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A COMPLETE METRIC ON THE SPACE 

OF INTEGRABLE MULTIFUNCTION 

DUSAN HOLY 

(Communicated by Ladislav Misik) 

ABSTRACT. The notion of a multivalued integral was introduced by A u m a n n 
and the notion of an integrable multifunction (which we use) by H i a i . We find a 
complete metric on the space of integrable multifunctions with values in a Banach 
- rarable space. 

1. Introduc t ion 

lotion of an integral for a multivalued function was introduced by 
i n n . The convergence theorems for multivalued integrals were discussed 

A u m a n n [A], S c h m e i d l e r [S], and A r s t e i n [Ar]. These authors 
ained Fatou's lemma and Lebesgue's convergence theorem with the Kura-

>wski convergence for measurable multivalued functions having values in the 
losed subsets of W1. Fatou's lemma is of some use in mathematical economics 
S]). 

T i a i [Hi] studies integrable multivalued functions with values in a Banach 
«rable space. He proved Fatou's lemmas and Lebesgue's convergence theo-

is for multivalued integrals mainly with the Mosco convergence but in the 
exive spaces. 
We find a complete metric on the space of integrable multifunctions with 

^l.ues in a Banach separable space, which can be a useful tool in integration 
>ry. 

2. Definitions and some elementary properties 

Throughout the paper, Q will denote a measurable space with cr-algebra A. 
If there is a cr-finite measure defined on A, we say that i? is cr-finite. If there 
is a complete cr-finite measure defined on A, we call i? complete. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28B20. 
K e y w o r d s : Measurable multifunction, Weakly measurable multifunction, Integrable 

multifunction, Castaing representation of multifunction, Hausdorff distance. 
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Y will be a topological space, 2Y, the space of all subsets of Y. Following 
Bourbaki, we will call Y: Polish, if Y is separable and metrizable by a complete 
metric, Souslin, if Y is metrizable and a continuous image of a Polish space. 

A relation F: Q —• Y is a subset of Q x Y. Alternatively, F may be re­
garded as a function from Q to 2Y. A function F: Q —> 2Y — {0} is called a 
multifunction. 

Let F: Q —> y be a relation and D C Y . Denote 

F-^H) = {a; E i? : KH n B ^ 0} . 

A relation F : Q —> Y is measurable (weakly measurable) if and only if F~l(B) 
is measurable for each closed (open) subset H of Y. We say that F is graph 
measurable if 

G r F = {(o;,H) G i? x F : y G F(uo)} G ^ x 13, 

where B is the a-algebra of Borel subsets of Y, and Ax B is understood in the 

usual sense. 

Further we mention some properties from the papers [H], [W]: 

We say that {/n}nez+ is a Castaing representation of F if, for all n G Z + , 
fn is a measurable selector of F , and for all u G Q 

F(ш) C cl 
^ П > 1 ' 

From [W; Theorem 5.10], we know that if (Q. A) is a measurable space with 
A a Souslin family, Y is a Souslin space and F is a graph measurable multifunc­
tion, then F admits a Castaing representation. Notice that A is a Souslin family 
([KN]) if A = S'(w4), where £(w4) denotes the family of all sets obtained from 
A by the Souslin operation. In case that there is a cr-finite complete measure 
defined on the cr-algebra A, A is a Souslin family ([KN]). 

Further we will need the following proposition: 

PROPOSITION A. ([H]) Let J be an at most countable set, and let Fn: Q —> Y 
be a relation for each n G J. Then if each Fn is measurable (weakly measurable), 

so is the relation (J Fn : Q —> Y defined by I [J Fn ) (cu) = (J Fn(uj). 
^ n ' n 

PROPOSITION B . ([H]) A relation F: Q —> Y is weakly measurable if and 
only if the relation clF: Q —> Y, defined by c\F(cu) = cl{F(u;)}. is weakly 
measurable. 

Let F: Q —> Y be a relation and B <Z Y. Presides the notion F~l(B), we 
need also the notion of F+(B) = [UJ G Q; F(cj) C 15} 
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3. Main results 

DEFINITION 3 .1 . ([HU]) Let (f2,A) be complete. Let Y be a Banach sepa­
rable space. Let F: Q —> Y be a multifunction with a measurable graph, such 
that there is an integrable function / : Q —> R with the following property 

Vwer? | |FM||</(w), 
(i.e. ||y|| < f(oo) for all y G F(u), where ||y|| is a norm of y). 

