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Math. Slovaca 33, 1983, No. 2, 209—224 

EXTENSIONS OF BAUER'S IDENTICAL 
CONGRUENCES 

STEFAN SCHWARZ 

In the present paper we shall use a part of the results obtained in [4] to prove 
some identical congruences which can be considered as extensions and modifica
tions of the famous Bauer's congruences. (See Hardy—Wright, [2].) 

For the convenience of the reader we recall some facts proved in [4] needed in 
the following. 

Let m=p"1 ... pa
r
r be the factorization of an integer m>\ into the product of 

different prime powers. Let Sm be the multiplicative semigroup of the ring of 
integers (mod m). The class containing the number a is denoted by [a]. We shall 
freely use the fact that Sm admits also an addition. 

Sm contains 2r different idempotents (including [0] and [1]). Any idempotent 
eeSm can be written in the form e = [p[l ... plra], where /, is either zero or a, and a 
is an integer with (a, m) = 1. 

The idempotents of the form [p?'a] will be denoted as / and called the maximal 
idempotents of Sm. Any idempotent eeSm which is different from [1] is 
a product of maximal idempotents e S. Under the partial ordering e'^e" oe'e" = 
= e' the set E of all idempotents forms a Boolean algebra. The r idempotents of 
the form / = [tf • mlpa], (a, m) = 1, are called the primit ive idempotent s e Sm. 
We h a v e / + / = [ l ] , also /x + ... + /- = [1] and / i . . . / = [0]. 

To any idempotent e e E there exist a maximal group G(e) containing e as its 
unit element and a maximal subsemigroup P(e) of S containing e as the unique 

idempotent. Hence P(e) = {x \ x e Sm, xl = e for some / > 0 } . Clearly Sm = (J P(e) 
eeE 

and G(e)c=.P(e). In particular G(l ) = G([l]) is the group of order q>(m) (Euler 
function) containing all [a] with (a, m) = l. Note that P([1])=G(1). 

The following (internal) direct decomposition of G(l) plays an important role. 
Denote 

Gi = {fi + [h]fi\0<h<pa',(h,Pi) = l}. 

Then all G, are subgroups of G(l) and we have 

G( l )=Gx G2...Gr. 
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Analogously if T = {f + [h]f\0^ h<p'i1'}, then Sm admits the following (internal) 
direct decomposition: 

Sm=T T2 ... Tr. 

Hereby 7,07} = [0] for i±j. 
Let eeE, eJ=[l], and e = f\ ...fs (l^s<r). Then the group G(e) has the 

following (internal) direct decomposition 

G(e) = (Gs+le)...(Gre). 

(If s = r, then e = [0] and G(e) = {[0]}.) 

Note for the following. The correspondence p, <-->/, is one to one. There are of 

course I J different products of s maximal idempotents. For simplicity we write 

e = /i ... fs having in mind that this is a typical representative of the product of s 
maximal idempotents. 

Denote 7, = G,u7,, G,n7, = 0 ( 1 ^ / ^ r ) . Then the semigroup P(e) admits the 
following decomposition 

P(e) = L...Is(Gs+l)...(Gr). 

Here l are subsemigroups of Sm and 7,n7, = 0 if /=£/. (If e = [0], P([0]) = /i ... Ir.) 
Finally if e = /i . . . / , we have (with card A = |A|) 

\G(e)\ = cp(mlp? ...pa*) = cp(p:x ... p?) 

\P(e)\=Pr1...Prl\G(e)\. 

In order to find a generalization of the Lagrange decomposition 

(x-l)(x-2) ...(x-p + l) = xp l-l(modp), 

B a u e r (1902) considered the product 

F(x)= FT (x-v) and proved: For p,>2 we have 
ved(l) 

F(x) = (xp'-1 - iy(m) (p'-n(mod pn), 

and a similar result if /?, = 2. Later Vandiver (1917) extended this result giving 
formulas for the value of F(x) in Sm (i. e. not mod p"' but mod m). He also gave 

a formula for the product [ 1 (x — v). (See Theorem 2 and Theorem 7 below.) 
ve Sm 

The purpose of this paper is to give explicit formulae for the products 

n (x-v) and \\ (x-v), where e is any idempotent eSm. These formulae 
e) v 6 P(e) 
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are certainly new since a rather thorough investigation of the existing literature 
shows that there is a very limited number of papers dealing explicitly with the 
groups G(e) and semigroups P(e) for e=£[l]. 

