ^ 

PЄV 

If ra' is the non-negative least residue of m modulo (I — l)/2, then 7^ 
7(/-i)/2 "" 7m'» - ! e i i c e taking consideration of Theorem 3.1 we see (3r £ X. 

For the element /? r £ X we obtain: 

PROPOSITION 3.2. Le_ j be an integer. Then 

^r = £(£(-1)#P-V(P)[-MP)r-
i=o VPGP •-

and 

ť+І 
I 

sjPr + s>+W2Pr = fj (N - 1) • 8. 
IVGT 

P r o o f . The expression of s-7/? can be easily deduced. Since for a positive 
integer a prime to I 

a Г - i + J + ( . - l ) / 2 a(ł-r_i+i) 

l 
= a-l-

ar-i+i 

we deduce 

oІ+( í-l ) / 2 ^ 
ł - 2 

< Ц ( - J ) r _ < + i + ( , _ 1 ) / 2 

/ £ £(-D#p"V(E) 
ѓ=0 \PЄV 

- £ ( £ (-i)#ŕ-VíI3) + £ (-i)#ŕ-V(p) м I>_ i + i 

z i=o Wev Pev 

= J J ( i V _ 1 ) . j _ 5 j / ? r ) 

IV6T 

which proves the result. • 

DEFINITION 3.3. We denote by Br the ideal of R generated by the elements 
(3r and 0*, thus 

Br = {riPr+a8\ 77 <Ei?, o G Z } C I . 
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By Theorem 3.1 we know that the elements of {sjf5r | 0 < j < (l-3)/2}u{5} 
are generators of the Z -module Br. 

Here we shall derive a certain system equivalent to (F(F)) in Proposition 2.3 
by means of the elements a G Br. For this purpose we define the following 
polynomial fa(t) (a G R) introduced by S k u l a [Sx; 1.3]: 

1-2 

DEFINITION 3.4. For an element a = ^ ais% °f -R> define the polynomial 

fa(t) as follows: 

v = l 

where indv means the index of v G Z, / { t>, relating to the primitive root 
r mod / and ak (k G Z) may be replaced by â  (0 < z < / — 2) whenever 
k = i (mod / — 1). 

Using the above polynomial we can state: 

THEOREM 3.5. The system (F(-T)) of Proposition 2.3 is equivalent to the 
system 

fa(t) = 0 (modi) (a€Br). 

P r o o f . Let k and u be integers satisfying ru = k (1 < k < I — 1, 
0 < u < I — 2). Based on Proposition 3.2 we let 

a = 5«/3r = £ ( J>l)#p-V(I>) 
MI>_ І + U \sleBr 

Then it follows that 

/a(*)=EfE(-1)#^(P) 
v = l Ч P Є P 

' - ! i ( 

=£ Yi-iў^KP) 
v = l ^ KPЄV 

Z - l ( 

-£ V2(-i)#^-V(Р) 
v = l ^ KPЄV 

/ —1 

-5:1 ŕ Yí-iЃ^KP) 
u = l KPЄV 

Џ\P)Гìndv+u 

џ(P)vk 
l 

l-ť 

KP]vk] 

kn(P)v 
l 

M(-Р) 
г>fc 

/ 

г> 

ìť-

where n means the least non-negative residue of n > 1 modulo /. On the other 
hand, since [a(l — 1)//] = a — 1 — [a/l] for a positive integer a prime to /, one 
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can statě 

џ(Þ)v 
l Sf £(--)**-V(P) 

v=l \PЄV 

+£ ( £ (--)#ŕ_ V(p) 
v=l \PЄV 

l-l / 

-ť 
V 

џ(Þ)(ł - l)v 
i 

1 J.V = £ [^.{-vr-^nv-m) W 
v=i \pev 

Ner 

where Yl (N — 1) ^ 0 (mod /) . So the theorem follows. 
IVGT 

г> 

D 

4. The index of the Stickelberger subideal Br 

In this section we define a special matrix K r and evaluate its determinant 
in terms of the relative class number h~ of Q(C/)« Subsequently, using this 
evaluation we derive the index formula of the Stickelberger subideal Br of X in 
the group ring R'. 

