
Mathematica Slovaca

Ján Jakubík
On intervals and the dual of a pseudo MV-algebra

Mathematica Slovaca, Vol. 56 (2006), No. 2, 213--221

Persistent URL: http://dml.cz/dmlcz/129979

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/129979
http://project.dml.cz


Mathematica 
Slovaca 

©2006 
.-.. --- /~~«^\ ... « «-^ ~~- Mathematical Institute 

Math. SlOVaCa, 5 6 ( 2 0 0 6 ) , NO. 2, 2 1 3 - 2 2 1 Slovák Academy of Sciences 

ON INTERVALS AND THE DUAL 
O F A P S E U D O MF-ALGEBRA 

J Á N JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. For each pseudo MV-algebra A we define the pseudo MV-algebra 
.Adual. We apply this notion for considering the system of intervals of a pseudo 
MV-algebra; the earlier results concerning intervals of MV-algebras are gen
eralized. For any pseudo MV-algebra there exists a one-to-one correspondence 
between internal direct product decompositions of A and internal direct product 
decompositions of AdnAl. 

I. Introduction 

The system of intervals of an MV-algebra has been dealt with in [9]. 
The notion of pseudo MV-algebra was defined independently by G e o r -

g e s c u and I o r g u l e s c u [5], [6] and by R a c h u n e k [11] (in [11], the term 
"generalized MV-algebra" was applied). 

D v u r e c e n s k i j [4] proved that for each pseudo MV-algebra A there exists 
a lattice ordered group G with a strong unit u such that the underlying set A 
of A is equal to the interval [0, u] of G and that the operations of A can be 
defined by means of the operations of G (for details, cf. Section 2 below). In 
this situation we write A = T(G, u). 

D v u r e c e n s k i j ' s result generalize the well-known theorem of M u n d i c i 
dealing with MV-algebras (M u n d i c i [10]; cf. also the monograph C i g n o 1 i, 
D ' O t t a v i a n o and M u n d i c i [3]). 

Let us apply the notation as above; let A = T(G, u). For x,y G G we put 

x-\-1y = x — u + y; further, we set x ^ y iff x — y. Then Gx = (G; +1,'=1) is 
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a lattice ordered group and 0 is a strong unit of G 1 . Denote j(dual = T(G1,0). 
We say that _4dual is the pseudo MV-algebra dual to A. We clearly have 
jdua ldua l __ A 

In the particular case when A is an MV-algebra, another definition of the 
duality has been used in [9]. We show that both the definitions are equivalent 
for the case of MV-algebras. We use the notion of duality for investigating 
the system of intervals of a pseudo MV-algebra; we generalize the results of [9] 
concerning intervals of MV-algebras. Further, we consider the relations between 
internal direct product decompositions of a pseudo MV-algebra A and internal 
direct product decompositions of _4d u a l . 

2. Preliminaries 

We recall the definition of a pseudo MV-algebra. 

DEFINITION 2 . 1 . Let A = ( _4 ;0 , - ,~ ,0 ,1 ) be an algebra of type (2 ,1 ,1 ,0 ,0) . 
For x, y G A we put xQy = ~(^xQ-^y). Then A is called a pseudo MV-algebra 
if the following identities are valid: 

(Al) x®(y®z) = (x®y)®z] 
(A2) x®0 = 0®x = x] 
(A3) x 0 l = l 0 a ; - = l ; 
(A4) -.1 = 0; - 1 = 0; 
(A5) ^(~x © ~y) = ~(-,x 0 -iy); 
(A6) x 0 (y 0 ~x) = y®(x® ~y) = (~^y 0 x) 0 y = (-«x 0 i / ) 0 x ; 
(A7) x 0 (-.a; 0 y) = (x 0 ~y) 0 y; 
(A8) ~-^£ = x. 

If the operation 0 is commutative, then A is an MV -algebra (in this case 
--,# — ~ £ for each x G _4). 

Let A be a pseudo MV-algebra. For x,y e A we put x ^y iff -ix © _/ = 1 • 
Then (_4; ^ ) is a distributive lattice with the least element 0 and with the 
greatest element 1; we denote (_4; =) = £(A). 

If a, b G A and a = b, then the set {c G _4 : a = c = b} is an interval of .4; 
we denote it by [a, b]. Let Int 4 be the system of all intervals of A. 

Let G be a lattice ordered group with a strong unit u. Put A = [0, n]; for 
each x,y e A we set 

x®y=(x + y)Au, -*x = u - x , ~x = -x + u, l = u. 