Then we call F an integrable multifunction. 

R e m a r k 3.2. The assumptions of Definition 3.1 guarantee the existence 
of a Castaing representation of F. 

DEFINITION 3.3. Let J? and Y be as in Definition 3.1. Denote by C the space 
of all integrable multifunctions from i? to Y. Define the function L: C x C —• R 
as follows: 

L(F,G) = mil e : for every measurable selector / of F 

there exists a measurable selector g of G such that 

/ l / M - gMI d/i < £: and 

for every measurable selector g of G 

there exists a measurable selector / of F such that 

f\g(uj)-f(uj)\^<e\. 
n } 

This definition is a generalization of the definition introduced in [M]. 
What is a motivation for this definition? We show that a motivation for this 

definition is the HausdorfT metric Since we will work with this notion further, 
we briefly mention some properties of this metric. 

Let (VV,p) be a metric space. Denote B£[v] = {z G W : p(z, v) < e}. If K is 
a subset of W and e > 0, let B£[K] denote the union of all open e-balls whose 
centers run over K. If K\ and K2 are nonempty subsets of W cind, for some 
e > 0, both B£[Ki] D K2 and B£[K2] D i f i , w e define the HausdorfT distance 
hp between them to be 

hp(K^K2) = inf{> : B£[KX] D K2 and B£[K2] D Kx} . 

Otherwise, we write hp(K\,K2) = oo. It is easy to check that hp defines an 
infinite-valued pseudometric on the nonempty subset of VV, and that hp(K\, K2) 
= 0 if and only if K\ and K2 have the same closure. Thus, if we restrict hp to 
closed subsets of W, then hp defines an infinite valued metric on such sets. 
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In the sequel, we shall denote the set of closed nonempty subsets of a metric 
space W by CL(W). If (W,p) is complete, then so is (CL(W),hp). 

If (TV,P) is a pseudometric space, we can also define the function hp on all 
nonempty subsets of W. Clearly hp is also a pseudometric. 

In what follows, let Y be a separable Banach space with norm || • ||. To simplify 
notation, we shall sometimes denote the norm on F by | • |, rather than || • ||. 

Put further Q(x,y) = \\x — y\\, Q(X,A) = inf{o(x,a) : a G A } , and g(A,x) = 
inf |o (a ,x) : a G A} for a nonempty subset A of Y. Further denote by h\.\ the 
Hausdorff metric on CL(Y) induced by Q. 

Let B denote the a-algebra of Borel subsets of Y, and (ft, A) be a measur­
able space. A function / : ft —> Y is measurable if it is measurable with respect 
to A and B. 

It is easy to see that if / is measurable with respect to A and 23, then 
u —> | / ( C J ) | is w4-measurable. 

In our paper, we need the notion of an integrable function. Let (i7, A, /x) be a 
measurable space, and let 7 b e a Banach separable space. A function / : ft —> Y 
is integrable if it is measurable and the function UJ —» |/(<^)| is integrable. 

Let J(i7,*4,/x,F) be the set of all integrable functions from J? to F . Then 
l(ft1 A, /x, Y) is a vector space. The formula 

H/|| = jl/Hid/x 
Q 

induces a seminorm on X(i7, A, /x, Y), and clearly 

d{f,g) = J\f{u;)-g{uJ)\df, 
Q 

induced a pseudometric on I ( i7 , A, //, Y). 
Let (i7,v4, /i) be a complete space, and let (Y,B) be a Banach separable 

space. Let F: ft —±Y be an integrable multifunction. Put 

SF = {/ e T(ft,A,[i,Y) : f(u) G F(u) almost everywhere} . 

Then Sp ^ 0, and SF is a closed set in (X(i7, w4, /x, Y),d) for every multifunc­
tion F with closed values. 

We can identify F with 5 F . Let F , G be two integrable multifunction. It is 
easy to verify that 

L{F,G) = hd{SF,GF). 

If F: ft —+ Y is an integrable multifunction, then the integral or mean E[F] 
of F is defined by 

E[F] = J F(u) d/x = j F ; ( / ) = J f(u) dfx: / G S F | , 

Q Q 
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where E[f] = J f(w) d/i is the usual Bochner integral. This multivalued integral 
Q 

was introduced by A u m a n n [A]. 
It is easy to verify that if F, G are two integrable multifunctions, then 

hV\(E[F],E[G])<L{F,G). 

