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JOINT DISTRIBUTIONS AND COMPATIBILITY 
OF OBSERVABLES IN QUANTUM LOGICS 

EWA CZKWIANIANC 

In the paper presented the joint probability distribution in the Urbanik sense 
on a logic will be studied. A relation between the existence of the joint probabil
ity distribution and the existence of compatible observables will be shown. 

Let L be a poset with the first and the last element 0 and I, respectively, with 
the orthocomplementation _L: L -> L, for which we have (i) (a1)1 = a for all 
aeL, (ii) if a < b, then b1 < a1 (iii) a v a1 = 1 for all aeL. If a < b1, then a, 
b are said to be orthogonal and we write a Lb. Further we assume that if a, _L ay, 

/ 5~=f then \ / a, exists in L; and if a < b, then there is c _L a such that b = a v c. 
i 

A poset L satisfying the above axioms is called a logic. 
We say that a,beL are compatible written (a<-»b) if there exist mutually 

orthogonal elements au bu ceL, such that a = ax v c, b = bx v c. 
An observable is a map x: B(R ') -• L such that (i) x(R]) = L, (ii) if En F = 0 

then x(E)±x(F), (iii) x( ( J E-\ = y x(E,) if E,nEj = 0, / *-/ I f / i s a Borel 

function and x is an observable, then / o x : £ - > x(f~](E)), EeB(R]) is an 
observable. Two observables x, j are compatible (written x «-»>>) if x(E)<-+y (F) < 
for E,FeB(R]). The spectrum a(x) of an observable x is the smallest closed 
subset A of I?1 such that x(A) = 1. An observable x is bounded if o(x) is a 
bounded set. 

A state is a map m: L -* [0,1] such that (i) m(I) = 1, (ii) m ( y aj = £ w(a,) 

if a, ± a7, / 7-=/ A system M of states of L is called (i) quite full if the statement 
m(b) = 1, whenever m(a) = 1, meM implies a < b, (ii) full if a < b iff 
m(a) < m(b) for all meM. G u d d e r [2] showed that if M is quite full, then 
M is full. We call the probability measure mx(-) = m(x(-)) on B(R]) the 
distribution of .x in the state m. The mean of .x in the state m if it exists is 

JL Xmx(áX). 

The sum of bounded observables has been studied by G u d d e r [2, 3, 4]. 
In [2, 3] there is given the definition of the sum of unbounded observables. 
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D v u r e c e n s k i j and P u l m a n n o v a [1] showed that this definition does 
not include the important case of a logic L(H), (H Hilbert space, 
3 ^ dim H ^ K0). In the following we shall suppose that a couple (L, M) is a 
sum quantum logic in the sense of D v u r e c e n s k i j — P u l m a n n o v a [1], 

Definition 1. We shall say that on a sum logic (L, M) the observab/cs x,,..., xk 

are regular if 

^ v ,\k = {/nEM: E"\ < oo, / = 1, ...,k} is a full system. 

The set of all regular systems x = (x,, ...,xA) of observables will be denoted by 
Ok. All systems of bounded observables are regular [1]. Let A = (x,, ...,xk) be a 
system of observables on a sum logic (L, M) and let xeOk. Then the observable 

A 

£ a, Y, exists for all ae Rk, a = (a,,..., ak). We shall use the following notation. 
/- / 
For a,beRk, (a,b) will denote the inner product in Rk and ae Rk and xeOk, 

k 

(a,x) = £ tf.Y.if a = (a,,...,ak). 
i - 1 

Definition 2. We say that xeOk has joint distribution of type 2 if there is a 
measure pm on B(Rk) such that 

pi;i(co:(a,co)eE) = mu")(E) 

for all aeRk and EeB(Rl). 
By the Cramer-Wold theorem, if the joint distribution exists, it is unique. Joint 
distributions of this type were introduced by U r b a n i k [5] and they were 
studied by U r b a n i k [5,6], G u d d e r [2,3] and V a r a d a r a j a n [7]. 