Then the structure (A] ©, -., ~ , 0,1) is a pseudo MV-algebra; it will be denoted 
by T ( G » . 
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D v u r e c e n s k i j [4] proved that for each pseudo MF-algebra A there exists 
a lattice ordered group G with a strong unit u such that 

A = T(G,U). (i) 

Throughout the present paper we suppose that the relation (1) is valid. 
The partial order of G induces a partial order on the set A; this partial order 

coincides with the partial order _ defined above. 
Let a e A. For x, y G [0, a] we put 

x ®a y = (x + V) A a
 J ~^a

x = a-x, ~ax = -x + a. 

Then the structure Aa = ( [ 0 , a ] , © a , - a , ~ a , 0 , a ) is a pseudo MV-algebra. In 
fact, we have Aa = T(Ga, a), where Ga is the convex ^-subgroup of G generated 
by the element a. We say that Aa is an interval subalgebra of ^4. 

3. The struc ture Adu3jl and systems of intervals 

Assume that G is a lattice ordered group with a strong unit u and let G1 

be as in Section 1. 

LEMMA 3 .1 . Gx is a lattice ordered group with a strong unit 0. 

P r o o f . The algebraic structures G and G1 have the same underlying set. 
Since — is a lattice order and _ x is dual to _ , we conclude that (G r

1 ,^1) is 
a lattice. We denote by V1 and A1 the lattice operations in G1. Further, it is 
easy to verify that (G1? +x) is a group with the neutral element u. Let n be a 
positive integer and x e G1. The expression x +1 x + 1 \-1x (n times) will 
be denoted by n ( 1 ) z . Then 2 ^ 0 = 0- tA + 0 - - ^ , 

3 (1)0 = 2 ^ 0 +x0=-u-u + 0 = -2u ; 

by induction we obtain 
n ( 1 )0 = -(n-T)u. 

Let y G G. There exists a positive integer n such that —y = nu. Hence 
y = —nu, thus 

y^! -nu = (n + l){1)0. 

Thus 0 is a strong unit of the lattice ordered group Gx. • 

For x,y G Gx with x =1 y we denote by [x,y]x the corresponding interval 
in G. . Hence we have 

[0,u] = [u.0]i- (1) 
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In view of 3.1 we can construct the pseudo MV-algebra T(G1,0) = Ax. 
According to (1), the structures A and Ax have the same underlying sets and 
the lattice £(AX) is dual to the lattice 1(A). The corresponding operations in 
Ax will be denoted by © l 5 -i1 , ~ 1 ? 015 lx. Hence we have 

0 1 = w = l , 1 1 = 0 . 

Similarly as in A we put x ©x y = ~1(~ ,
1x ©x ->12/). 

Now let us assume that the operation © of A is commutative, i.e., that A 
is an MV-algebra. Consider the algebraic structure ^42 = (A; ©2, _ l

2 , 0 2 , 1 2 ) , 
where 

©2 = 0 , ->2 = -», 02 = 1, 12 = 0 . 

There are several equivalent definitions of the notion of the MV-algebra. 
From the system of axioms used by C h a n g [2] (cf. also C a 11 a n o and 
L o m b a r d o [1], and the author [9]) we obtain: 

LEMMA 3.2. (Cf. [9; Lemma 2.3].) The algebraic structure A2 is an MV-al
gebra. Moreover, if V2 and A2 are the corresponding lattice operations, then 
V2 = A and A2 = V. 

Let us investigate the relation between Ax and A2. Both these structures 
have the same underlying set, namely A. Further, 01 = u = 02 and 11 = 0 = 1 2 . 
Also, V1 = V2 and A1 = A2. 

Let Gx be as above and let x, z G Gx such that x+xz = u. Then x—u+z = u, 
whence z = u — x + u = 2u — x. Thus we can write —1x = 2u — x, where —1 

denotes the corresponding subtraction operation in the group Gx. 

PROPOSITION 3.3. Let A be an MV-algebra. Then Ax= A2. 

P r o o f . In view of the above remarks it remains to verify that ©x = ©2 

and - i 1 = - i 2 . 

a) Let x G A. In view of the definition of A2 we have 

-<2x = -ix = u — x . 

Further, 

-iax = 0 +-_ (~i
1x) = 0 — u + (-4X) = —u + (2u — x) = u — x . 