THEOREM 3.4. The function L: C x £ —•» K defined in the Definition 3.3 is a 
pseudo-metric. 

P r o o f . The proof is similar as in [M]. 

THEOREM 3.5. Let (i?, A) be complete and let Y be a Banach separable space. 
Let F. G be integrable multifunctions from Q to Y. Then L(F,G) = 0 if and 
only if cl{F(o;)} = cl{G(o;)} almost everywhere. 

P r o o f . 
=-i> : Denote by CL(Y) the space of all nonempty closed subsets of Y and 

h\.\ the Hausdorff metric on CL(Y). Let // be a complete cr-finite measure on 
A. We prove that 

J C J E J ? : h\.\(c\{F(u)},cl{G(u)}) > o} 

is a measurable set with measure zero. 
Let e > 0. It is easy to verify that 

{cue Q: h\.\(c\{F(uo)},c\{G(uo)}) > e} 

u (UU( d G "H^M^ 
where {yn : n G Z + } is a countable dense set in Y. Thus 

{ w e t t : h\.\(cl{F(u)},cl{G(uj)}) > o} 

is measurable. 

Now we show that /i< UJ G Q : h\.\ (C\{F(UJ)},C[{G(U)}) > e \ = 0 for every 

e > 0. Let e > 0. Put 

n k 

and 

A< = U U ( c l í 1 _ 1 ( B * M nclG+(Y\Be+i[y„])) , 
n k 

B « = UU(dG!"1(BiW)ncli;,My\B
í+.w)) • 

n fc 
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Suppose /JL(A£UB£) > 0. Then either n(Ae) > 0 or fi(A£) > 0. Without loss of 
generality we can suppose that ii(A£) > 6. 

Define a function / : i? x Y —> R by f(u,y) = o(cl{G(tj)},y). The function 
/ is measurable in UJ for each y G Y ([H]) and continuous in y for every w G f i . 
Thus / is measurable ([H]), i.e. the set C = {(o;,y) : o(cl{G(cj)}, y) > s} 
is measurable. Put further D = C i l G r F . Then the set PQ(D) contains Ae, 
where Pn(uo,y) = uo for every (cO,y). 

Now define the following set E C f2 xY: 

E={(u,y): (oj,y) e D <md OJ e A£}u{(u,y) : (u,y) G GrF and UJ £ A£} . 

Further define a multifunction K: fi —>Y by 

K{u>) = Eu = {y € y : ( u ; , j / ) e £ } . 

Clearly the multifunction K has a measurable graph and GiK C G r F . The 
assumptions of the theorem guarantee the existence of a Castaing representation 
{kn}nez+ of K. 

Let kn be a measurable selector of K from the Castaing representation of 
K, and let g be a measurable selector of a multifunction G. Then we have 

/ |fcn(u;) - g(co)\ d/i = / |fcn(o;) - g(uj)\ dfi+ \kn(uj) - g(u)\ dji > 6 • e , 

Q Q\A£ A£ 

and that is a contradiction. 

<== : Let / be a selector of F. We show that for every e > 0 there is a 
selector g of G such that f \f(u) — g(uj)\ d/x < e. The multifunctions F and G 

n 
are integrable, and c l F = clG almost everywhere. Thus there is an integrable 

function h: Q -> R such that | |cl{F(u;)}|| < h(u) and ||cl{G(u;)}|| < h(u). 

There is a measurable set A such that fi(A) < oo and J h(uj) dfi < -|-. 

Put 

M={(«,У):в(/И,у)=бет}. 

Then M is a measurable set. Put N = M OGvG and define a multifunction 
K: n-±Y by 

tf(u,) = Arw = {y 6 y : ( W > ! / ) € J V } . 
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There is a Castaing representation of K. Let g* be a function from the Castaing 
representation of K. Then we have: 

J \f(oj) - 5 » | dM = f | /H - s » | d^ + J |/H - g*H| dn 
t\A A 

f \2h{u)\d» + J\f{u)-g*{u)\dv 
n Q\A 

< 

Q\A 

2£ Ы i ) 
- 6 ^ 6џ(A) 

D 

On the space £ , define a relation « by F « G if and only if cl{F(u)} = 
c\{G(u)} almost everywhere. Let C\ be a space of all integrable multifunctions 
with closed values; put C~ = £ i / ~ and define 

F~:£~x£~->R by L~(F~ ,G~) = L(Fi,Gi), 

where F1,G1 G C1 and Fi E f~, Gi e G~. The standard proof of [K] shows 
that L~ is well defined and L~ is a metric on £ ~ . 

