Mathematic Slovaca

Ján Jakubík
On intervals and the dual of a pseudo MV-algebra

Mathematica Slovaca, Vol. 56 (2006), No. 2, 213--221

Persistent URL: http://dml.cz/dmlcz/129979

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON INTERVALS AND THE DUAL OF A PSEUDO $M V$-ALGEBRA

Ján Jakubík
(Communicated by Anatolij Dvurečenskij)

Abstract

For each pseudo $M V$-algebra \mathcal{A} we define the pseudo $M V$-algebra $\mathcal{A}^{\text {dual }}$. We apply this notion for considering the system of intervals of a pseudo $M V$-algebra; the earlier results concerning intervals of $M V$-algebras are generalized. For any pseudo $M V$-algebra there exists a one-to-one correspondence between internal direct product decompositions of \mathcal{A} and internal direct product decompositions of $\mathcal{A}^{\text {dual }}$.

I. Introduction

The system of intervals of an $M V$-algebra has been dealt with in [9].
The notion of pseudo $M V$-algebra was defined independently by Georgescu and Iorgulescu [5], [6] and by Rachůnek [11] (in [11], the term "generalized $M V$-algebra" was applied).

Dvurečenskij [4] proved that for each pseudo $M V$-algebra \mathcal{A} there exists a lattice ordered group G with a strong unit u such that the underlying set A of \mathcal{A} is equal to the interval $[0, u]$ of G and that the operations of \mathcal{A} can be defined by means of the operations of G (for details, cf. Section 2 below). In this situation we write $\mathcal{A}=\Gamma(G, u)$.

Dvurečenskij's result generalize the well-known theorem of Mundici dealing with $M V$-algebras (Mundici [10]; cf. also the monograph Cignoli, D'Ottaviano and Mundici [3]).

Let us apply the notation as above; let $\mathcal{A}=\Gamma(G, u)$. For $x, y \in G$ we put $x+_{1} y=x-u+y$; further, we set $x \leqq_{1} y$ iff $x \geqq y$. Then $G_{1}=\left(G ;+_{1}, \leqq_{1}\right)$ is

[^0]a lattice ordered group and 0 is a strong unit of G_{1}. Denote $\mathcal{A}^{\text {dual }}=\Gamma\left(G_{1}, 0\right)$. We say that $\mathcal{A}^{\text {dual }}$ is the pseudo $M V$-algebra dual to \mathcal{A}. We clearly have $\mathcal{A}^{\text {dual dual }}=\mathcal{A}$.

In the particular case when \mathcal{A} is an $M V$-algebra, another definition of the duality has been used in [9]. We show that both the definitions are equivalent for the case of $M V$-algebras. We use the notion of duality for investigating the system of intervals of a pseudo $M V$-algebra; we generalize the results of [9] concerning intervals of $M V$-algebras. Further, we consider the relations between internal direct product decompositions of a pseudo $M V$-algebra \mathcal{A} and internal direct product decompositions of $\mathcal{A}^{\text {dual }}$.

2. Preliminaries

We recall the definition of a pseudo $M V$-algebra.
DEFINITION 2.1. Let $\mathcal{A}=(A ; \oplus, \neg, \sim, 0,1)$ be an algebra of type $(2,1,1,0,0)$. For $x, y \in A$ we put $x \odot y=\sim(\neg x \oplus \neg y)$. Then \mathcal{A} is called a pseudo $M V$-algebra if the following identities are valid:
(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $\neg 1=0 ; \sim 1=0$;
(A5) $\neg(\sim x \oplus \sim y)=\sim(\neg x \oplus \neg y)$;
(A6) $x \oplus(y \odot \sim x)=y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y=(\neg x \odot y) \oplus x$;
(A7) $x \odot(\neg x \oplus y)=(x \oplus \sim y) \odot y$;
(A8) $\sim \neg x=x$.
If the operation \oplus is commutative, then \mathcal{A} is an $M V$-algebra (in this case $\neg x=\sim x$ for each $x \in A$).

Let \mathcal{A} be a pseudo $M V$-algebra. For $x, y \in A$ we put $x \leqq y$ iff $\neg x \oplus y=1$. Then $(A ; \leqq)$ is a distributive lattice with the least element 0 and with the greatest element 1 ; we denote $(A ; \leqq)=\ell(\mathcal{A})$.

If $a, b \in A$ and $a \leqq b$, then the set $\{c \in A: a \leqq c \leqq b\}$ is an interval of \mathcal{A}; we denote it by $[a, b]$. Let $\operatorname{Int} \mathcal{A}$ be the system of all intervals of \mathcal{A}.

