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RIEMANN AVERAGE TRUTH-VALUE 
OF LUKASIEWICZ FORMULAS 

V I N C E N Z O M A R R A * D A N I E L E M U N D I C I * * 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. We give a purely algebraic necessary and sufficient condition for a 
finitely additive measure on a finitely generated free MV-algebra to coincide with 
the Riemann integral. 

1. Preliminaries: states, spectra, bases 
and statement of main results 

Intuitively, a finitely additive measure in Lukasiewicz infinite-valued propo-
sitional logic is a method to measure the average truth-value (p of any formula 
ip. Since ip must only depend on the meaning of </?, any such averaging map ~ is 
defined on Lindenbaum algebras of formulas, i.e., on MV-algebras. In [6] finitely 
additive measures on MV-algebras were investigated using the following termi
nology: 

A state of an MV-algebra A is a function a: A -> [0,1] such that 

(i) (7(0) = 0 , 

(ii) (7(1) = 1, 

(iii) for all a, 6 G A if a 0 b = 0, then a (a) + a(b) = a(a 0 6) 
(Additivity). 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06D35; Secondary 03B50, 26B15, 
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For applications to M^ -algebraic probability theory see the hai dbook c lapter 
[11] and references therein. As a notable example of a state, the integral can 
be naturally defined on ever} free MV-algebra, once the latter is concretel 
re\ lesented as an algebra of McNaughton functions (see [6]). 

Our purpose in this paper is to gi\e a purely algebraic characterization of 
integral, among all pos ible states of the free n-generated MV algebra Fiee . 
We refer to [1] for background on MV-algebras. 

NOTATION. For any MV-algebra A we shall denote by M(\) its m . inir 
ideal space. M(A) come, equipped vith the spectral topolo v: a basis of los 1 
sets for M(A) is given by the zero-sets Za of all elements a G 4 , i.e., b\ the 
sets Za — {J G M(A) : a G J } for arbitrary a G A. As is \ ell known. M A 
is a nonempty compact Ha I dorff space. 

For any compact Hausdorff space X we denote by C(X) t K MV abcbiv 
all continuous [0, l]-\alued f mctions on X vith pointwise opeiations. 

As usual, V denotes the categorical equivalence between MV-alg 1 la nd 
abelian lattice-oidered groups with (strong) order-unit ([4]. [1 ). 

The d-disk Vd is defin d by Vd - {(xv . . . , d) G Rd : £ > * 1} . eq ipp d 
with the natural topolog of Rd , d — 1,2,3 . . . . By V° \ e understand t i e 
discrete topological space with one element. 

Our algebraic characteiization of the Riemann integral will be gi\e l m term 
of the following definition: 

DEFINITION 1.1. A ba is in an MV-algebra A is a set B {b n b } of 
non/ero elements of A, together with integers 0 < ral9..., m ich that 

(I) B generates A, 
(ii) in the abelian lattice-ordeied group G with ordei unit 1 ucl that A 

u 

T(G, 1) we have Yl m A ~ ^ 
i l 

(iii) for e\ery k — 1,2,. . ,H, the one set of each fc-clu ter f B is lomco 
morphic to the disk Vk l . 

Heie, by a k -cluster of B we understand a k-element subset C B uc I that 
f\ b / 0; the one-set of C is the subspace of M(A) con I ting of n * xhml 

6 C 

id als J of A such that, in the quotient MV-algebra A/J, 0 n b J 1 . 
b C 

The integers mj are called the multiplicities of B 

L E M M A 1.2. 

(i) ([1; 1.2.10, 3.5.1, 7.2 6]) For any MV-algebra A and ileal I G M \ , 
there is an isomorph'sm 1^ of the [uotient \/I onto a in'q clj d t r-
mined subalgebra of [0, I] The isomorphism is un q^^e 
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(ii) ([1; 3.6]) If in addition, A is semisimple, the map A 3 a i-» a* £ [ 0 , 1 ] M ^ 
defined by a* (I) = I^(a/I) £ [0,1] is an isomorphism of A onto a sepa
rating subalgebra A* of C(M(A)); in other words, whenever I, J are 
distinct maximal ideals of A, there is a function a* £ A* such that 
a*(I)^a*(J). 

NOTATION. When dealing with a semisimple MV-algebra we shall tacitly iden
tify any element a £ A with its corresponding function a*: M(A) -» [0,1] by 
writing a(J) rather than a* (J) or a/J. 