THEOREM 3.6. Let (i?, A) be complete, and let Y be a Banach separable 
space. Then the space ( £ ~ , L ~ ) . defined as above, is complete. 

P r o o f . Let {Fn}ne%+ be a Cauchy sequence from £ ~ . Without loss of 
generality we can suppose that for every n G Z + is 

L ~ ( F ~ , F ~ + 1 ) < -^+i-

For every n G Z + choose F n G F~. Clearly 

L(Fn,Fn+i) < - ^ Y 

for every n G Z + . 

Let n G Z + and let {/n,/}/ez+ be a Castaing representation of F n . For 
every selector /n>/ of F n we choose a d-Cauchy sequence {/n,/,p}p>n (d(f,g) = 
/ 1/ — gl dfx) in the following way: 

Let /n,*,p be a selector of Fp such that 

/ 
| /n ,z,PM - /n , l ,p+iM| dџ < — 

i? 
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For every sequence {fn,i,P}P>n there is a measurable function fn^ such th? 
{fn,i,p}p>n d-converges to fnl. Now define the multifunction F by 

F ( a , ) = c l { ( J { 7 „ , . : n e Z + , leZ+}}. 

The multifunction F has a measurable graph ([H]), and { fn,i}n lGZ+ is 
Castaing representation of F. Now we show that F is an integrable multifur. 
tion. It is sufficient to prove that there is an integrable function h, h: i? —> 
such that |-F(C«J)| < h(u) for every u G i7. 

Denote P/f(R) the family of all compact subsets of R. Define the family c 
multifunctions {Gn : n G Z + } , G n : i? -> Pft:(R) by 

ť?„(w) = cl|U{l/n,/И|: lЄZ+}| 

for every n G Z + . The multifunctions are measurable ([H]). 

On the family of all multifunctions with real values and bounded by an ii. -
tegrable function, we have, by Definition 3.3, defined a metric, which is in this 
real case denoted by LR . 

Since 

J | l/HI - \g{u,)\ | d/x < j |/(W) - g(u)\ dM, 

we also have 
LR(GU) Gm) < L(Fn? Fm) . 

Thus the sequence {Gn} is L^-Cauchy, and from the proof of Theorem 6.15 
[M], the assumptions of which are satisfied, it is possible to see that there is an 
integrable function h: Q —•> K such that | |G n (u;) | | < h(u) for each n G Z + and 
UJ G i7. 

Now we prove that {Fn} L-converges to F. We show that for every £ > 0 
there is N(e) such that, for every n > N(e), L(Fn, F) < e. 

Let h be an integrable function from 4? to K such that, for every n G Z 1 , 
H^nHII < h(u) and ||F(o;)|| < /i(o;) Vu; G i?. 

There is a measurable set A of finite measure such that 

/ 

є 
h(u) d/x < - . 

Let ^ be an arbitrary selector of F. Put 

P(Ш) = {yЄY:Є(y^))<~}. 
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There is a selector frtli1 of a multifunction F from the above Castaing 

representation {/n?/} lpZ+ of F such that 

{7n,,.»}nP(u;)^0 
on a subset A\ C A of nonzero measure. (This is very easy to see from the 
fact that {fn,i}niGz+ ^s a Castaing representation of F and thus F(u) C 

cl{U{7„,.M: n,leZ+}}.) 
Suppose fi(A \ A\) > 0. Then by the same argument as above, there is a 

selector /„2 > ,2 from { 7 n , . } n . i e Z + \ {7m, . . } such that 

{7„2,.»}nP(u/)^0 
on a subset A2 C A \ A\ of nonzero measure. 

In this way, we obtain a sequence of disjoint subsets {An : n G Z + } of A 
such that 

A = {J{An: neZ+}, 

and a sequence { fnk,ik}kGZ+ °^ m e a s u r a D - e selectors of F. 
Since h is an integrable function, then from the absolute continuity of integral 

£_ 

6 
with fi(B) <6 it holds 

it follows, that for — there is 6 > 0 such that for arbitrary measurable set B 

I 2h(ш) àџ < -

B 
oo 

Since fi(A) = ]T fi>(Ak) < oo, then there is ko such that 
k=i 

/ oo 

»[ U AA = E ^ ) < á ' 
\ k=ko / k=ko 

2h(uз) dџ < -I 
U M 

k = ko 

For k = 1,..., ko, choose pk such that 

/ I 7n f c ,z f c H - /n fc,i fc,pMI dlx < — for all p > phv. 