In the following we shall use only a special case of Bauer's identity, namely the 
case m=P

a ( a S I ) , the proof of which is given in [2]. 
Denote V={0 , 1, ..., P

a-1}, Vl)= {ae V\(a, p) = 1}, then the following 
holds: 

Lemma l.(Bauer). a) If P>2, then 

11 (x - v) =. (xp~l - lyXrooA P
a). (1) 

b) If P = 2 and a>l, 

n (x-v) = (x2-l)2a~\mod2a). 
veV™ 

Remark . When dealing with residue classes as elements e Sp
a we may write (1) 

in the form J~[ (x — v) = (xp~x — [l])pa (with the sign of equality). In the 
veG(l) 

following we reserve the sign of the equality for all calculations to be carried out in 
Sm. 

N o t a t i o n . Throughout the paper we use the following notation. If A is 

a nonempty subset of Sm, then U[x; A] denotes the product {"[(•* ~~v) (with 
veA 

coefficients eSm). 
As it does not lead to any misunderstanding we shall write x + a, aeSm instead 

of [1] x + a and replace ax — aby (x — l)a having in mind that all coefficients of the 
polynomials considered are elements eSm. 

If m = p? ...pa\ we denote V = {0, 1, ..., pa< - 1}, V<1} = {ae V,\(a, Pi) = 1}, 
Vl0) = {ae Vi\(a,Pi)>l}, so that V= V ^ u V ^ . 

1. The product U[x; G ] 

As remarked above the groups G play an important role, so that we have to deal 
first with the product 

U[x;G,]= U(x-v). 
veGi 

We suppose m=pai ...pa\ The case r=l is not interesting since it leads to 
Lemma 1. Hence we suppose r S 2 . 

In the following Theorem 1 | G | is the cardinality of G , hence | G | = 
pa>-l(pi-l)ior Pi^2. 
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Theorem 1. With the notations introduced above we have 

[[(x-f,T ' - I , ] 1 0 ' 1 " ' ° for p,>2, 
o[x: G] = j [(* - ff - f,]m 2 for p, = 2, a, §2, 

[x-[l] for p"'= 2. 

Proof. Any element veG can be written in the form v=f, + hfh he Vj". 
Hence 

x-v = x-[fl + hfl] = x(fl + fl)-(f, + hf.) = (x-l)f. + (x-h)f, 

and 

U[x:G,)= П [(x-lЏ + b-ҺЏ^fr-iy-f + f, П (x-h), 
/.єV, ( 1 ) Л є V , ( , ) 

where y, = q)(p?'). 
a) For ps>2, we have by Lemma 1, (with /3, =p," , _ 1). 

0 (^-h) = (Arp'"1-l)ft(modp70 

and, since /,[p?'] = [0], 

l/[*: G ] = (x - 1 )< p '-1 ) f t • /, + Cr""1 - 1 )"'•/, = 

= [O - l ) * " ' / + Or""1 - l)/,f = [{(x -l)f, + xfi}"' ' - / , ] ' ' , 

whence the first formula immediately follows, 
b) For pi = 2, cii^2, we have by Lemma 1, 

ft ( x - A ) s ( * 2 - l ) * ( m o d 2 a ' ) , 
/, ev, ( 1 ) 

where fr = 2ar2. 

Hence 
£/[x; G ] = (x- l)2* • / + (x2 - If- • / = [(x - lf'fi + (x2 - l)fi]* = 

= K*-fi)2-fi]fi: 

c) If pa>=2 (i. e. m is divisible by 2, but not by 4), we have V/1 ) = {1}, the group 
G reduces vo the element fi + 1 ' fi = [l], so that U[x; Gi] = x — [1]. 

This proves Theorem 1. 
Suppose in the following again m=p"1 ... pa/, where r=^2. We use Theorem 1 to 

find U[x: G(l)] = U[x; GiG2 ... Gr]. 

U[x; G( l ) ]= n (x — v) = Y\(x — Vi ... Vr), where Vi, ..., vr run indepen-
veG\ ... Gr 

dently over Gu ..., Gr. Since [1] = / + . . . + / , we may write u[x;G(l)] 

= ^U[x; Gi ... Gr] • fii and compute each of these summands separately. 
i=\ 
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Write v in the form 

V = Vl ...Vr = (]l + hlfl) ...(fr+hrfr) 

with hi e V?\ For any / (1 __. /'__ r) we have v f = V1V2 ... vrf = Vif independently 
of the (p(m)l\Gi\ possible values of vi ... Vi-iVi+i ... vr. 