PROPOSITION 1.3. Let B = {b3,..., bu} be a basis in a semisimple MV-al
gebra A with multiplicities mA,..., mu. Then mi = 1/maxb^ for each i = 
1 , . . . ,H. The maximum value maxb^ is attained by bi at precisely one point in 
M(A), namely the only element Ii in the one-set of the 1-cluster {b^}. 

P r o o f . Let (C7,1) correspond to A via F . Direct inspection using 
Lemma 1.2 shows that G is the lattice-ordered group of real-valued functions 
over M(A) generated by A. Each bi £ B belongs to G. The one-set of the 
1-cluster {b^} is the singleton {lt} C M(A), with ra^(JJ = 1. Since we 
also have J2mjbj(I) = 1, then all b- 's with j ^ i must vanish at Ii. Thus 

3 

m- = l /b 2 ( J J . One nowr easily checks that b^(Jj is the maximum value of b{, 
and that this value is attained only at Ii (for otherwise, B would not separate 
points of M(A); since B generates A, the latter, too, would not separate points, 
against Lemma 1.2). • 

The proof of the following proposition shall be given in the next section; as 
usual, for any elements a, b £ A, a © b stands for a 0 -i&: 

PROPOSITION 1.4. Let B = {&i,---,&w} be a basis in Freen with multi

plicities m1,... ,mu. Let {b^,b7} be a 2-cluster. Let D be obtained from B 

by removing b- and b- and adding the three elements b\ = bi 0 (b̂  A b). 

bi — b-Q(b-Ab-) and bA = b-Ab-. Then D is a basis in Free^ . The multiplicities 
j j v i j 7 i J n 

of D are as given by Proposition 1.3 
NOTATION AND TERMINOLOGY. The above transformation B i-> D is 
known as the binary starring of B at {bilb•}. We write E ^* D to mean 
that E is obtained from the basis D via a finite sequence of binary starring 
operations. The above Proposition 1.4 ensures that E is a basis. 

Our main result is as follows: 

THEOREM 1.5. For each n = 1, 2, 3 , . . . . precisely one state c; of Freen satis
fies the condition 

(VB)(3D ±* B)(VE ±* D)(\/h £ E)U(h) = - ^ £ fj m a x A,) , (1) 
V C£E(h)k£C 7 
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where E{h) is the set of maximal clusters C of E such that h C. 
To evaluate s, arbitrarily choose a free generating set S of Free and a 

one-one map (3 of S onto the set {£1, ••- ,£„} of projection functions 
£>i: [0, l ] n -> [0,1]. Let~ : Freen —r C([0, l]n) be the canonical homomorphism 
extending f3. Then for each f G Freen 

< > ( / ) = / / , 2) 

[o,i]» 

independently of the choice of S and (5. Thus in particular, <; is invariant mde 
all automorphisms of Freen , and is faithful, i.e., 

( V / G F r e e J ( / > 0 = » ?(/) > 0); 

further, c;(/) is a rational number, and so is lim q{f 0 • • • / ) . 

n times 

Remark. In the light of (2), the state c. is called the Riemann integral o 
Freen . 

2. The proofs 

Background on Schauder bases and unimodular triangulations. 
([1; 9.1 2]) Let S be a rational simplicial complex o\er some closed subspac^ 
W of [0, l ] n . In other words, IV is the point-set union of the simplexes in S. 
We also say that W is the support of S. The rationality of S means that the 
coordinates of every simplex in S are rationals. Let v be a vertex of S. Tl en 
v = {T1/S11. . .:rn/sn) for uniquely determined integers r?, s? > 0 such that 
si ^ 0 and ri and si are relatively prime. The least common multiple of the set 
{s{} is called the denominator of v, written den(t>). Passing to homogeneo is 
coordinates, we obtain the integer vector 

v = ( ^ 1 , . . . , ^ r „ , d e n ( , ) ) 6 Z " + 1 . 3 

Let S be an m -dimensional simplex in S with vertices v0,. .. ,vTl, 0 < 

m < n. For each j = 0 , . . . , m let us again wrrite v = {r\/s\,..., r n / V ). with 

r\ and s\ relatively prime integers > 0, and s\ / 0. By definition, wiiting i 

in homogeneous coordinates, we obtain the vector v- = {w{, .. , wJ
n, d(ii(r )) 