Let M > max{pi, . . . ,Pk0} • For p > M , produce a selector of the multifunc­
tion Fp as follows: 
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Let fp be a measurable selector of Fp. Pu t 

(u\ - / fnkJkAv) for u e Ak, k - 1, 2 , . . . , k0 , 

I / p H otherwise. 

Now we show that gp is the needed selector of Fp. 

/ IgH ~gpHI dM 
Q 

= / IgH - 9P(v)\ d/^ + / IgH - gHI dM 
A Q\A 

~ __ / l#H ~ ^ P H I dM + / IgH - svHI dM 
fc=1 A f c J?\A 

oo « oo „ 

< — /|ff(u;)-7„t,.,>)|dAi + — / | / n f c , u H - g p H | d M 
fc=1 A f c

 fc=1 ifc 

/ b(w)-</PHI d// 
•\A 

- - E | ^ + _ / ! / » - , « > ) - * M l d M 
fc-1 fc_l A f c 

+ E I \7nk,i„(v)-9p(v)\ dn+ J \g(u>) - gp(u)\ d/x 
fc=fc° A * j ? \ 4 

fco /. 

- | + E / l7nl,,.»-/n,t,.1,,p(w)|d/i 
fc=1Afc 

+ E f\7nk,ik(u)-fP(<o)\dn+ j \g(u) - gp(u>)\ dn 
k=k° Ak n\A 

< | + | + f\7nkMu)-fp(<")\*l* + l 

U Afc 

є є /* л ¥ , ч , є є є £ є 

< Õ + 7 + / 2 Л H ^ + Õ - Õ + ^ + ^ + Õ ^ ^ 3 6 / v / ^ 3 ~ 3 6 6 3 

U Ak 
k — krл 
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The proof of the opposite inclusion is similar. • 

Let us remark (see the end of this paper) that the space C~ of integrable 
multifunctions from Q —> Y was studied also by H i a i and U m e g a k i in 
[HU]. They consider other metric A on C~. 

If A and B are two nonempty closed subsets of Y, put 

6(A, B) = max] sup rf(a, B), sup d(A, b) >, 

the Hausdorff distance between A and B ([Be]), where d is the metric induced 
by the norm of Y. 

Let Fi,F2 G C~. Taking two sequences {fu} and {f2j} of measurable func­
tions such that 

Fi(w) = c\({fu(w) : ie%+}) and 

F2(u) = cl({f2j(u;):j GZ+}) for all C J G / 2 , 

we have 

(5(Fi(a;),F2(cj)) = max/supinf | | / H (c j ) - /2j-(a;)||, supinf \\fu(w) ~ / 2 j H l l ) , 
^ i J j l J 

so that the function uo —> 6(F1(LU), F2(UJ)) is measurable. Since 

8(F1(UJ),F2(U))<\\F1(U)\\ + \\F2(U)\\, 

the function a; —> £(Fi(a;), F2(a;)) is also integrable. H i a i and U m e g a k i 
define in [HU] the metric A on C~ as follows 

A(Fг,F2) = JбţF^u), F2{u)) dџ. 

A natural question is to find relations between metrics L and A. First we 
introduce some auxiliary relations. 

Let / be a measurable function from Q to F , and let a be a measurable 
function from i? to [0, oo] . Then, by literature, there is a sequence of simple 
measurable functions {fn}nez+ such that 

f(u) = limfn(u;) and 
n 

H / n M | | < l l / M I I , n = l , 2 , . . . , for each a; G J?. 

Here, by a simple function, we mean a function with finitely many values. 
Also there is a sequence of simple measurable functions 

{OV,}, an: Q -> [0,oo), 
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for every n E Z + , such that 

a(uj) = limcrn(c<;) for each UJ G fi . 
n 

The function fa is also measurable, since 

f(u)a(uj) = \im fn(uj)an(uj) 
n 

and fnan is a simple measurable function. 
Further, let B be a unit ball in Y (i.e. B = {y G Y : \\y\\ < l } ) , and let 

{di} be a countable dense set in B. 
Put 

£i(cc;) = / ( c j ) + a i for every u G f i , i = l , 2 , . . . 