Hence 

U[x; G(l)]f= U(xfi-vfirim)/lGil = 
veGi 

[ -i qp(m)/|G,| 

ri (*-")) •/,= _i*;a]*<-v|0'l-/». 

a) If p, is odd, then by Theorem 1 

U[x; G] •/, = { [ ( * - / . ) " - - / , ] / , } | 0 ' | / < "- , ) = 

= [ X P, -« . / . _ /,] W < P . - 0 = ( jc*-« _ ! ) W<*-» • / 

and 

U[x; G(l)] • /, = (xp>-1 - l)*"™"-" • /, . 

b) If m = 2 p ? ...pi', r_;2, then since |G,| = 1, 

U[x ; G(l)] • / , = U[x ; G,r (m) •/ , = ( * - l)v(m> • /'• 

c) If m = 2a ip? ...p"', a,_;2, then 

U[x; G(l)] • /, = U[x; G,]'°> °''/, = 

= [(* - / . ) 2 - / .r ( m ) '2 • /. = ( * 7 - /0 v ( m ) ' 2 =(* 2 - 1)"<m)'2 • A • 

This can be modified (due to the fact that r=_2). First 

i < p ( m ) = i - 2 " ' - ' p ? - 1 ( p 2 - l ) . . . = 2 " ' - 1
M , 

where u is an integer. Next (with y = 2ai_1w) 

(x2 - iY •/• = [(* - if+2(„ _ i ) ] ' •/, = („ - i r ( m ) / , + 

^2",_1 • u\ + Yá(
2\'U)2\x-iy(m)-kfì 

ЛsEl \ K / 

It is easy to see that ( )2* is divisible by 2 a i and since [2ai]/i = 0, we finally 

have U[x;G(l)]fi = (jc-l)* m )/i. 
This implies: 
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Theorem 2. Let m= p\h ... pa
r
r, r _ 2 . Then 

p - l _ 1 \(p(m) (p-l) U[x;G(l)] = 2ff,(x>"-1-iy 

This formula has been (in essential) found by Vandiver (1917). Of course, since 
he does not use explicitly the idempotents, his formulations are rather complicated. 
(See Dickson [1], p. 89.) 

2. The product U[x ; G(e)] 

Let now be e any idempotent e E, e^[l] and e = fif2 ... / , where s;_ l _ r . We 
again suppose r _ 2 . 

We shall find explicit formulas for the product FF (x - v), G(e) being (as 
v e CT(e) 

above) the maximal subgroup of Sm belonging to the idempotent e. 
In the following we suppose s < r, since for s = r we have e = [0] and 

U[x; G(0)] = x. 
The group G(e) is a direct product of its subgroups 

G(e) = (Gs+ie) • (Gs+2e) ... (Gre). 

Any element v e G(e) is of the form v = vs+i ... vr, where v, e G,e, and v, = 
(fj + h}fj)-fi...fi, hjeVjl\ y_:s + L Hence 

U[x\ G(e)] = Il(x- vs+i ... vr), where vs+u ..., vr, 

run independently through Gs+i • e, ..., G • e. 
Write again 

U[x;G(e)] = i{U[x;G(e)]fi. 

If / e { l , 2, ..., s}, then vs+i ... Ifr • / = [0], so that 

C ^ x ; G ( e ) ] / i - = x , G ( e ) l / ; . 

If i e { j + l, -.., r}> then v5+i ... fr • /. = v.+i/-• tt,+2// ... tv/,. Since for ;'-/= 1 v/. = 

= (fi + hjfi)fi ... fi' fi = fifi ... fs' fi = fh we have independently of the | ^ r p 

choices of vs+i, •••, Vi 1 • f ,-+i ••• vr, that (t,5+1 ... Vr)f - uf. Hence 

£/[*: G{e)]fi= mxfi-vfi)w'*™ = [U(x; G)],ow ^ • fi 

and 

U[x;G(e)] = (f1 + ... + fs)x'a(eM+±[U(x; G ) ] 1 ^ 1 |OJ • /,. (2) 
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By Theorem 1 we have again U[x; G ] / = (xPi l - l ) , G ' | / p ' J • / if pt is odd and the 
same results hold if pi'= 2. If />7' = 2a', a. ^ 2 , we have JJ[jt;G]/ = 
= ( x 2 - l ) , G ' | / 2 . / , 

If all p5+i, ..., pr are odd, or one of them, say pr, is even and pa/ = 2, we 
immediately obtain 

U[x; G(e)] = ( / + . . . + /)A: ,G<' ) I + 2 ^ + , (*""' ~ l)1™""-1 • /,. 