1-2 

For an element f = ]T] c{s
l of the group ring Q[G] of G over Q, there exist 

i=0 
uniquely rational numbers chk (0 < h) k < (I — 3)/2) such that 

(/-3)j2 

cht= E chkH (h = 0,l,...,(l-3)/2). 
k=0 

Now, consider the following square matrix C(£) of order (/ — l ) / 2 : 

C ( 0 = LC/iA;Jo</i,fc<(/--3)/2 • 

S i n n o 11 's Lemma stated in [S; Lemma 1.2 (b)] can be formulated as follows: 

LEMMA 4 . 1 . Let X~ be the set of all odd characters of G. For an element 

? = E e / e Q [ G ] (c{eQ) 
i=0 

detc(o= n iz^^y. 
xex- »=o 
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Denoting by / the order of N mod / we put 

J (N"2 + l)('-V/f if / is even, 

~{N) ~{(Nf- l )( ' -D/(-/) if / is odd-

Using this notation we further define 0(T) by 

n(n- Hu(N). 
Ner 

By making use of Lemma 4.1 we shall calculate detC(f) for £ = f3r and 
prove: 

PROPOSITION 4.2. Let h~ be the relative class number of Q(C/) • Then 

detC(/? r) = (-l)^)l-2^y-^h' . 

P r o o f . We shall essentially follow the same proof as in [AS; Proposition 5.5] 
given for the case # F = 1. It is well-known that h~ can be expressed as 

h~ = 21 J ] {-\Bi,x) (see, e.g., [W]), 
x'X-

where Bx is the generalized first Bernoulli number for an odd character \ 
i-i 

of G, i.e., Blx = (1/7) J2 \(a)a. Also, we easily see that for each N G F 
a=l 

E(^)x(«) = *-p- E «*(«), U(N- X(N)) - U(N) , 
a=l a=l x-x-

where \ is the conjugate character of \ and (0) is the fractional part of 0 for a 
real number 0, so (0) = 0 — [0]. Using these relations we obtain from Lemma 4.1 

detC(/?r)= II EfEí-1)**"1^-3) 

= II E Í E ( - D # P - V ( P ) 
XGX- a = l \PeV 

l~l / 

'n(Þ)r-i 

џ(P)a 

\x(s)1 

X(a) 

n ElEHř1^!^-/^8 

x € x - o=i \pev 
X(a) 

= II fE^^-V^ÍM^-xíMI5)))-!^^^ 
XGA- V P e ^ a = l / 
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= I I fE(-1)#^(P)x(MI3))-jEax(a)) 
xєx- ,PЄV a=l 

l-l 

= П П ("-*(*))• П ł £«*(«) 
xex- Ner xex- 0 = 1 

-(-2) (M,/2ß(Л- П (-1-ЭІ.X) 

= (_ l ) ( ' - l )/2 2 ( ' -3)/2^C~) f c - > 

as indicated. This completes the proof. • 

We consider the square matrix K r of order (I — l)/2 as follows: 

DEFINITION 4.3. For a non-empty set F, define the square matrix of order 
(Z - l)/2 as follows: 

K T = [kijll<i,j<(l-l)/2 > 

where 

*« = £(--)# ŕ-VOP) 
PЄV 

ІJЏ(P) 
I IJ(N-l)-

NЄГ 

The matrix K r for the case # F = 1 was considered in [AS] and its deter­
minant was calculated in terms of the relative class number h~ of Q(Cj)- We 
would like to extend this result to more general situation for the case #T > 1. 