Hence -^ = ~,
2 • 

b) Let x,y € A. Then 

x© 2 2/ = x©H = -.(-ix © -ij/) = u - ((w - x) © (ix - y)) 

= u - (((u - x) + (?x - y)) A u) = u - ((2u - x - y) Au) 

= u+ ((-2u + x + y) V (-w)) = (-ix + x + y) V 0 . 
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Next, we have 
x 0 ! y = (x + x y) A-L 0 = (x - u + y) V 0 . 

Thus @x = 0 2 . • 

In view of Section 1 we get Ax = *4dual for any pseudo M^-algebra A. 
In [9], we defined *4dual = A2 for any MV-algebra . Hence according to 3.3, the 
definition of ^4dua l from Section 1 coincides with the definition from [9] for any 
MV-algebra. 

Now let us return to the case when the operation © need not be abelian. 
Let V be the class of all pseudo MV-algebras and let A be an element of V. 

We denote 

MX(A) = {A1eV: Int Ax = Int A} ; 

M2(A) = {A1eV: £(A1) = £(A)}] 

MS(A) = {A1eV: £(AX) = £(Adu*1)} . 

It is obvious that M2(^4) C MX(A). Further, from the definition of ,4 d u a l we 
obtain M3(A) C MX(A). Hence we have 

M2(A)UM3(A) CMX(A). 

The direct product of pseudo M"V-algebras is defined in the usual way. A 
pseudo MF-algebra A is directly indecomposable if, whenever A ~ Ax x A2, 
then either A1 or A2 is a one-element set. 

Direct products of MV-algebras have been investigated in [7]; for more gen
eral case of pseudo MV-algebras, cf. [8]. 

THEOREM 3.4. Let A be a pseudo MV-algebra. Then the following conditions 
are equivalent: 

(i) M2(A)UMS(A) = M1(A)-
(ii) The pseudo MV-algebra A is directly indecomposable. 

P r o o f . In view of the fact that the lattice £(A) is dual to the lattice 
£(Adu&l) we can apply the same argument as in [9; Sec. 3] with the distinction 
that instead of [7] (which is denoted as [8] in the article [9]), the result of the 
paper [8] is used now. • 

According to Proposition 3.3, Theorem 3.4 is a generalization of the result 
of [9], which was denoted as (*). 

4. Some further results on ,4dual 

Let L be a lattice; the corresponding dual lattice will be denoted by Ld. The 
lattice L is said to be self-dual if L ~ Ld. 
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LEMMA 4 . 1 . Let G be a partially ordered group, 0 < a G G. Then the interval 
[0, a] of G is self-dual. 

P r o o f . For each x G [0, a] we put (px(x) = —x. Then (px is a bijection of 
[0, a] onto [—a, 0] and for any x1,x2 G [0, a] we have 

x1^x2 <=> pt(x^ = (px(x2). 

Thus ip1 is an isomorphism of [0,a]d onto [—a, 0]. 
Further, for each y G [—a, 0] we put p2(y) = y + a. Hence cp2 is an isomor

phism of [—a, 0] onto [0,a]. Therefore [0, a] is isomorphic to [0,a]d . • 

As a corollary we obtain: 

PROPOSITION 4.2. Let A be apseudo MV-algebra. Then £(A) is isomorphic 

to £(Adual). 

For the case when A is an MV-algebra we have a stronger result. 

PROPOSITION 4 .3 . Let A be an MV -algebra. Then A is isomorphic to 
^dual 

P r o o f . For each x G A we put ip(x) = ->x. The MV-algebras A and 
^duai n a v e the same underlying set, and in view of Section 3 we obtain 

A= (A; ©,-i ,0,w), 

Adual = (A;Q,^u10). 

Obviously, (p(0) = u and (p(u) = 0. It remains to verify that for each x,y G A 
the relation 

(p(x @y) = (p(x) 0 (p(y) 

is valid. We have 

(p(x © y) = -1 (re © y) = u - ((x + y) A u) 

= u+ ((-x -y)\J (-u)) =(u-x-y)\/0; 

p(x) 0 (p(y) = (-ix) 0 (-HH) = (u-x)(D(u-y) 

= (u — x — u + u — y)\J 0 = (u — x — y)y 0. 

U 

The question whether 4.3 is valid also for pseudo MV-algebras remains open. 
Let us express the hypothesis that the answer is "No". 

Now we want to investigate the relations between direct product decomposi
tions of a pseudo MV-algebra and direct product decompositions of its dual. 
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The internal direct factors of a pseudo M"V-algebra have been dealt with 
in [8]; we recall some definitions (with a slightly modified notation) . 