There remains the case in which one of the ps+i, ..., pr, say pr, is even and 
p"r = 2ar, ar=\2. In this case the last term in (2) is 
Recall that \G(e)\ = <p(pa+V ... pa/) = \Gs+i\ ... \Gr\. If r-s ^ 2 , then (analogous
ly to the proof of Theorem 1) the right-hand side of (3) can be rewritten as 
(x-l)]G(g)lfr. If s = r-l, i .e. e = fi ... fr-i and \G(e)\=2ar~1 this modification 
cannot be carried out but in this case we have 

U[x; G(e)] = (fi +... +fr-i)x^G(g)l + (x2-iyG(e)]/2fr = 

= frx
lG(g)l + fi(x2-l)lG(g)l/2 = [fi 

= (x2-frY', 

where pr = 2a~2. 
We have proved: 

Theorem 3. Let m=pai ... p°r and e = fi ... fi, s<r. Then 

U[x;G(e)] = (fi + ... + fi)xlG(g)l+ £ / , ( * * - * - l y ^ ' C * - " 
i=s+l 

with the exception of the case e = fi . . . / , - i and pa' = 2"', ar^2, in which case 
U[x; G(e)] = (x2-fif', where pr = 2a-'2. 

Remark 1. In this exceptional case e is the primitive idempotent fi with the 
corresponding maximal group of order |G(/r)| = 2°' -1. 

For any other primitive idempotent which is necessarily of the form e = 
fi . . . / , - . = / , and \G(e)\ = cp(pa') we have (with pr = pa'~1) 

U[x; G(e)] = (/, + . . . + / , - , )* | G ( ' ) l + /,(*''-' - i)i«')i /^-» = 

= /, • xl0(')[ + fi{x'-1 - l)"*')"^-') = [/ • x"-'1 + fr(x>-1 - l)f' = 

= [*''-* -fi]"'. 

Hence we state: 

Corollary 3. If fi is a primitive idempotent e Sm, then 

U[x; G(f,)] = [x"'-1 - fi]"', /3, = pr1, 
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with the exception of the case that m is even, f, = [a • m/2a'], a, =^2, a e G(\), in 
which case 

U[x;G(fi)] = (x2-fiiy%y^ = 2a''2. 

R e m a r k 2. It is worth to note the following. Suppose, e. g., that /?, is odd. The 
group G and the group G(f) are algebraically isomorphic, while 

n (x - v)=[(x - fif-1 - fl]\ &=Pr\ 
v e Gi 

n (x-v)=[xp<-i-fl)\ 
v e d(f,) 

which are different polynomials (over Sm). 

3. The product U[x ; P(e)] 

In the following we shall need a Lemma. 

Denote Za=Y\(x-hp). Note: If V= {0, 1, ..., pa -1}, and V0) 

= {ve V | ( A , p ) > l } , then Za = Ujx - v) (mod pa). 

Lemma 2. a) If p>2, then 

Za = xp" (modpa). 

b) If p = 2, a^2, then 

Za = (x2-2x)2"~2 (mod pa). 

Remark . The first part of this Lemma is implicitly contained in paper [3]. 
Proof, a) Suppose p>2, the Lemma is true for a = \, since Z\ = x— p = 

x (mod p). Suppose that Za=xp° (mod pa), we prove Za+i'^xpa (mod p a + 1 ) . 

Now 

For a fixed / 

"jj (x - hp-jp")^ (x - hp)+jp° • g(x) = Za+jpag(x) (mod p" + 1 ) , 

where g(x) is a polynomial independent of j . This implies 

Za+i^(Za+j'pag(x))^Zp + ZPa-1pa'g(x) \ j = Zp
a (mod pa+l). 
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Since by the inductive supposition Za = xp° ' + pa gi(x) (with a p 0 i y n o r m a l 

gi(x)), we have 

Z a ^ s ^ + p - • gi(x)]p^xpa (rnodp"*1). 