Let G be a lattice ordered group with a strong unit u. Put $A=[0, u]$; for each $x, y \in A$ we set

$$
x \oplus y=(x+y) \wedge u, \quad \neg x=u-x, \quad \sim x=-x+u, \quad 1=u
$$

Then the structure $(A ; \oplus, \neg, \sim, 0,1)$ is a pseudo $M V$-algebra; it will be denoted by $\Gamma(G, u)$.

Dvurečenskij [4] proved that for each pseudo $M V$-algebra \mathcal{A} there exists a lattice ordered group G with a strong unit u such that

$$
\begin{equation*}
\mathcal{A}=\Gamma(G, u) . \tag{1}
\end{equation*}
$$

Throughout the present paper we suppose that the relation (1) is valid.
The partial order of G induces a partial order on the set A; this partial order coincides with the partial order \leqq defined above.

Let $a \in A$. For $x, y \in[0, a]$ we put

$$
x \oplus_{a} y=(x+y) \wedge a, \quad \neg_{a} x=a-x, \quad \sim_{a} x=-x+a
$$

Then the structure $\mathcal{A}_{a}=\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0, a\right)$ is a pseudo $M V$-algebra. In fact, we have $\mathcal{A}_{a}=\Gamma\left(G_{a}, a\right)$, where G_{a} is the convex ℓ-subgroup of G generated by the element a. We say that \mathcal{A}_{a} is an interval subalgebra of \mathcal{A}.

3. The structure $\mathcal{A}^{\text {dual }}$ and systems of intervals

Assume that G is a lattice ordered group with a strong unit u and let G_{1} be as in Section 1.

LEMMA 3.1. G_{1} is a lattice ordered group with a strong unit 0 .
Proof. The algebraic structures G and G_{1} have the same underlying set. Since \leqq is a lattice order and $\leqq 1$ is dual to \leqq, we conclude that $\left(G_{1}, \leqq \begin{array}{l}\text {) is }\end{array}\right.$ a lattice. We denote by \vee^{1} and \wedge^{1} the lattice operations in G_{1}. Further, it is easy to verify that $\left(G_{1},+_{1}\right)$ is a group with the neutral element u. Let n be a positive integer and $x \in G_{1}$. The expression $x+_{1} x+_{1} \cdots+{ }_{1} x(n$ times) will be denoted by $n^{(1)} x$. Then $2^{(1)} 0=0-u+0=-u$,

$$
3^{(1)} 0=2^{(1)} 0+_{1} 0=-u-u+0=-2 u
$$

by induction we obtain

$$
n^{(1)} 0=-(n-1) u
$$

Let $y \in G$. There exists a positive integer n such that $-y \leqq n u$. Hence $y \geqq-n u$, thus

$$
y \leqq \leqq_{1}-n u=(n+1)^{(1)} 0
$$

Thus 0 is a strong unit of the lattice ordered group G_{1}.
For $x, y \in G_{1}$ with $x \leqq_{1} y$ we denote by $[x, y]_{1}$ the corresponding interval in G_{1}. Hence we have

$$
\begin{equation*}
[0, u]=[u, 0]_{1} . \tag{1}
\end{equation*}
$$

In view of 3.1 we can construct the pseudo $M V$-algebra $\Gamma\left(G_{1}, 0\right)=\mathcal{A}_{1}$. According to (1), the structures \mathcal{A} and \mathcal{A}_{1} have the same underlying sets and the lattice $\ell\left(\mathcal{A}_{1}\right)$ is dual to the lattice $\ell(\mathcal{A})$. The corresponding operations in \mathcal{A}_{1} will be denoted by $\oplus_{1}, \neg_{1}, \sim_{1}, 0_{1}, 1_{1}$. Hence we have

$$
0_{1}=u=1, \quad 1_{1}=0
$$

Similarly as in \mathcal{A} we put $x \odot_{1} y=\sim_{1}\left(\neg_{1} x \oplus_{1} \neg_{1} y\right)$.
Now let us assume that the operation \oplus of \mathcal{A} is commutative, i.e., that \mathcal{A} is an $M V$-algebra. Consider the algebraic structure $\mathcal{A}_{2}=\left(A ; \oplus_{2}, \neg_{2}, 0_{2}, 1_{2}\right)$, where

$$
\oplus_{2}=\odot, \quad \neg_{2}=\neg, \quad 0_{2}=1, \quad 1_{2}=0
$$

There are several equivalent definitions of the notion of the $M V$-algebra. From the system of axioms used by Chang [2] (cf. also Cattano and Lombardo [1], and the author [9]) we obtain:
Lemma 3.2. (Cf. [9; Lemma 2.3].) The algebraic structure \mathcal{A}_{2} is an MV-algebra. Moreover, if \vee^{2} and \wedge^{2} are the corresponding lattice operations, then $\vee^{2}=\wedge$ and $\wedge^{2}=\vee$.