Z n + 1 , where the w\ are suitable integers > 0 as in (3) above. We say that S is 
unimodular iff the set of integer vectors { v 0 , . . . , v m } is extendible to a basis of 
the free abelian group Z n + 1 . A rational simplicial complex S o\er W is said to 
be unimodular iff all its simplexes are unimodular. In this case we also sav tl at 
S is a unimodular triangulation of W. Unimodular triangulations are the affine 
counterparts of nonsingular fans in toric algebraic geometry ([2], [7]). 
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The Schauder hat at vertex v in a unimodular triangulation S over WC [0, l ] n 

is the uniquely determined continuous piecewise-linear function hv : W -> [0,1] 
that takes the value l/den(U) at U, vanishes at all other vertices of <S, and is 
linear (in the affine sense) on each simplex of S. We denote by Bs the set of 
Schauder hats of S. 

LEMMA 2 .1 . Let S be a unimodular triangulation with support W C [0, l ] n . 
Let Bs denote the set of Schauder hats of S. Let us identify Freen with the 
MV-algebra M of all McNaught on functions over the n-cube as in [1; 9.1.5]. Let 
M\w denote the MV-algebra of restrictions to W of the McN aught on functions 
of M. We then have: 

(i) For every vertex v G S, hv £ M\w ; 
(ii) A function f £ M\w belongs to the monoid mon(Bs) generated by Bs 

in M | w iff it is linear over each simplex of S ; 
(iii) Bs is a basis in M\w ; 
(iv) The MV-algebra generated by Bs in M\w coincides with M\w . 

P r o o f . 

(i) This follows from a routine argument, to the effect that S can be extended 
to a unimodular triangulation of the whole n-cube. 

(ii) This is an immediate consequence of the unimodularity of S. 

(iii) This follows immediately from Definition 1.1. 

(iv) Let / G M\w T n e s a m e argument of [5; 1.2] yields a unimodular 
triangulation T over W such that / is linear over each simplex of T. A further 
argument ([1; 9.2]) using the De Concini-Procesi Lemma ([2; Lemma 2.3]) on 
elimination of points of indeterminacy in toric varieties yields a unimodular 
triangulation U such that every simplex of T is a union of simplexes of U and, 
in addition, 

BU±*BS. (4) 

(see [9; p. 569] for an elementary MV-algebraic proof of the De Concini-Procesi 
Lemma). Since by (ii) / belongs to mon(JB : r), it follows that / belongs to 
mon(J?w), whence a fortiori / belongs to the MV-algebra generated by Bu. 
By (4), Bu and Bs generate the same MV-algebra. Since / is arbitrary, we 
have the desired conclusion. • 

Remark . The set Bs determined by the unimodular triangulation S over W 
is said to be a Schauder basis of M | w. For n > 2, an automorphism a of M 
may transform a Schauder basis Bs into a set cv(Bs) C M which no longer is 
a Schauder basis. However, direct inspection shows that a(Bs) is still a basis 
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of M. Definition 1.1 and Lemma 2.1 (iii) show that bases are an "invariant" 
generalization of Schauder bases.1 

P r o o f of P r o p o s i t i o n 1.4 . By McNaughton theorem ([1; 9.1.3]) we 
can safely identify Freen with the MV-algebra M of McNaughton functions 
over the II-cube [0, l ] n . We similarly identify the free MV-algebra Free^ with 
the MV-algebra jV of McNaughton functions over the H-cube, and we choose 
the projection functions 7r1 , . . . , TTU : [0, l]u —> [0,1] as the free generators of N. 

Let the homomorphism 
rl: N -> M 5 

be the canonical extension of the map ni i-> bi (i = 1 , . . . , u). Then rl is onto M. 

because B generates M. Let the transformation b: [0,1]™ —r [0, l ] u be defined 

by 

biz^ib^z),...^*))- (6 

Denote by X the range of b, and observe that X is a compact subset of he 
H-cube. Actually, X is the union of finitely many simplexes with rational \er-
tices. Further b is injective, for otherwise (the functions bi in) B would not 
separate points in the n-cube, and hence also the MV-algebra M generated by 
B would not separate points, a contradiction. We then see that b is a homeo-
morphism of the n-cube onto K, in symbols, 

6 : [ 0 , l ] n * - X . (7 

The homomorphism N3f\->fobeM agrees with rj on the ni 's; thus 

v(f) = / o 6 for all / e N. 8 

Let N\x denote the MV-algebra of restrictions to X of the McNaughton func
tions of N. Define the homomorphism 9: N\ Y -» M by 