This proves our Lemma for p>2. 

b) Suppose p = 2. The statement holds for a = 2, since Z2 = x(x^2)- W e 

suppose that 

z « = 2 n^- 2 ^)^(^ 2 - 2 ; c ) 2 a " 2 ( m o d 2 a ) ' 
we have to prove that Za+l^(x2-2x)2a~x (mod 2a+1). Now 

2 « - l 2 a ~ 1 

Za+i = n (* - 2h)(x - 2(2a"1 + h)) = J l (* - 2h ~ 2a_1)2 (mod 2") 

(since 2 ( a - l ) ^ a for a ^ 2 ) . Further 
2 a - l 

JJ (x - 2h - 2""1) = Za(x - 2 - 1 ) -^ [(x - 20"1)2 - 2(x - 2a~l)]2a~2^ 

- ( jc 2 -2jc) 2 a _ 2 (mod2 a ) , 

hence 

JJ (x-2h-2""1) = (JC2-2x)2a~2 + 2a • <?(*), 

where g(x) is a polynomial. This implies finally 

Za+i(x) = [(x2 - 2x)2a~2 + 2ag(jc)]2 - (JC2 - 2jc)2a_1 (mod 2a + 1). 

This completes the proof of Lemma 2. 

The next theorem deals with the product \~\ (x " v)- w n e r e I has been defined in 
veli 

the introduction. 

Theorem 4. 

U[x;L] = 
(jt- /•)"'' iï p,>2, 
(jt2-[2]jt +/)*"'' iï p"' = 2a', « І S 2 , 

[ j t - / j'/pa ' = 2, 

where |/.| =p" ' ' . 
Proof. Any element u e i is of the form v=*fi + hft, he V?\ We have 

x-v = (x-l)fi + (x-H)fi,heV°\ 
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u[x,;/,]=n(^-^)=(^-i)"'l/+/- n (*-lo-
»«'< hiA0> 

a) If p , > 2 , by Lemma 2 (since [p ."']/. = [0]) 

Lt[*; /,] = (x- l)"'1/, + *"•'/. = [(* - 1 ) / , + xfl]W = 

= (*-/)"''• 

b) If p a , = 2a ', a, ^ 2 , again by Lemma 2 

(7[jc;/l] = ( x - l ) | / ' l / + (^ 2-2x) ' l / ' l / = 

= [(* - I)2 / + (*2 - 2x)f.]k ''' = (x2 - [2]x + /,)* '<'. 

c) Ifp?' = 2, V<0) = {0},sothatiireduces to / + [ 0 ] / = / , hence U[x\ l] = x-f. 
This proves Theorem 4. 
To find U[x\ P(e)] we may restrict ourselves to the case e^=[l] since P( l ) = 

G(l ) . 
Let e = /i . . . / „ s^r, (and s^l). The semigroup P(e) admits the following 

(internal) direct decomposition 

p(e) = / i . . . / 5 G,+ i . . . a , 

where if s = r, no G, appears. Clearly |P(e)| = | / i | ... |/, | • |G,+i| ... \Gr\. 

U[x; P(e)] = II(x-Vi ... vsvs+i ... tv), where v*e/* for k^s, and vkeGk, for 
k>5. 

/ • 

We write again L [̂JC ; P(e)] = ̂ U[x\ P(e)] • / . 

Recall vk=fk + hkfk, where /u e Vi0) for k^s and A* e V*1} for k>s. 
a) If i^s, then vi ... vr- f = v.f for all possible |P(e)/|7/| values of the product 

fi ... v,--it>,-+i ... vry so that 

^;P(e)]/ /=n(*-w) |F( ') l | f '1/.. 
ve I, 

b) If s<r and / > s , then again Vi ... vrf = i;,/ for all possible |P(e) | / |G, | 
choices of the remaining vh so that 

L1*;P(e)]/=n(*-".)",(',ll°'1. 
V , E G , 

Therefore: 

ot*; IV))] = i tI(*; J.)1™""'1/. + 2 [ U(x; G)]'"" '°'f. • (4) 
,=1 i = s + l 

c) If s = r, the same formula holds if the last term to the right is omitted. 
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A) Suppose that m=p"1 ... p°r, r=\2, where all pa' are odd or one of the factors 
is 2. Then (4), Theorem 1 and Theorem 3 imply 