Let us investigate the relation between \mathcal{A}_{1} and \mathcal{A}_{2}. Both these structures have the same underlying set, namely A. Further, $0_{1}=u=0_{2}$ and $1_{1}=0=1_{2}$. Also, $\vee^{1}=\vee^{2}$ and $\wedge^{1}=\wedge^{2}$.

Let G_{1} be as above and let $x, z \in G_{1}$ such that $x+{ }_{1} z=u$. Then $x-u+z=u$, whence $z=u-x+u=2 u-x$. Thus we can write $-{ }_{1} x=2 u-x$, where $-_{1}$ denotes the corresponding subtraction operation in the group G_{1}.

Proposition 3.3. Let \mathcal{A} be an $M V$-algebra. Then $\mathcal{A}_{1}=\mathcal{A}_{2}$.
Proof. In view of the above remarks it remains to verify that $\oplus_{1}=\oplus_{2}$ and $\neg_{1}=\neg_{2}$.
a) Let $x \in A$. In view of the definition of \mathcal{A}_{2} we have

$$
\neg_{2} x=\neg x=u-x .
$$

Further,

$$
\neg_{1} x=0+_{1}\left(\neg_{1} x\right)=0-u+\left(\neg_{1} x\right)=-u+(2 u-x)=u-x .
$$

Hence $\neg_{1}=\neg_{2}$.
b) Let $x, y \in A$. Then

$$
\begin{aligned}
x \oplus_{2} y & =x \odot y=\neg(\neg x \oplus \neg y)=u-((u-x) \oplus(u-y)) \\
& =u-(((u-x)+(u-y)) \wedge u)=u-((2 u-x-y) \wedge u) \\
& =u+((-2 u+x+y) \vee(-u))=(-u+x+y) \vee 0
\end{aligned}
$$

Next, we have

$$
x \oplus_{1} y=\left(x+{ }_{1} y\right) \wedge_{1} 0=(x-u+y) \vee 0 .
$$

Thus $\oplus_{1}=\oplus_{2}$.
In view of Section 1 we get $\mathcal{A}_{1}=\mathcal{A}^{\text {dual }}$ for any pseudo $M V$-algebra \mathcal{A}. In [9], we defined $\mathcal{A}^{\text {dual }}=\mathcal{A}_{2}$ for any $M V$-algebra. Hence according to 3.3 , the definition of $\mathcal{A}^{\text {dual }}$ from Section 1 coincides with the definition from [9] for any $M V$-algebra.

Now let us return to the case when the operation \oplus need not be abelian.
Let \mathcal{P} be the class of all pseudo $M V$-algebras and let \mathcal{A} be an element of \mathcal{P}. We denote

$$
\begin{aligned}
& M_{1}(\mathcal{A})=\left\{\mathcal{A}_{1} \in \mathcal{P}: \operatorname{Int} \mathcal{A}_{1}=\operatorname{Int} \mathcal{A}\right\} \\
& M_{2}(\mathcal{A})=\left\{\mathcal{A}_{1} \in \mathcal{P}: \ell\left(\mathcal{A}_{1}\right)=\ell(\mathcal{A})\right\} \\
& M_{3}(\mathcal{A})=\left\{\mathcal{A}_{1} \in \mathcal{P}: \ell\left(\mathcal{A}_{1}\right)=\ell\left(\mathcal{A}^{\text {dual }}\right)\right\} .
\end{aligned}
$$

It is obvious that $M_{2}(\mathcal{A}) \subseteq M_{1}(\mathcal{A})$. Further, from the definition of $\mathcal{A}^{\text {dual }}$ we obtain $M_{3}(\mathcal{A}) \subseteq M_{1}(\mathcal{A})$. Hence we have

$$
M_{2}(\mathcal{A}) \cup M_{3}(\mathcal{A}) \subseteq M_{1}(\mathcal{A})
$$

The direct product of pseudo $M V$-algebras is defined in the usual way. A pseudo $M V$-algebra \mathcal{A} is directly indecomposable if, whenever $\mathcal{A} \simeq \mathcal{A}_{1} \times \mathcal{A}_{2}$, then either A_{1} or A_{2} is a one-element set.