9: g M> g o b. (9 

Letting %: / i-> f\x be the restriction homomorphism, by (8) we can write 

f] = e o X . (io) 

Direct inspection shows that 9 is surjective (because so is 77) and is injective: 
indeed, if g G N\x is nonzero at y G I , then by (7) (9), 9(g) is nonzero at 
b~l(y). Therefore, we have an isomorphism 

9:N\X^M. (11 

^ e e [10] for nontrivial automorphisms of Freen , already in the case n = 2. An invariant 
notion of basis was first introduced by the first author in his Ph D thesis. The present definiti n 
was introduced in C Manara 's Ph D thesis. The equivalence of the two definitions is essentially 
proved in [3], in the framework of lattice-ordered groups. 
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By (9) every element bi G B is mapped by 9~l to the restriction to X of the 
zth coordinate function of jN, in symbols, 

0-1'-bl^b'l = ^l\x. (12) 

Letting B' = 9~l(B) = {b[,... ,b'u} from (11) it follows that B' is a basis in 
N\ Y with the same multiplicities m 1 ? . . . , m n as B. The clusters of B' are the 
9~l-images of the clusters in B. 

Focusing now attention on the maximal spectral spaces of M and of N\x, 
by (11) we also have a (canonical, dual) homeomorphism 

0: M(M)^M(N\X). (13) 

Specifically, for each maximal ideal 7 of M , 

0(I) = {0-l(f): fel}. (14) 

We shall need a more concrete representation of 9. To this purpose let us recall 
([4; 8.1], see also [1; 3.4.7]) the canonical homeomorphisms \i\ [0, l ] n = M(M) 
and v\ [ 0 , l f =" M(N) given by ji(z) = {/ G M : f(z) = 0} and v(y) = 
{g ' N \ g(y) = 0 } . One has a similar homeomorphism v'\ X = M(N\X) 
given by v'(y) = {g G N\x \ g(y) = 0 } . Recalling (7), the composite map 
v' o bo\i~x yields a homeomorphism of M(M) onto M(N\X), and a moment's 
reflection using (14) shows that 

9 = v' o b o t z " 1 . (15) 

To increase readability it is convenient to assume that // and v' are identity 
functions; via the identifications 

[0,l]n = M(M), X = M(N\X) (16) 

the quotient map at a maximal ideal boils down to evaluation at its correspond
ing point. Then (15) becomes 

9 = b. (17) 

The one-set lc of any cluster C of B is tacitly identified via \i with the closed 

subset of [0, l ] n given by \z G [0, l ] n : Yl mfi^z) = l \ . Similarly, for any 
1 bi£C J 

cluster C in B' we can write 

lc, = {xeX: - mtb'i(x) = l}. (18) 
^ b^ec J 

Let (G, 1) be the lattice-ordered abelian group with order-unit 1 such that 
jV| Y = T(G, 1). Direct inspection shows that (G, 1) is the lattice-ordered group 
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of real-valued functions over A" generated by jV| x , with the con tant 1 as th 
strong unit. From our assumption about B, recalling [4; 3.2, 3 3] and 12), it 
follows that the sum (in G) of the functions m b[ is constantly equal to 1 over 
A", in symbols, 

mlb[(x) + h mub'u(x) = m17i1(x) -\ \- mu7ru(x) = 1 for all r G Y . 
(19 

Thus X is contained in the affine hyperplane L given by 

L= {(xv...,xu)eRu : m1x1 + --- + muxu 1} . 20 

CLAIM 1. Let C = {bli,...,blr} be a cluster of B. Let l c C [0,1] denot 

the one-set of C. Then the one-set b(lc) of C = 9 l(C) coincides with th 

set {x E X : mi xi + • • • + mi x} = l} . 

As a matter of fact, from (15) (16) we ha\e 

b(lc)-{xeX: 7iili7Tli(x) •••©m,. r7r ? . r(x)-l}. 

On the other hand, by (19) (20) we can write 

mг,Xi, ® • • • muXir = 7ПiгXП + • • • + mгT

X,r 

all o\er X 

CLAIM 2. Let e 1 , . . . , e l i be the standard basis vectors of R \ For each i — 

L,. .. ,H. let the 1-cluster C- defined by Ci — {bt} . Let l c denote its one-set 

Then the one-set b(lc.) of the 1 -cluster C — 9 l (C-) coincides with {e m } 

Thus the point ei/mi lies in X. 