U[x; P(e)] = 2 ( - -/) | i>< '> ' / + 2 [(" - /Y"1 -/]|p('>"(-'-1>/ = 
»=1 1 = 5 + 1 

=[/1 + ...+/]^",('>'+ -r/ i(x"- ,-i) l n ' )" (- ' - , ) , (5) 
i = s+l 

where if s = r, the second term should be omitted so that U[x; P(e)] = x]P(e)l. 
There remains the case that one of the factors of m=pa- ... pa

r
r is equal to 2a , 

where a =.2. In this case it is necessary to consider several possibilities. 
B) Suppose first that m = 2a- • p? ... pa\ ai= .2, and r = s, i .e. e = [0] and 

P(e) = P([0]) = P(0). 

Then 

U[x; J.]'p('"/'/,'/1 = (*2 - 2* + /,)*"""I/, = (x2 - 2*)'"™1/, 

and 

U[x; P(0)] = (x2-2x)>lno)[f1 + (f2 + ... + fr)x
]pm = 

= (x2 - 2xf*°*fl + /^ | p (0 ) l = [(x2 - 2x)U + Ux2fm = (x2 - 2xf1f
pm. 

Hereby |P(0)| = 2a'-1p~1'i ...pa'~\ 
C) Suppose s<r, e = fi ... fs, and the maximal idempotent which is a multiple of 

[2°] is a factor of e = / , ... /,. Write m = 2a,p~2 ... /?"', so that / . is a multiple of [2"']. 
We have again 

U[x;I1fW-fl = (x2-2xf™fl. 

But since |P(«)| = 2~1_1 ... <p(p"'), |P(e)| is divisible by 2a' and | |P( .?)|»-

= 2",_1 • H, where u is an integer. Hence 

(x2-2x)ilP(e)lfi = x^)lfi+fi • 2 ( - l ) * ( * I ^ W ' ) 2 * J C , F ( ' ) | - * = X,'C')I - / i , 

since for kl=l the term (* ^ ) 2 * i s divisible by 2"1 and [2°-]/i = [0]. For 

Ll[;t; P(e)] we obtain the same result as in (5). 
D) Suppose s<r, e = fi ... fs, and write m=pa- ... par-il • 2°r, ari=2, so that the 

maximal idempotent corresponding to [2°r] is not a factor of e. 
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By Theorem 1 we have 

U[x-Gr]=[(x-fr)2-fr]>lG\ 

and the last term in (4) is now 

(U[x: Gr])]p(e)llGrl fr = [(x-fr)
2-frf

p(e^ fr. 

D 1) If s^ r - 2 , then |P(e) | is divisible by 2a% hence 2 | P ( e ) | = 2 U r * • u, where u 
is an integer. In this case (with /3 = 2ar~l • u) 

(JC2 - 1)*"*->' - /r = [(x - I ) 2 + 2(JC - 1)]" - /,, 

and by the same argument as in the proof of Theorem 1 (case c) we obtain 

(U[x:Gr])]p(e)llGrlfr = (x-lf(e\ 

so that the formula (5) holds. 

D 2 ) If s = r-l/i.e.P(e) = Il ... Ir 1 • G r and | G r | = 2 " ' \ the last term in (4) is 
(x2 — l ) 2 , P ( ' ) , / r , which cannot be directly reduced to a simpler form. 

But in this case we have 

U[x:P(e)] = (U + ... + /, i ) x , P M + ( x 2 - l ) - P ( e ) , f = 

= frX
lP(e)l + (x2 - lfP(e)lfr = [frX2 + (x2 - 1) • / , ] * lP(e)l = (x2 " frf

P(e) . 

Summarily we have proved the following two statements: 

Theorem 5a. Letm=pV ... pn\ r ^ 2 . Then U[x ; P(0)] = x,p(0)l with the excep
tion of the case that m is even and one of the factors, say p(

r\ is 2°r with ar^2. In 
this case U[x ; P(0)] = (x2 - 2xfr)>|p(0)l. 

Theorem 5b. Let m = p? ... p"\ r ^ 2 , and e = fi ... /,=»-= [0], Then 

U[x;P(e)] = [fl + ... + fs]x^P(e)l+ 2 / l (x p - | -l) , p ( e ) I C p «- , ) , with the exception of 
. = 5 + 1 

the case that s = r-l and p(X

r

r=2ar, a-=2,, in which case U[x:P(e)] = 
(X2-fr)^Mi. 