To decide the sign of det K r we need the following proposition [AS; Propo­
sition 4.5]: 

PROPOSITION 4.4. Let auv be complex numbers satisfying a

u+(i-\)/2,v ~ 
a

u,v+(i-i)/2 = ~auv for a^ integers u, v. If A and K are the matrices defined 
by A = KJo< U ,K(I-3)/2 a n d K = [kij\l<iJ<V-l)/2 With kij = amdi,-mdj> 
then 

detK = (- l ) ( '- 1 )( '- 3 )/ 8 detA. 

Note that the above proposition is also applicable to the transposed matrices 
A T and K T . 

Now we can evaluate det K r and give the following formula: 

T H E O R E M 4.5. 

d e t K r = ( - l ) ( ( 2 - 1 ) / 8 ^ / i -

P r o o f . For integers u, v put 

^=£( - i ) # ŕ -V(p) 
PЄV 

21 

KP)r.u+v -łl l^- 1 ) 
N<EГ 
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and consider the square matrix of order (/ — l)/2: 

r = [auJo<u,v<(/-3)/2 • 

We first want to show that auv satisfies the condition of Proposition 4.4, that 
is, auHl_l)j2v = auvHl_l)/2 ___ _ a For brevity set I7r = J] (N ~ !)• B y 

Ner 
direct calculation one has 

au+(l-\)/2,v — aч,v+(l-\)/2 

= £(-D# ŕ-V(P) 
PЄV 

џ{P)r_uĄ.v^i_гy2 -\пг 

= £(-D# ŕ-V(P) 
PЄP 

n(Þ)(l-r_u+v) -\nr 

= £ ( - i ) # ŕ " V ( P ) (ß(Þ)-i-
PЄP 

n(Þ)r.u+v] 

= -->-£(--)**-V(-°) 
PЄP 

n(Þ)r_u+v 

l 

-\nr 

-\nr 

— CL.t 

as desired. Noting that r_fc_(._1)/2+/i = / - r_k+h (0 < fc,/i < (/ - 3)/2), we 
can deduce from Proposition 3.2 

eh(5r = (sh - sh+W2)pr = 2sh0r - nr5 

C-3)/2 . . 

= 2 v I y^(-i)^-v(p)( 
. -3 ) /2 ( 

£ £< 
k=0 l PeV 

»(Þ)r_k+h 

+ 
\џ(Þ)r_k_(l_1)/2+hл 

l 
_k+(i-i)/2 )\-nr5 

(ł-3)/2 ґ 

= 2 £ £(-i)# ŕ"V(p) 
k=0 l PЄV 

ß(Þ>_k+h 

+ (ß(Þ) - i)sk+^-^2 

-Пг-(l + s^f2)є 

KÞ)r_k+h fc+(i-l)/2 
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'»(P)r-k+h 

I 

( i-3)/2 / 

= 2 E E(-D#/ł-V(p) 
k=0 \PЄ7> 

-Пг-{l + sW
2)є 

n(Þ)r_к+ћ 

(ť-3)/2 / 

= 2 £ E(-D # Ѓ "V(P) 
k=0 \ PЄV 

(ť-3)/2 

l 

єк + Пг-sк+^2 

- n r ( i - sC-1)!2) 

= 2 £ », kh^A; ' 

к=0 

Since the entries k^ (1 < i, j < (/ — l)/2) of the matrix K r satisfy the identity 
fc =-. a _ i n d . i n d i , we get from Propositions 4.2 and 4.4 

( i - l ) ( i -3)/8+(i- l )/2^(Л.-
2/ 

d e t K r = ( - l ) ( ( - 1 K ' - 3 ) l 8 d e t A T 

= (-1) 

= (_1)«
2-D/8_?ip/l-

which completes the proof of the theorem. D 

We should supplement here that H a z a m a [H] introduced the (0,1) square 

matrix H = [ / I ^ K ^ J < ( / _ I ) / 2 OI* °rc-er (/ — l)/2 defined by h- = 0 if ij > 1/2 

and h{j = 1 if ij < //2, and he evaluated its determinant as follows: 

detH = ( - l ) K ( - 1 ) l 4 ] ^ / i - . 