Indeed, by our identification (17) the one-set of {&•} is a singleton {z} n 

the n-cube. By Claim 1, b(z) is the only point x € X C L where -K{ takes value 

l / m ? , namely x = ei/mi. 

CLAIM 3. Let r = 2,3, . . . ,H . Then for every r-cluster C {b? , . . . , b } 

in B, the one-set b(lc) of the 1 -cluster C = 9 l(C) coincides with the convex 
hull 

[ e u / m ? i , . . . , e 2 7 m j 

of ilie vectors ci /mi , . . . , e% /m2 . Thus in particular [ei /ml , . . . , e2 m 
C A . 

The proof is by induction on r. 

Basis. 

Suppose {bi,bA forms a 2-cluster C of B. By Claim 1, b(lc) is the set Y 

{x £ X : mfii -f m-b' = l}. By (20), Y is a subset of the closed segment 
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[e./?n-, e / m ] . By Claim 2, both vectors ei/ml and e / m - belong to Y. If 
Y were a proper subset of [e2/mv e Jm ] , then it wxruld not be connected; 
since Y is homeomorphic to l c , the latter, too, would not be connected, thus 
contradicting the definition of B. 

Induction step. Let IV = \e- lm- .... ,e- lm- 1 . Let P — \b- , . . . , b- ) 
be a (r + 1)-cluster of B. A fortiori, every subset Q = {b. , . . . , b . } of P is 
a cluster of i? . By induction hypothesis, the b-image of the one-set lc is the 
r-simplex [e-jm • , . . . , e • / m • ] . Thus the b-image of the one-set lp is a suit
able subset Y C IV containing the union of all (r — 1)-dimensional faces of IV. 
Suppose Y is & proper subset of W (absurdum hypothesis). Write Y as W\U 
for a suitable nonempty subset U of the relative interior of IV. One then ver
ifies that the singular homology groups of IV \ U and IV are not isomorphic: 
W is shrinkable to a point, while IV \ U is not. See [8] for the appropriate 
computations. It follows that V, as well as its homeomorphic copy l p , are not 
homeomorphic to the r-disk Dr, thus contradicting the definition of B. Claim 3 
is settled. 

To conclude the proof, for every x £ X let b\ , . . . , b\ be the subset 
of B' given by those elements which are nonzero at x. Then mi b't- (x) + . . . 
+ mi b[ (x) = 1 and b'%- , . . . , b^ form a t-cluster of B'. It follows Ihat X is the 
union of the one-sets of all clusters C of B'; this is the same as the union of 
the b-images of the one-sets of all clusters C of B. Let Tc denote the b-image 
of one-set lc of C', in symbols, 

Tc = b(lc) = \ c , . (21) 

By Claim 3, Tc is a simplex in the H-cube. Further inspection of Ihe above 
construction shows that any two simplexes Tc and Tc intersect in a common 
face. Therefore, X is the support of the simplicial complex S determined by 
the simplexes Tc , letting C range over clusters of B. The vertices of (simplexes 
of) S are given by one-sets { e 1 / m 1 } , . . . , {eu/mu} of the 1-clusters of B'. 
Each { e / m } correspond via b to the one-set of {&•}. Direct inspeclion using 
Claims 1 3 shows that S is unimodular. By (21), its simplexes J\,..., Tm are 
in 1 — 1 correspondence with the clusters of B. 

Each projection TT{\X is linear over X, hence in particular ir^x is linear over 
each simplex T £ S. Further, each n^x attains its maximum value 1/m^ at 
the only point ejmi in the one-set of the 1-cluster {vr-| Y } , and vanishes at all 
other vertices. Thus, B' is a Schauder basis of N\x • We have shown that B is 
an isomorphic copy of a Schauder basis B'. 

Binary starring of B' at any 2-cluster {b^b'-} yields a new Schauder 
basis D'. (Compare with [1; 9.2].) The isomorphism 9 between 7V| K and M 
transforms the Schauder basis D' into a basis D ^* H, as required. • 
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Remark . It is instructive to explicitly give the multiplicities and the clusters 
of D, for these are the exact counterparts of the multiplicities and clusters of D'. 