By fim w e w i " denote the characteristic function of L/„x, and byx m{ux) we will 
denote the characteristic function of the measure mUKX)(-). By D e f i n i t i o n 2 
we have 

(1) fiXt) = m«*Xl), 

where teRk. Given xeOk, we shall denote by M(x) the set of all states m for 
which pm exists. Let y be a system of compatible observables. The observables 
>',, / = 1, ...,k are compatible if and only if there is an observable JY and Borel 
funct ions/ , / = 1, ...,k, such that y, =f°u [4]. 
If >>£#£, then >>, + ... +>>A = (/, + ... + / ) u, [1]. M(x) = M if and only if x 
consists of compatible observables [2, 3, 7]. 

Definition 3. Let xeOk. We say that x fulfils the probabilistic commutation 
condition if there exists a system yeOk consisting of compatible obsevables such 
that 

Mm = M,» for all meM(x). 
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Let a = {a],...,ak), afeR\ a,^ 0, b = {px, ...,pk), PeR\ i=\,...,k, 
x = (x,, ...,xk), xeOk. We shall use the notation 

ax + b = {alx] + p],...,akxk + pk), 

where a,x, + /?, will denote the observablesyx = f o xt andf(u) = atu + PhueRx. 

Since E% x = f{u)mx{du) [4] we have: if xeOk, then ax + beOk. Let t = 
JR' 

= (f,,...,/*), t;ER\ i= \,...,k, at = {axtu...,aktk), {t,ax + b) = {at,x) + {t,b). 
It is evident that m{r){t*ax + h) = e

it{tMm{T){^x) for meM. For every meM{x) we 
have (1), consequently fi„+h{t) = el(t,h)fi^{at). We have the following lemma. 

Lemma 1. If a = (a,,..., ak)eRk, af ̂  0,j = 1, ...,k and beRk, then xeOk if 
and only if ax + beOk and M{x) = M{ax + b). 

Lemma 2. If a = (a,,..., ak)eRk, a} ̂  0,j = 1, ...,k, beRk andxeOk, then x 
and ax + b fulfil or do not fulfil the probabilistic commutation condition simul
taneously. 

The proof is obvious. 
Theorem 1 is the generalization of the (L,M) U r b a n i k — T h e o r e m 

[6, Theorem 1]. K. Urban ik considers a situation in a Hilbert space H. In 
the proof of Theorem [6] the spectral theorem is used. In this paper in
stead of the spectral theorem we introduce a system consisting of compatiable 
observables directly. 

Theorem 1. Let xeOk and x consists of one side bounded observables with a 
purely point spectrum. Then x fulfils the probabilistic commutation condition. 

Proof. If M{x) is empty, then our assertion is obvious. We assume that 
M{x) is non-empty. Let E} be the spectrum of xj9 j = \,...,k. By Lemma 2 
we may assume that £) contains positive numbers only. The probability measure 
mXj{-) is concentrated on the set Ej for every meM. Let E = /?, x E2 x ... x Ek. 
Gudde r [2] showed that if M is quite full, then if leL, 1^0, there exists 
meM such that m{l) = 1. Consequently, for any ae Rk the probability measure 
m(a'x){') is concentrated on the set {a,E) = {{a,e): eeE)meM [3]. 

Let F be the subset of Rk consisting of all elements a = {ax,..., ak) with 
linearly independent coordinates ax,..., ak over the denomerable field generated 

k 

by the set (̂ J Ej. It is clear that Pis dense in Rk. Moreover, for #eF the mapping 
j = i 

e -> {a, e) from E onto {a, E) is one-to-one. Let {a, e) e {a, E). By Definition 2 we 
have 

f£(a>: {a, co) = {a, e)) = m{ax){{{a, e)}). 