The adjustment between the formulas of det H and det K r for F = {2} has 
been accurately mentioned in [AS; Proposition 4.3]. 

The following proposition was proved in [AS; Proposition 5.6]: 

PROPOSITION 4.6. Let S' be the basis of R' stated in Section 3 and £ G R'. 
If C is the transition matrix from S' to the elements sJ£ (0 < j < (/ — 3)/2) 
and S. then 

detC = 2- ( ' - 3 ) / 2 detC(cI) . 

Applying Propositions 4.2 and 4.6 we obtain: 
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THEOREM 4 .7 . 

(i) If Cr is the transition matrix from S' to the elements s J /? r (0 < j < 
( Z - 3 ) / 2 ) and S, then 

detCr = (-lf-^2^P-h-. 

(ii) The system {sjpr | 0 < j < (I - 3)/2} U {S} forms a basis of Br 

regarded as a Z -module. 

As a consequence of Theorem 4.7, one can state the following index formula 
for the Stickelberger subideal Br of I in R': 

T H E O R E M 4.8. 

[ * : B , ] - ^ * - . 
The next theorem follows from I w a s a w a ' s class number formula ([I]) and 

it was extended by S i n n o 11 [S] to a wider class of cyclotomic fields (see also 
[W; §6.4]). 

THEOREM 4.9. 

[R' : X] = / T . 

Using Theorems 4.8 and 4.9 we may state: 

COROLLARY 4.10. 

Next, we argue inclusion relation between the Stickelberger subideals of the 
above mentioned type. 

PROPOSITION 4.11. Let T' be a non-empty subset of T. Then Br, D Br. 

P r o o f . It is enough to prove the proposition only for the case F = 
T' U {M}, where M is a positive integer with M <£ V and 2 < M < I - 1. Let 
V be the power set of F' and put for simplicity 

\^P')r-i' 
I Xi = M £ (-l)^-V(P') 

p<ev 

- M (P ' )Mr_ . 
УІ = E (-i)#p'-V(I") 

P'ЄV 
l 

Then we see that Pr = £ ( * . ~ Yi)s*' • H e r e E Xi*' = MPr> e Br,. We now 
i=0 i=0 

1-2 
show that V Ysl £ Br1 - -^or a n x e d primitive root r mod /, let g and m be 

i=0 
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the integers satisfying /i(P') = r (mod /) and M = r m , respectively. Then 

KP'Wr^ = 
HJP^Mr^ 

I l-\-r g+m-i 

M (P ')Mr_ ť = 
KP^Mr^ 

l + r g+m—i '• 

hence 

џ(Þ')Mr_ 
l 

џ(P')Mr_ 
ì + 

џ^ҲMr^-Mr^) 
l 

Since Mr_{ = r_i+m, we get 

Yi=E (-D#P'-V(I") 
P'ЄV 

l 

+ џ(Г)(Mr_i-Mr_i) j - ( _ 1 ) # ^ - i 

P'ЄV 
l 

Y_ (-l)*P'^џ(P') 
P'ЄV 

џ(Þ')r_ 
i+m 

i 

Consequently, by Proposition 3.2 we see /? r = M(3r, — smj3r, G Br,, which 
implies the result. D 

Incidentally, we add that if m(N) is the integer with N = rm,N), then for 
any Nf G F 

Pr = lm(N'} D[ (N-sm{N)). 
Ner\{N'} 

Based on Proposition 4.11, we obtain from Theorem 4.8: 

COROLLARY 4.12. Let r' be as in Proposition 4.11. Then 

[Br, :Br] = !l(r\r'). 

A c k n o w l e d g m e n t 

The author thanks Ladislav Skula for his careful reading of the paper and 
useful comments. 
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