X or.^1 h^r 
т K Thus, the multiplicities m\ and m'- of b] and bj respectively coincide with 

and m •; the multiplicity of bA is mi + m-. The remaining multiplicities are 
unchanged. The clusters of D are obtained as follows: 

(1) add the 1-cluster {bA}; 

(2) replace 1-cluster { b } by {bj}; more generally, replace every cluster C 

containing b. but not b- by the cluster C = (C \ {bj}) U {bj } ; 

(3) replace the 1-cluster {b?} by {b^} ; more generally, replace e\ery clu t r 

C containing b. but not bj by the cluster C = (C \ {b?}) U {b |} ; 

(4) replace the 2-cluster {b{,bA by the two 2-clusters {bA,bj} and {bf.b }; 

more generally, replace every cluster C containing {b^b } by the two 

clusters C = (C\ {bz, b^) U {bA, b]} and C" = (C\ {bz, b3}) U {b|, bA} . 
(5) leave unchanged all other clusters of B. 

P r o o f o f T h e o r e m 1.5. Let S = {g[,..., gn} be a free generating se 
of Free n . Let /?: gi i-> ^ , where ^ : [0, l]n -> [0,1] is the ith canonical projection 
(we reserve the notation n- for projections of the H-cube). Canonically extend 
13 to the homomorphism 

": Free„^e([0,lf). 

Then ~ is an isomorphism of Freen onto the MV-algebra M of McNaughton 
functions over the n-cube [1; 9.1.5]. Let ss *: Freen —> [0, 1] be defined by 

[0,1]" 

Direct inspection shows that ss a is a state of Free n . For the verification that 
<;s p satisfies (1) we can safely identify Freen and 71/, and also assume that S 
coincides with the set of projection functions, whence (3 is the identity map. Let 
B = {bx,..., bu} be an arbitrary basis in M. 

CLAIM 1. There exists a Schauder basis D <* B in M. 

As a matter of fact, let us write N instead of Free^, the latter being identi
fied with the MV-algebra of McNaughton functions over the H-cube. The proof 
of Proposition 1.4 yields a closed set X in the it-cube, which is the support 
of a unimodular simplicial complex <S, wmose elements are certain simplexes 
T-L, ... ,Tm] these simplexes are in 1 — 1 correspondence with the one-sets of 
clusters of B. B is the isomorphic copy of a certain Schauder basis B' = Bs 
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of A r | Y for some closed subset X of the H-cube. X coincides with the range of 
the transformation 

b:[0,l]nBx^(b1(x),...,bu(x)) G [ 0 , 1 ] U . 

The Schauder hats B[:..., B'u of Bs are the restrictions to X of the projection 
functions 7r1 , . . . , nu. The maximum value maxbj = l/mi is attained by b[ at the 
point x{ = ei/mi G X corresponding via b to the one-set of the 1-cluster {b-} . 
The isomorphism 9 sends each TTU\X into bi. The map b is a homeomorphism of 
[0, l]n onto A", and is also identified with the dual homeomorphism 9: M(M) = 
M(N\X). 

Let T be a unimodular triangulation of the n-cube such that each b? is linear 
over each simplex T G T. Existence of T is ensured by a routine argument [1; 
Proof of 9.1.2]. Then b transforms T into a unimodular triangulation b(T) 
over A". Unimodularity follows from b being the dual of the isomorphism 9. 
Using the De Concini-Procesi theorem as in [1; 9.2.3] there is a unimodular 
triangulation U of A such that every simplex of U is a union of simplexes of 
b(T) and, crucially, 

BU<*B' = BS. 

Since b A is linear over each simplex of b(T), a fortiori it will be linear over 
each simplex of U. Thus the image W = b~x(U) is a unimodular triangulation 
of the n-cube; every element h of Bw = 9(BU) is linear over each simplex 
of W, because 

(vfeN\x)(e(f) = fob). 
We ha\e found a Schauder basis D = Bw ^* 5 in A/, and our first claim is 
settled. 

CLAIM 2. Let D be as in Claim 1. Then for every E <* D and h G E we 
have 

,, x max h v-s -r-r / x 

^ ) = 7^TTV 2-< l l m a x ^ (23) 
v ; ' ceE(h)kec 

where E(h) is as in the statement of the main theorem. 