R e m a r k 1. The second case in Theorem 5b corresponds to the case of 

m = pTx ... pr-il2°r

9 ar = 2 , and e is a primitive idempotent of the form fr = -r--; • a I, 

aeG(l). 
For any other primitive idempotent / of the form 

• = /; = — ; a, , p,Ф 2, a, e G( l ) , 

the formula (5) may be rewritten as follows: 
U[x; P(J,)) =f^P(e)l +f,(xp'1 - l),PU)|/("--1) = 
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= [fi • X"'-1 + /.(*"-* - l ) ] ! ^ " ^ - " = (x*-* - /)l"WI'<".-'>. 

Corollary 4. For a primitive idempotent we have 

U[x; P(f,)] = (xp>-1 - / . ) | p ( ^ ) | / ^ - 1 ) 

with the exception of the case that m is even, fi• = hr_- a , a, = 2 , a 6 G(l ) , in which 

case 

U[x;P(fi)] = (x2-fif™. 

Remark 2. It seems to be worth to remark that n(;c — v), v running through all 
elements e P(0) (i. e. all nilpotent elements e Sm) is in "most cases" JC|P(0)I. But by 
Theorem 5 a this is not true if m is divisible by 2°r, ar = 2 . The corresponding result 

(*2-2x/-) ' | p ( 0 ) l can be rewritten. Since ( 2 i ^ ° ^ 2 * for k=^3 is divisible by 2% at 

most three terms are 4=- [0] and a simple calculation shows that 

U[x, P(0)j - ( _i«o,i _ | p ( 0 ) | . ff. .iFto,!-. _ |P(0)|/^l""»l-3fOr « r _ 3 . 

To have a numer ica l e x a m p l e consider, e. g., m = 5 • 23 = 40. Here /i = [16], 
/2 = [25], P(0) = {[0],[10], [20], [30]}. 

U[x; P(0)] = x(x - [10])(x - [20])f> - [30]) = 

= (x2 - 2 • [25]xf = xA + [20]*3 + [20]x2. 

Theorems 3 and 5b lead to the following remarkable result: 

Theorem6. Let m = p"1 ...p"', r ^ 2 , and e±[0]. Then 

U[x;P(e)]=U[x;G(e)]\ 

where L=\P(e)\l\G(e)\. 
Proof. Due to the orthogonality of the set {/}, the formula of Theorem 3 

implies for any integer k = 1: 

U[x; G(e)]k = (/, + ... + / ) * i°«>i + _T fi(x>>-* -\)" I O W I ^ - D 
i=s+l 

Putting k=\P(e)\/\G(e)\ the right-hand side gives exactly the formula of 
Theorem 5b. 

Our statement holds also in the exceptional case mentioned in Theorem 3 and 
Theorem 5b, since in this case 
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U[x; G(e)] = (x2-fifa«\ U[x; P(e)} = (x2-fif^. 

Finally it is true also if e = [l], since in this case |P(e) | = |G(e ) | . 
R e m a r k . If [e] = [0], U[x: G(0)] = x, so that Theorem 6 is true if m is odd or 

m is divisible by 2 but not by 4. In the exceptional case mentioned in Theorem 5a, 
the statement of Theorem 6 does not hold. 

4. The product U[x ; Sm] 

In order to find the formula for the product I~I(x — v), where v runs trough the 
whole semigroup 5m, we recall that Sm= Ti ... Tr, where Tt has been defined in the 
introduction. 

It is natural to find first the product U[x; 7^]. 
Since 71 = G u I „ we have U[x; T] = U[x ; G] • U[x ; I]. 

Theorem 7. a) If p,>2, then 

U[x; T] = [(x - /)"• - xf,]\ ft = p?.-1. 

b) Ifp, = 2, t ^ * ; T , ] = ( jc - / , ) ( j r - [ l ] ) . 

c) If par = 2a', a , S 2 , then 

U[x; T,] = ( * 2 - 2 x + / , ) " • [(x-f)2-fi]\ y, = 2 a^2 . 