Let I be a nonempty set of indices and for each i £ I let Li be a lattice. 
Consider the direct product L1 = Y[ Li. Let cp be an isomorphism of a lattice 

iEI 

L onto L1. For x G L we denote by (x(i))ieI the image of x under (p. Further, 
let xQ be a fixed element of L. For each iQ G / we denote by Lio[xQ] the set of 
all x G L such that, whenever i G I \ { i 0 } , then x(i) = x0(i). Hence LiQ[x0] is 
a sublattice of L with x0 G Lio [x0]. 

For y G L and i G I we denote by yl/J^o] the element z G -Ij^n] such that 
y(i) = z(i). Then the mapping (p[x0] defined by 

<p[xo\(y) = ( ^ - x o ] ) i e / 

is an isomorphism of L onto the direct product 

I2 = IW*o-. 
ieI 

We say that I-^n] ls a n -Vernal direct factor of L and that ip[x0] is an 
internal direct product decomposition of L (with the central element xQ). 

For each i G I, the lattices I^ and Lja^] are isomorphic. Hence for any 
i G I and any x1 G L, the lattices LJ-ZQ] and LJxJ are isomorphic. 

An analogous notation can be applied for MF-algebras. Let I be as above 
and for each i G I let Ai be an MF-algebra. Assume that ip is an isomorphism 
of an MF-algebra A onto the direct product A1 = ]J Ai. For iQ G I we define 
the element ii? G A as follows: z G / 

гo 

< « = { l<o 
Іf І ф І 0 ' 

if i = i0 

where ul° is the greatest element of Aio. Further, we put 

A0(o) = ([o,<],© i o ,^ 0 ,~, 0 ,o,<), 

wThere for each x, y G [0, w? ] we put 

* ®z0 y = (x + 2/) A ul> V = ul " x ' ~ i o x = ~x + ^ o • 

For 2 G -4 we denote by z(Aio(0)) the element t G *4 io(0) such that z(iQ) = 

t(i0). Consider the mapping 

if-.A-tllMO) 
iei 

defined by ip°(z) = z(Ai(0)) for each z G A and i G I. Then we have (cf. [8]) 

(a) ip° is an isomorphism of A onto JJ *4^(0); 
iei 

(b) for each i G I, -4^(0) is isomorphic to .4^. 
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PROPOSITION 4.4. (Cf. [8].) Let A be a pseudo MV-algebra. Put L = £(A). 
Assume that we have an internal direct decomposition 

^:L->nLi(°)-
iei 

Then all L{(0) are underlying lattices of internal subalgebras of A and the map
ping (p° yields, at the same time, an internal direct product decomposition 

iei 

of the pseudo MV-algebra A, where Lt(0) = £(A%(0)) for each i e L. 

PROPOSITION 4.5 . Let A be a pseudo MV -algebra. Then there is a one-to-
one correspondence between internal direct decompositions of A and internal 
direct product decompositions of ^4 d u a l . 

P r o o f . Assume that there is given an internal direct product decomposi
tion 

^'•A-^HA^O) (1) 
iei 

of A. Denote ^(.4.(0)) = L{(0). Hence L.(0) are sublattices of the lattice L = 
£(A). It is obvious that the mapping ip° yields, at the same time, an internal 
direct product decomposition 

V>°:Z.-> J]/ . , (()) (2) 

of the lattice L. t<E 

For each i e L we have L{(0)(u) = Lt(u) (under the notation as above); 
moreover, from (2) we obtain the internal direct product decomposition 

^-.L^HL^U). (3) 
iei 

Then -01 is, at the same time, an internal direct product decomposition of the 
corresponding dual lattice; we get 

^ :L d ->n( L ») d - (4) 
iei 

Now we apply Proposition 4.4. In view of (4) and of the fact that u is the zero 
element of .4 d u a l we conclude that each (Lt(u)) is the underlying lattice of 
an interval subalgebra *4-(0) of the pseudo MF-algebra ^4 d u a l

; moreover, ip1 

yields, at the same time, an internal direct product decomposition 

^:A
d^^HAf

i(0), (5) 
iei 
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where ^ ( O ) ) = (£.(«))*• 
The internal direct product decomposition (5) of .4dual corresponds to the 

internal direct product decomposition (1) of A. 
By applying reverse steps we can proceed from (5) t0 (1); therefore the cor

respondence under consideration is one-to-one. • 
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