However, for every meM{x) the joint probability distribution //^ is con
centrated on the set E [2] and for every a e F the mapping e -> {a, e) is one-to-one, 
and we have the formula 
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(2) rf,({e}) = m^)({(a,e)})(meM(x), eeE, aeF). 

Since Fis dense in Rk we can find an element be Fwith positive coordinates. Let 
y = (b,x), y is the observable with a purely point, positive spectrum. We shall 
define z, which is concentrated on the set Et\ let eeE, e = {£,, ...,sk}, 

-,({-,})= V y({(b,e)}), SjeEj. 

This z; is an observable. Indeed if s^s], then y({(b, e)}) _L y({(b, e)}) and 
e = {..., £,,...} e' = {..., s], ...} 

V y({(b9e)})± V y({(^')}), Z / U ^ - V ^ A ) 
eeE eeE \ k J k 

«•=-{.... *,....! t-' = ! . . . . C ; . . . . ! 

where £, n Bm = 0, / y- m, BkeB(R]),k= 1, ...,z /(/^1) = / . 
We will show that zx++zr i ̂ j, i,j = I, ...,k. Let / < j , £,G£,-, E]eEr 

z.(tø}) = V v({(l>,<?)})v V ->'({(!>,<>)}) 
eєE eеE 

«' = í - - * / *,--! e = J....,;, ,7^v: 

*,-({*,}) = V y({^^)})v V y({(^)}) 
eєE eеE 

ť = '••••c' V " ' e= !....//•' * /:. єr...\ 

where z"^eEt and e7-
W/) ̂  srj = 1, ...,k. Since zi<r->zj then 0r,z,<-> ĉ z,-, /,j = 1,... 

...,k[4]. 
We will prove that z = (z],...,zk)eOk. 

E?2=lt(b,e)2m*({{b,e)}). 
e<=E 

Since xeOk then bx = (b,x,, ...,bkxk)eOk [1]. By D e f i n i t i o n 1 we have 
E"i< cc for any meMvz* Mhx= Mx. We can find b = b*eF, such that 
^(L^^j=l,...,k. 

£ " = Z tf™y({(b9 e)}) if £}' < oo 
r / eeE * zi 

U b = b* and m e M v , then E"j < ££ < oo, j = 1, ...,fc. Since A/Y is full then 
"/ 

zeOk. We have 

i -?;- = i z - w ( v jt({(6.̂ )})) = 
/ = 1 / = 1 e-e£. \ eeE / 

e = {....cj....) 
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= ll(a,e)m*({(b,e)}) 
eeE 

for every meMx, b = b* and aeRk. 
The spectrum of (a,z), a(a,z) = {(a,e): eeE} and 

(a,z)({(a,e)})= V y(i(b9e)}) 
eeE 

(a, e) = (a, e') 

for every aeRk. 

Consequently, by (2) m(fl'r)(r) = £ ^'Vmtffc)}) f o r e v e r y ^eM(jc), ae/v*. It 
eeE 

is easy to see that fim(Ta) = m(ax)(T) for every me M(x), TeR\aeRk and by the 
formula fim(Ta) = Y,eiT{a*e)nm({e}) we have ra(tf,r)(r) = m^X)(T) for every meM(x) 
and aeRk. This yields the equation /i* = pm for all meM(x), which completes 
the proof. 

Q.E.D. 

Remark . Theorem 1 may be proved for the definition of a sum of ob-
servables in the sense of G u d d e r [2, 3, 4], 
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СОВМЕСТНОЕ РАСПРЕДЕЛЕНИЕ И СОГЛАСЕ НАБЛЮДАЕМЫХ 

НА ЛОГИКЕ 

Е\уа С г к ш 1 а т а п с 

Резюме 

К. Урбаник в [6] доказал теорему о существовании для некоторой системы наблюдаемых 
в пространстве Гильберта, которая имеет одно и тоже совместное распределение. В данной 
работе этот результат обобщается на логику. 
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