Direct products of $M V$-algebras have been investigated in [7]; for more general case of pseudo $M V$-algebras, cf. [8].

Theorem 3.4. Let \mathcal{A} be a pseudo MV-algebra. Then the following conditions are equivalent:
(i) $M_{2}(\mathcal{A}) \cup M_{3}(\mathcal{A})=M_{1}(\mathcal{A})$.
(ii) The pseudo $M V$-algebra \mathcal{A} is directly indecomposable.

Proof. In view of the fact that the lattice $\ell(\mathcal{A})$ is dual to the lattice $\ell\left(\mathcal{A}^{\text {dual }}\right)$ we can apply the same argument as in $[9 ;$ Sec. 3] with the distinction that instead of [7] (which is denoted as [8] in the article [9]), the result of the paper [8] is used now.

According to Proposition 3.3, Theorem 3.4 is a generalization of the result of [9], which was denoted as (*).

4. Some further results on $\mathcal{A}^{\text {dual }}$

Let L be a lattice; the corresponding dual lattice will be denoted by L^{d}. The lattice L is said to be self-dual if $L \simeq L^{d}$.

LEMMA 4.1. Let G be a partially ordered group, $0<a \in G$. Then the interval $[0, a]$ of G is self-dual.

Proof. For each $x \in[0, a]$ we put $\varphi_{1}(x)=-x$. Then φ_{1} is a bijection of $[0, a]$ onto $[-a, 0]$ and for any $x_{1}, x_{2} \in[0, a]$ we have

$$
x_{1} \leqq x_{2} \Longleftrightarrow \varphi_{1}\left(x_{1}\right) \geqq \varphi_{1}\left(x_{2}\right) .
$$

Thus φ_{1} is an isomorphism of $[0, a]^{d}$ onto $[-a, 0]$.
Further, for each $y \in[-a, 0]$ we put $\varphi_{2}(y)=y+a$. Hence φ_{2} is an isomorphism of $[-a, 0]$ onto $[0, a]$. Therefore $[0, a]$ is isomorphic to $[0, a]^{d}$.

As a corollary we obtain:
Proposition 4.2. Let \mathcal{A} be a pseudo $M V$-algebra. Then $\ell(\mathcal{A})$ is isomorphic to $\ell\left(\mathcal{A}^{\text {dual }}\right)$.

For the case when \mathcal{A} is an $M V$-algebra we have a stronger result.
PROPOSITION 4.3. Let \mathcal{A} be an $M V$-algebra. Then \mathcal{A} is isomorphic to $\mathcal{A}^{\text {dual }}$.

Proof. For each $x \in A$ we put $\varphi(x)=\neg x$. The $M V$-algebras \mathcal{A} and $\mathcal{A}^{\text {dual }}$ have the same underlying set, and in view of Section 3 we obtain

$$
\begin{aligned}
\mathcal{A} & =(A ; \oplus, \neg, 0, u), \\
\mathcal{A}^{\text {dual }} & =(A ; \odot, \neg, u, 0)
\end{aligned}
$$

Obviously, $\varphi(0)=u$ and $\varphi(u)=0$. It remains to verify that for each $x, y \in A$ the relation

$$
\varphi(x \oplus y)=\varphi(x) \odot \varphi(y)
$$

is valid. We have

$$
\begin{aligned}
\varphi(x \oplus y) & =\neg(x \oplus y)=u-((x+y) \wedge u) \\
& =u+((-x-y) \vee(-u))=(u-x-y) \vee 0 \\
\varphi(x) \odot \varphi(y) & =(\neg x) \odot(\neg y)=(u-x) \odot(u-y) \\
& =(u-x-u+u-y) \vee 0=(u-x-y) \vee 0 .
\end{aligned}
$$

The question whether 4.3 is valid also for pseudo $M V$-algebras remains open. Let us express the hypothesis that the answer is "No".

Now we want to investigate the relations between direct product decompositions of a pseudo $M V$-algebra and direct product decompositions of its dual.

The internal direct factors of a pseudo $M V$-algebra have been dealt with in [8]; we recall some definitions (with a slightly modified notation).

