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JOINT DISTRIBUTIONS AND COMPATIBILITY
OF OBSERVABLES IN QUANTUM LOGICS

EWA CZKWIANIANC

In the paper presented the joint probability distribution in the Urbanik sense
on a logic will be studied. A relation between the existence of the joint probabil-
ity distribution and the existence of compatible.observables will be shown.

Let L be a poset with the first and the last element 0 and 1, respectively, with
the orthocomplementation L: L — L, for which we have (i) (a*)* = a for all
aelL, (i) if a < b, then b* < a* (iii)a v a* = I forallae L. If a < b*, then q,
b are said to be orthogonal and we write a L b. Further we assume thatif ¢, L q;,

i # j, then \/ a;exists in L; and if a < b, then thereis ¢ L asuch thatb =a v c.

A poset L satisfying the above axioms is called a logic.

We say that a,be L are compatible written (a < b) if there exist mutually
orthogonal elements a,, b,, ce L, such thata=a, v ¢, b=b, v c.

An observable is a map x: B(R') — L such that (i) x(R") = L, ii))if EnF =0

then x(E) L x(F), (iii) x(U E,-) = \/x(Ei) if ENE =0,i#j If fis a Borel

function and x is an observable, then fox:E — x(f~'(E)), E€ B(R'") is an
observable. Two observables x, y are compatible (written x <> y) if x (E) <>y (F) .
for E, Fe B(R'). The spectrum o(x) of an observable x is the smallest closed
subset 4 of R' such that x(4) = 1. An observable x is bounded if o(x) is a
bounded set.

A state is a mapm: L — [0, 1] such that (i) m(1) = 1, (ii) m(\/ a,) =Y m(a)
if a; L a;, i # j. A system M of states of L is called (i) quite full if the statement
m(b) =1, whenever m(a) =1, meM implies a<b, (i) full if a<bd iff
m(a) < m(b) for all me M. Gudder [2] showed that if M is quite full, then
M is full. We call the probability measure m*(-) = m(x(-)) on B(R') the
distribution of x in the state m. The mean of x in the state m if it exists is

Em"= f Am*(dA).

The sum of bounded observables has been studied by Gudder [2, 3, 4].
In [2, 3] there is given the definition of the sum of unbounded observables.
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Dvurecenskij and Pulmannova [I] showed that this definition does
not include the important case of a logic L(H), (H Hilbert space,
3 <dim H < X)). In the following we shall suppose that a couple (L, M) is a
sum quantum logic in the sense of Dvurecenskij—Pulmannova [l].
Definition 1. We shall say that on a sum logic (L, M) the observables x,, ..., x,

are regular if

M, ., ={meM: I“'” < oo, i=1,....k} is a full system.
The set of all regular systems x = (x, ..., x;) of observables will be denoted by
O, . All systems of bounded observables are regular [1]. Let x = (x,,...,.x;) be a
system of observables on a sum logic (L, M) and let xe O,. Then the observable
A

Y a,x, exists for allae R*, a = (a,, ..., @). We shall use the following notation.

1 —1
For a,beR‘, (a, b) will denote the inner product in R* and ae R* and xe O,

(a,x) = Z ax ifa=(a,...,«a).
=1

Definition 2. We say that xe€ O, has joint distribution of type 2 if there is a
measure p), on B(R*) such that

/’l!l‘l(a): (a, a))eE) = ’"(u \i(E)

for all ae R* and Ee B(R").
By the Cramer-Wold theorem, if the joint distribution exists, it is unique. Joint
distributions of this type were introduced by Urbanik [5] and they were
studied by Urbanik [5,6], Gudder [2,3] and Varadarajan [7].

By /i, we will denote the characteristic function of g, and byx m“ " we will
denote the characteristic function of the measure m'“*(-). By Definition 2
we have

() fin(t) = m" (1),

where 1€ R*. Given xe O,, we shall denote by M(x) the set of all states m for
which y,; exists. Let y be a system of compatible observables. The observables
y,i=1,...k are compatible if and only if there is an observable x and Borel
functions f,, i = 1, ..., k, such that y, = fiou [4].
IfyeO,, then y, + ... + y, = (fi + ... + fi) u, [1]. M(x) = M if and only if x
consists of compatlb]e observables [2, 3, 7]

Definition 3. Let xe O,. We say that x fulfils the probabilistic commutation
condition if there exists a system y € O, consisting of compatible obsevables such
that

Wy =) forall me M(x).
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Let a=(a,...,a), @eR', a#0, b=(B,....B), BeR', i=1,..,k,
x = (xy, ..., x;), x€0,. We shall use the notation

ax + b= (ayx, + B, ..., qx, + B,
where a,x; + B, will denote the observables y, = f;o x;and fi(u) = aqu + B,ue R".
Since Eﬂ = '[ Sf(u)m*(du) [4] we have: if xe O,, then ax + beO,. Let t =
R

=(t,...4), LteR i=1,... .k, at = (t,,...,a 1), (t,ax + b) = (at, x) + (¢, b).
It is evident that #1(7) = *» = ™M (1)) for me M. For every me M(x) we
have (1), consequently 4% **(r) = """ jix(at). We have the following lemma.

Lemma 1. Ifa = (a,,...,q)€R*, o, # 0,j=1,....,k and be R, then xe O, if
and only if ax + be O, and M(x) = M(ax + b).