Proof. By Theorem 1 and Theorem 4 we obtain for pl >2 

U[x; T] = (x - /,)"' • [(x - / y . - 1 - /,]"• = 

= [(x-fiy-(x-fi)fiY' = [(x-fiY: 

The remaining cases follow directly from the corresponding statements of 
Theorems 1 and 4. 

Any element veSm can be written uniquely in the form v = ht2 ... tr, with ti e T. 
For any v eSmv • f = (h ... tr) f = t,f independently of the m/p"1 possible values 
Of ti . . . ti-lti+l . . . tr. 

Hence 

U[x; Sm] • / = n (xfi - vfi) = FT (xfi - tfiy = (U[x; T]y • fi, 
veSm teT, 

where u, = m/p?' 
r 

Since U[x; Sm] = ^ U[x; Sm] • fi, we have finally 

o[^;Sm] = gLt[x;Tr/;. 

a) If p,>2, we have (with fr = p?~1) 

U[x; T,]"' • /, = ([*'• - xY< • fiy = ( / ' - x)m "'fi. 
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b) If p, = 2, 

U[x; T]m,2fi = [(„ - fi)(x - l ) / ] m / 2 = (x2 - x)m'2 • fi. 

c) If pa' = 2a', a , _ 2 , (with v, = m/2°<) 

U[x; TY'fi = (*2 - 2x)ml* • (x2 - l )m / 4 • /, = 

= [(*2-„)2-2(„2-„)r4-/(. 
We have proved: 

Theorem 8. Let m=pa{ ... pa
r
r. If all pt are odd or m is divisible by 2 but not 

by 4, then 

U[x;Sm] = £fi-(x«-x)m''''. (6) 

Ifm = 2a*p?...pa/, aii_;2, then 

U[x; Sm] = [(x2 - x)2 - 2(x2 - jc)]m/4/i + %£(** - * r f t . (7) 

R e m a r k . The first term in (7) can be directly computed and we obtain 
(analogously to the Remark after Corollary 4 ) : 

K*2-*Ѓ-2(*2-„)Г7H 
(y-^ + l ^ - ) . / . , for a, = 2, 

/ m/2 . ' ' * m/2-1 . ' ' * m/2-2\ r r_._ _. - ^ ^ 

(y +~^y + y y )*/i, f o r a i Ž 3 , 

where ^---x2 — ̂ . 
The formula (6) has been proved (in essential) by Vand ive r . His formula for 

U[x; Sm] in the case of m even (as reproduced in D i c k s o n [1], p. 89) is not 
correct. The correct result is (7). 

5. Concluding remarks 

Theorems 1 and 4 enable to find also formulae for U[x; Gi ... Gs], 
U[x; Ii ... Is], U[x; Ti ... Ts] with s< r. We omit this since these products seem to 
be of minor interest. 

There are several applications of the results obtained. We outline one of them. 
Suppose, e. g., that m is odd (and ri__2). 
Let e = /i ... fs be a non-primitive idempotent e Sm (i. e. s _i r — 2). Then putting 

x = 0 in the formula of Theorem 3 we obtain 

[_l]i«wi. n u= n «-/.+i + ... + / , - l - / i - . . . - / . = / i . . . / = e. 
ueG(e) ueG(e) 
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If e = /. is a primitive idempotent e Sm, then Corollary 3 implies (with /3, = p? *): 

[-i]'««' n "= n «=[-/r'=-/=-e. 
ueG(e) ueG(e) 

Hence (if m is odd) FT w is e for any non-primitive idempotent and — e for any 
ueG(e) 

primitive idempotent e Sm. By considering also the case of m even, we arrive at 

Theorem 8, 1 of paper [4], where the value of f ] M has been derived directly. 
ueG(e) 

Also Theorem 8, 2 of paper [4] follows immediately from Theorem 6. 
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ОБОБЩЕНИЯ СРАВНЕНИИ М. БАУЭРА 

ЗтеГап 5сЬ\уаг2 

Р е з ю м е 

Пусть 5т- мультипликативная полуфуппа кольца классов вычетов (тос! т). Пусть е 
- идемпотент е 5.,,, С(е) и Р(е) - максимальная фуппа и максимальная полуфуппа принад
лежащая и идемпотенту е. Целью статьи является вычисление произведения П(д: — у), где V 
пробегает все элементы е С(е) и е Р(е) соотвественно. Основными результатами являются 
формулы данные в Теореме 3, в Теоремах 5а, Ь и в Теореме 6. 
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