As a matter of fact, E is automatically a Schauder basis in M. The linearity 
domains of the hats of E determine a unimodular triangulation V such that 
E — Bv. Given the Schauder hat h G Bv, let vh G [0, l ] n be the only point 
where h attains its maximum value. We can write 

h(vh) = max/i = 1/ den(vh) . (24) 

Let A be the closure of the set {x G [0, l ] n : h(x) > 0 } . Then <>s p(h) is the 
volume vol(P) of an (n + 1)-dimensional pyramid P with base A, and whose 
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lateral faces are given by the graph of h\A. Let A1,..., Am C A be the list 
of all n-dimensional simplexes of V having vh among their vertices. For each 
t = 1 , . . . , m let Pl be the rectangular pyramid of height max h and base A*. 
Then vol(P) is the sum of the volumes vol(P^) of the P t ' s . Each Af is an 
n-dimensional simplex; say that the vertices of Af are given by vh, v\,..., vl , 
in symbols, 

^ = k.«!> •••>< ]• (-3) 
Just as vh is the maximum point of /i, all v\,..., vn are the maximum points 
of their corresponding Schauder hats h\,..., hn of Bv . We can write 

h\(v\) = max ft* = l / d e n ( f ; { ) , . . . , ^ ( ^ ) = maxtVn = l / d e n ( i £ ) . (26) 

Let Sl be the (n + 1)-simplex given by 

^ = [ 0 , K , 1 ) , ( ^ , 1 ) , . . . , « , 1 ) ] . (27) 

Then Sf is an (n + 1)-dimensional pyramid of unit height and base Zf, where 

z*=[K,l),(^,l),...,«,l)]. (28) 

S t is contained in the (n + 1) -dimensional parallelepiped it* C R n + 1 determined 
by the vectors {(vh, 1), (t^, 1 ) , . . . , (U*, 1)} . R} is in turn included in the paral
lelepiped Ql determined by the homogeneous correspondents (as given by (3)) 
v^, v * , . . . , v^ of the vectors vh, v\,..., vn. The assumed unimodularity of V is 
to the effect that Qf has unit volume. Now the vector (vh, 1) is obtained divid
ing v^ by den(i^) (recalling that den(U/l) coincides with the last coordinate of 
vh, and also with 1/max/i) . Similarly, by (26) 

(v\, l ) = max h\ • v* , . . . , (vn, l) = max hn-vn. (29) 

It follows that 
vol(P t) = maxft • max/i* • • -max/i^ . 

Elementary geometry shows that vol(S t) = vo l (P t ) / (n + 1)!; since by (25) 
and (28) the bases Af and Zl of the two pyramids Sl and Pl have equal area, 
their volumes are proportional to their respective heights 1 and maxtV Thus 

max h • max h\ • • • max hn 
vol(P*) = max/í • vol(5 ť) = max/i ' 

(n + 1)! 

Recalling that vol(P) = ^ vol(P^), we have proved (23), thus settling our 
second claim. t = ] 

CLAIM 3. The state $s * is uniquely determined by (1). 

As a matter of fact, suppose a state a: M —> [0,1] satisfies (1), with the 
intent of proving a = <;s Q. By way of contradiction suppose a(f) ^ qs 3(f) for 
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some / G M. By the De Concini-Procesi lemma together with Lemma 2.1 (ii) 
there exists a Schauder basis B, = {/^ . . . , lv} for M such that / is a linear 
combination of the l% 's with integer coefficients > 0, in symbols, / G mon(Z?,). 
By hypothesis there is D -<* B, such that, for all E ^* D and all h € E, a(h) is 
as in (23). Note that D, as well as any such E, are automatically Schauder bases. 
Thus a coincides with ss „ over all elements of any basis E <* D. Again by 
Lemma 2+ (ii), / is a linear combination of the hats of E with integer coefficients 
> 0, in symbols, / G mon(F) . Since o is additive, we infer a(f) — ^ ^ ( / ) , 
which is a contradiction. Our third claim is settled. 

We have proved the uniqueness of qs n. Different choices of S and /3 result 
in a state still satisfying (1). Thus we can unambiguously write c; instead of 
c,̂  o. It follows that c, is invariant under automorphisms. Recalling the elemen
tary properties of the integral and the definition of McNaughton function, one 
immediately verifies that ^ also has the remaining properties. • 

PROBLEM. Prove or disprove that the state c; of Theorem 1.5 satisfies 

max h 

(n + 1)! ^ = -^TTV £ П т а х ^ 
ceE(h) kec 

for every basis E of Freen and every h G E. 
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