Lemma 2. Ifa = (a,...,)€eR" o, #0,j=1,....k, be R* and x € O,, then x
and ax + b fulfil or do not fulfil the probabilistic commutation condition simul-
taneously.

The proof is obvious.

Theorem 1 is the generalization of the (L,M) Urbanik—Theorem
[6, Theorem 1]. K. Urbanik considers a situation in a Hilbert space H. In
the proof of Theorem [6] the spectral theorem is used. In this paper in-
stead of the spectral theorem we introduce a system consisting of compatiable
observables directly.

Theorem 1. Let xe O, and x consists of one side bounded observables with a
purely point spectrum. Then x fulfils the probabilistic commutation condition.

Proof. If M(x) is empty, then our assertion is obvious. We assume that
M(x) is non-empty. Let E; be the spectrum of x;, j=1,...,k. By Lemma 2
we may assume that E; contains positive numbers only. The probability measure
m™(-) is concentrated on the set E, for every me M. Let E = E, x E, X ... x E,.
Gudder [2] showed that if M is quite full, then if /e L, | # 0, there exists
me M such that m(/) = 1. Consequently, for any a€ R* the probability measure
m“¥(.) is concentrated on the set (a, E) = ((a,e): ec Eyme M [3].

Let F be the subset of R* consisting of all elements a = (q,, ..., @) with
linearly independent coordinates ¢, ..., , over the denomerable field generated

k
by the set | ) E,. It is clear that Fis dense in R*. Moreover, for a € F the mapping
j=1
e—(a,e) Jfrom E onto (a, E) is one-to-one. Let (a, e) € (a, E). By Definition 2 we
have

,u,f,((o ((1, o) = (a,e)) = m(a.x)({(a’ e)})

However, for every me M(x) the joint probability distribution u;; is con-
centrated on the set E[2] and for every a € F the mapping e — (a, €) is one-to-one,
and we have the formula
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(2 Hn((e}) = m“?({(a, e)})(me M(x), e€ E, ae F).

Since Fis dense in R* we can find an element b € F with positive coordinates. Let
y = (b, x), y is the observable with a purely point, positive spectrum. We shall
define z; which is concentrated on the set E;: let e€ E, e = {g,, ..., &},

z,({g,}) = \/L y({(bs e)})’ 6_‘,-6 E/

¢= :....cl-....:

This z; is an observable. Indeed if ¢ # g/, then y({(b,e)}) L y({(b,€")}) and
e={..,¢....}e={. ¢, ..}

Vo ydb.e) L \/b y((b, e}, :’<LA) BA):\/:’_/(Bk)

ceE
e=...&....} =16

where BN B, =0,/#m, B.e B(R"), k=1,....,;(R") = I.
We will show that -,z i #j,i,j=1,....k. Leti </, g€ E,, §€E,.

cekE ceE

A ) . ,
O bl €=t ] FEL

z({e)) = Vo yde.eh) v \V y({(b.e)})

ceE

¢ = :....EI. W.I,‘,. ey

m
™

zdeh =/ @by N/ ydk.e)

where g_,‘"")eE, and a,("” #¢,j=1,....,k. Since z;> z; then gz, .2, i,j = 1, ...
.,k [4].
We will prove that z = (z,,...,2,) € O,.

El =) (b.eym'({(b,e)}).
ceE
Since x€0, then bx = (b,x,,...,b,x;,)€O, [1]. By Definition 1 we have
v < oo for any meM o> M, =M, We can find b= b*eF, such that
g <(b* el j=1,..,k.

E% =3 gm'({(be)}) if Er <o

ceE .
If b=b* and me M, then E% < E < o0, j=1,...,k. Since M, is full then
ze O0,. We have

SEr =3 Sagm( W 6en)-

j=1 Jj=1 r,,-eE/ ceE
!

Eivnl)

e=1...8
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= ZE(a, e)ym’({(b, e)})

for every me M, b = b* and ae R*.
The spectrum of (a, z), o(a,z) = {(a,e): e€e E} and

(a,2)({(a,e)}) = \/E y((b,0)})
(a.e) = (a.¢")

for every ae R*.
Consequently, by (2) m'*?(1) = Y e™“us({(e)}) for every me M(x), ae R*. It

eecE
is easy to see that fi(ra) = W (1) for every me M(x), te R', ae R* and by the
formula £i*(ra) = X ey ({e}) we have m“I(1) = m“ (1) for every me M(x)
and ae R*. This yields the equation y? = y* for all me M (x), which completes
the proof.
Q.E.D.

Remark. Theorem 1 may be proved for the definition of a sum of ob-
servables in the sense of Gudder [2, 3, 4].
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COBMECTHOE PACHPEAEJEHUE U COT'JIACE HABJIKOAAEMbIX
HA JIOFMKE

Ewa Czkwianianc
Pe3some
K. Ypb6aHuk B [6] noka3al TEOPEMY O CYLIECTBOBAHUH /ISl HEKOTOPOMH CHCTEMbI HaBI101aeMbIX

B npocTpaHcTBe ['MabdepTa, KOTOpas UMeEET OHO M TOXE COBMECTHOE pacnpenesieHue. B nanHoii
paboTe ITOT pe3yabTaT 0600LAeTCS HA JIOTHKY.
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