Let I be a nonempty set of indices and for each $i \in I$ let L_{i} be a lattice. Consider the direct product $L^{1}=\prod_{i \in I} L_{i}$. Let φ be an isomorphism of a lattice L onto L^{1}. For $x \in L$ we denote by $(x(i))_{i \in I}$ the image of x under φ. Further, let x_{0} be a fixed element of L. For each $i_{0} \in I$ we denote by $L_{i_{0}}\left[x_{0}\right]$ the set of all $x \in L$ such that, whenever $i \in I \backslash\left\{i_{0}\right\}$, then $x(i)=x_{0}(i)$. Hence $L_{i_{0}}\left[x_{0}\right]$ is a sublattice of L with $x_{0} \in L_{i_{0}}\left[x_{0}\right]$.

For $y \in L$ and $i \in I$ we denote by $y L_{i}\left[x_{0}\right]$ the element $z \in L_{i}\left[x_{0}\right]$ such that $y(i)=z(i)$. Then the mapping $\varphi\left[x_{0}\right]$ defined by

$$
\varphi\left[x_{0}\right](y)=\left(y L_{i}\left[x_{0}\right]\right)_{i \in I}
$$

is an isomorphism of L onto the direct product

$$
L^{2}=\prod_{i \in I} L_{i}\left[x_{0}\right]
$$

We say that $L_{i}\left[x_{0}\right]$ is an internal direct factor of L and that $\varphi\left[x_{0}\right]$ is an internal direct product decomposition of L (with the central element x_{0}).

For each $i \in I$, the lattices L_{i} and $L_{i}\left[x_{0}\right]$ are isomorphic. Hence for any $i \in I$ and any $x_{1} \in L$, the lattices $L_{i}\left[x_{0}\right]$ and $L_{i}\left[x_{1}\right]$ are isomorphic.

An analogous notation can be applied for $M V$-algebras. Let I be as above and for each $i \in I$ let \mathcal{A}_{i} be an $M V$-algebra. Assume that ψ is an isomorphism of an $M V$-algebra \mathcal{A} onto the direct product $\mathcal{A}^{1}=\prod_{i \in I} \mathcal{A}_{i}$. For $i_{0} \in I$ we define the element $u_{i_{0}}^{0} \in A$ as follows:

$$
u_{i_{0}}^{0}(i)= \begin{cases}0 & \text { if } i \neq i_{0} \\ u^{i_{0}} & \text { if } i=i_{0}\end{cases}
$$

where $u^{i_{0}}$ is the greatest element of $\mathcal{A}_{i_{0}}$. Further, we put

$$
\mathcal{A}_{i_{0}}(0)=\left(\left[0, u_{i_{0}}^{0}\right], \oplus_{i_{0}}, \neg_{i_{0}}, \sim_{i_{0}}, 0, u_{i_{0}}^{0}\right)
$$

where for each $x, y \in\left[0, u_{i_{0}}^{0}\right]$ we put

$$
x \oplus_{i_{0}} y=(x+y) \wedge u_{i_{0}}^{0}, \quad \neg_{i_{0}} x=u_{i_{0}}^{0}-x, \quad \sim_{i_{0}} x=-x+u_{i_{0}}^{0}
$$

For $z \in A$ we denote by $z\left(\mathcal{A}_{i_{0}}(0)\right)$ the element $t \in \mathcal{A}_{i_{0}}(0)$ such that $z\left(i_{0}\right)=$ $t\left(i_{0}\right)$. Consider the mapping

$$
\psi^{0}: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}(0)
$$

defined by $\psi^{0}(z)=z\left(\mathcal{A}_{i}(0)\right)$ for each $z \in \mathcal{A}$ and $i \in I$. Then we have (cf. [8])
(a) ψ^{0} is an isomorphism of \mathcal{A} onto $\prod_{i \in I} \mathcal{A}_{i}(0)$;
(b) for each $i \in I, \mathcal{A}_{i}(0)$ is isomorphic to \mathcal{A}_{i}.

Proposition 4.4. (Cf. [8].) Let \mathcal{A} be a pseudo MV-algebra. Put $L=\ell(\mathcal{A})$. Assume that we have an internal direct decomposition

$$
\varphi^{0}: L \rightarrow \prod_{i \in I} L_{i}(0)
$$

Then all $L_{i}(0)$ are underlying lattices of internal subalgebras of \mathcal{A} and the mapping φ^{0} yields, at the same time, an internal direct product decomposition

$$
\varphi^{0}: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}(0)
$$

of the pseudo $M V$-algebra \mathcal{A}, where $L_{i}(0)=\ell\left(\mathcal{A}_{i}(0)\right)$ for each $i \in I$.
Proposition 4.5. Let \mathcal{A} be a pseudo MV-algebra. Then there is a one-toone correspondence between internal direct decompositions of \mathcal{A} and internal direct product decompositions of $\mathcal{A}^{\mathrm{dual}}$.