Clearly 
HgiM - / M i l < 1 for every UJ G i? , i = l , 2 , . . , 

and 

c l ( { ^ M : i G Z + } ) = {y: | | y - / M | | < l } for every UJ G Q . 

Define the multifunction ff: i? —> F by 

ff(CJ) = {y : | | y - / M i l < (J(UJ)} for every UJ G Q . 

We show that ff is a weakly measurable multifunction. 
For every i E Z + , let /i^: 4? —» F be the following function: 

hi(u) = (gi(uj) - f(uj))a(uj) + f(uj) for every UJ G 1? . 

Clearly, the function /î  is measurable for every i G Z + . It is very easy to verify 
that H l^M — / M i l < O~M for every w G f i and every i G Z+ . 

Now we show that 

c\({hi(uj) : i G Z + }) = ff (a;) for every a; G J? . 

If a(uj) = 0, then clearly H(UJ) = c\({hi(uj) : i G Z+ }) . Now let CJ G J? be such 
that a(uj) 7̂  0. It is sufficient to prove that 

H(UJ) Gc\({hi(uj) : i G Z + } ) . 

Let 7/ G ff"M and e > 0 . We show that for the set 

Oy = {zeY: \\y-z\\<e} 

the following relation holds: 

Ovn({hi(u>): ieZ+})^$. 
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Clearly, we can write y as /(CJ) + c, where c is an element from Y with | |c | | < 
cr(u)). Further, put 

cr(oj) vyu) 

Then we have 

llш-/ИII = 

Put 

y-+m-Щ-m 
<т(ш) ^ ( ^ ) #-/иii-ь 

oУl 
= {zeY:\\Z-yi\\<^}. 

There is i G Z + such that gi(ou) E Oyi. We show that ||/ii(ci;) — y\\ < e. 

|| ( f t H - f(u;))a(u) + / H - ((i/x - /(o;))a(a;) + /(a;)) || 

= I I ^ H ^ M - 2/î MII = II&M - y i l k H < ^. 

The multifunction H: i? —•> Y is weakly measurable because the multifunc­
tion P: £2 ^ Y defined by P(u) = [hi(uj) : i G Z + } is weakly measurable 
([H]). 

The following example shows that there are two mult if unctions F and G, 
for which L~(F,G) < A(F,G). 

E x a m p l e . Let Q = Y = R with the usual metric. Put 

F(u>) = 0 if UJ E ( - o o , - l ) U (0,oo), 

F(u>) = {1,2} if w e ( - 1 , 0 ) , and 

G(u) = 0 if CJ E ( -oo,0) U ( l , oo ) , 

G(CJ) = {0, - 2 } if w e (0 ,1) . 

It is very easy to verify that A(F ,G) = 4 and L~(.F,G) = 3 . 

PROPOSITION 3.7. L~(F, G) < A(F, G) /Or a// multifunction F,G: Q - • y . 

P r o o f . Suppose that there are multifunctions F, G for which 

L~(F,G) > A ( F , G ) , where A(F,G) = f a(u)dfi = a, 

Í2 

and O"(cj) is the Hausdorff distance between F(LJ) and G(u). 

Hence, one of the following possibilities is true: 
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1. There is / , a selector of the multifunction F such that 

\\g(u) - / M | | d/i > a / > 

for every selector of the multifunction G. 
2. There is g, a selector of the multifunction G such that 

/• | |GM - / M | | d/x> a 

for every selector / of the multifunction F. 

Suppose condition 1 is true. The multifunction 

H(u>) = {y. \\f(u>)-y\\<a(uj)} 

is weakly measurable, as we proved above; so H has a measurable graph. Hence 

H(u) n G(u) + 0 for every u G Q 

because CT(UJ) is the Hausdorff distance between the sets F(u) and G(u) and 
f(u) e F(u). Put 

P(u) = H(u) fl G(u) for every u; <E Q . 

Then P is a graph measurable multifunction. There is a selector p of the 
multifunction P for which 

/ ll/M -PMII dM < / ^(^) d/x = a 
i7 i7 

because p is a selector of the multifunction H. But that is a contradiction 
because p is also a selector of the multifunction G. • 
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