Proof. Assume that there is given an internal direct product decomposition

$$
\begin{equation*}
\psi^{0}: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}(0) \tag{1}
\end{equation*}
$$

of \mathcal{A}. Denote $\ell\left(\mathcal{A}_{i}(0)\right)=L_{i}(0)$. Hence $L_{i}(0)$ are sublattices of the lattice $L=$ $\ell(\mathcal{A})$. It is obvious that the mapping ψ^{0} yields, at the same time, an internal direct product decomposition
of the lattice L.

$$
\begin{equation*}
\psi^{0}: L \rightarrow \prod_{i \in I} L_{i}(0) \tag{2}
\end{equation*}
$$

For each $i \in I$ we have $L_{i}(0)(u)=L_{i}(u)$ (under the notation as above); moreover, from (2) we obtain the internal direct product decomposition

$$
\begin{equation*}
\psi^{1}: L \rightarrow \prod_{i \in I} L_{i}(u) \tag{3}
\end{equation*}
$$

Then ψ^{1} is, at the same time, an internal direct product decomposition of the corresponding dual lattice; we get

$$
\begin{equation*}
\psi^{1}: L^{d} \rightarrow \prod_{i \in I}\left(L_{i}(u)\right)^{d} \tag{4}
\end{equation*}
$$

Now we apply Proposition 4.4. In view of (4) and of the fact that u is the zero element of $\mathcal{A}^{\text {dual }}$ we conclude that each $\left(L_{i}(u)\right)^{d}$ is the underlying lattice of an interval subalgebra $\mathcal{A}_{i}^{\prime}(0)$ of the pseudo $M V$-algebra $\mathcal{A}^{\text {dual }}$; moreover, ψ^{1} yields, at the same time, an internal direct product decomposition

$$
\begin{equation*}
\psi^{1}: \mathcal{A}^{\text {dual }} \rightarrow \prod_{i \in I} \mathcal{A}_{i}^{\prime}(0) \tag{5}
\end{equation*}
$$

where $\ell\left(\mathcal{A}_{i}^{\prime}(0)\right)=\left(L_{i}(u)\right)^{d}$.
The internal direct product decomposition (5) of $\mathcal{A}^{\text {dual }}$ corresponds to the internal direct product decomposition (1) of \mathcal{A}.

By applying reverse steps we can proceed from (5) to (1); therefore the correspondence under consideration is one-to-one.

REFERENCES

[1] CATTANEO, G.-LOMBARDO, F.: Independent axiomatization of MV-algebras, Tatra Mt. Math. Publ. 15 (1998), 227-232.
[2] CHANG, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] CIGNOLI, R.-D'OTTAVIANO, M. I.-MUNDICI, D. : Algebraic Foundations of ManyValued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
[4] DVUREČENSKIJ, A.: Pseudo MV-algebras are intervals in ℓ-groups, J. Aust. Math. Soc. 72 (2002), 427-445.
[5] GEORGESCU, G.-IORGULESCU, A.: Pseudo MV-algebras: a noncommutative extension of $M V$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, 1999, pp. 961-968.
[6] GEORGESCU, G.-IORGULESCU, A.: Pseudo $M V$-algebras, Mult.-Valued Log. (Special issue dedicated to Gr. C. Moisil) 6 (2001), 95-135.
[7] JAKUBÍK, J. : Direct product decompositions of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[8] JAKUBÍK, J.: Direct product decompositions of pseudo MV-algebras, Arch. Math. (Brno) 37 (2001), 131-142.
[9] JAKUBÍK, J.: On intervals and isometries of MV-algebras, Czechoslovak Math. J. 52 (2002), 651-663.
[10] MUNDICI, D.: Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.
[11] RACHU゚NEK, J.: A non-commutative generalization of $M V$-algebras, Czechoslovak Math. J. 52 (2002), 255-273.

Matematický ústav SAV
Grešákova 6
SK-040 01 Košice
SLOVAKIA
E-mail: kstefan@saske.sk

[^0]: 2000 Mathematics Subject Classification: Primary 06D35.
 Keywords: pseudo $M V$-algebra, dual pseudo $M V$-algebra, system of intervals, internal direct product.
 Supported by Science and Technology Assistance Agency under the contract No. APVT-51032002.

