Mathematic Slovaca

Štefan Schwarz

Extensions of Bauer's identical congruences

Mathematica Slovaca, Vol. 33 (1983), No. 2, 209--224

Persistent URL: http://dml.cz/dmlcz/130140

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

EXTENSIONS OF BAUER'S IDENTICAL CONGRUENCES

ŠTEFAN SCHWARZ

In the present paper we shall use a part of the results obtained in [4] to prove some identical congruences which can be considered as extensions and modifications of the famous Bauer's congruences. (See Hardy-Wright, [2].)

For the convenience of the reader we recall some facts proved in [4] needed in the following.

Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ be the factorization of an integer $m>1$ into the product of different prime powers. Let S_{m} be the multiplicative semigroup of the ring of integers $(\bmod m)$. The class containing the number a is denoted by $[a]$. We shall freely use the fact that S_{m} admits also an addition.
S_{m} contains 2^{r} different idempotents (including [0] and [1]). Any idempotent $e \in S_{m}$ can be written in the form $\mathrm{e}=\left[p_{1}^{t_{1}} \ldots p_{r}^{t_{r}} a\right]$, where l_{i} is either zero or α_{i} and a is an integer with $(a, m)=1$.

The idempotents of the form [$p_{i}^{\alpha_{i}} a$] will be denoted as \bar{f}_{i} and called the maximal idempotents of S_{m}. Any idempotent $e \in S_{m}$ which is different from [1] is a product of maximal idempotents $\in S$. Under the partial ordering $e^{\prime} \leqq e^{\prime \prime} \Leftrightarrow e^{\prime} e^{\prime \prime}=$ $=e^{\prime}$ the set E of all idempotents forms a Boolean algebra. The r idempotents of the form $f_{i}=\left[a \cdot m / p_{i}^{\alpha}\right],(a, m)=1$, are called the primitive idempotents $\in S_{m}$. We have $f_{i}+\bar{f}_{i}=[1]$, also $f_{1}+\ldots+f_{r}=[1]$ and $\bar{f}_{1} \ldots \bar{f}_{r}=[0]$.

To any idempotent $e \in E$ there exist a maximal group $G(e)$ containing e as its unit element and a maximal subsemigroup $P(e)$ of S containing e as the unique idempotent. Hence $P(e)=\left\{x \mid x \in S_{m}, x^{\prime}=e\right.$ for some $\left.l>0\right\}$. Clearly $S_{m}=\bigcup_{e \in E} P(e)$ and $G(e) \subset P(e)$. In particular $G(1)=G([1])$ is the group of order $\varphi(m)$ (Euler function) containing all $[a]$ with $(a, m)=1$. Note that $P([1])=G(1)$.

The following (internal) direct decomposition of $G(1)$ plays an important role. Denote

$$
G_{i}=\left\{\bar{f}_{i}+[h] f_{i} \mid 0<h<p_{i}^{a_{i}},\left(h, p_{i}\right)=1\right\} .
$$

Then all G_{i} are subgroups of $G(1)$ and we have

$$
G(1)=G_{1} \cdot G_{2} \ldots G_{r} .
$$

Analogously if $T_{i}=\left\{\bar{f}_{i}+[h] f_{i} \mid 0 \leqq h<p_{i}^{\omega_{i}}\right\}$, then S_{m} admits the following (internal) direct decomposition :

$$
S_{m}=T_{1} \cdot T_{2} \ldots T_{r}
$$

Hereby $T_{i} \cap T_{j}=[0]$ for $i \neq j$.
Let $e \in E, e \neq[1]$, and $e=\bar{f}_{1} \ldots \bar{f}_{s}(1 \leqq s<r)$. Then the group $G(e)$ has the following (internal) direct decomposition

$$
G(e)=\left(G_{s+1} e\right) \ldots\left(G_{r} e\right)
$$

(If $s=r$, then $e=[0]$ and $G(e)=\{[0]\}$.)
Note for the following. The correspondence $p_{t} \leftrightarrow \bar{f}_{i}$ is one to one. There are of course $\binom{r}{s}$ different products of s maximal idempotents. For simplicity we write $e=\bar{f}_{1} \ldots \bar{f}_{s}$ having in mind that this is a typical representative of the product of s maximal idempotents.

Denote $T_{i}=G_{i} \cup I_{i}, G_{i} \cap I_{i}=\emptyset(1 \leqq i \leqq r)$. Then the semigroup $P(e)$ admits the following decomposition

$$
P(e)=I_{1} \ldots I_{s} \cdot\left(G_{s+1}\right) \ldots\left(G_{r}\right)
$$

Here I_{i} are subsemigroups of S_{m} and $I_{i} \cap I_{1}=\emptyset$ if $i \neq j$. (If $e=[0], P([0])=I_{1} \ldots I_{r}$.)
Finally if $e=\bar{f}_{1} \ldots \bar{f}_{s}$, we have (with card $\boldsymbol{A}=|\boldsymbol{A}|$)

$$
\begin{gathered}
|G(e)|=\varphi\left(m / p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}\right)=\varphi\left(p_{s+1}^{\alpha_{s+1}} \ldots p_{r}^{\alpha_{r}}\right) \\
|P(e)|=p_{1}^{\alpha_{1}-1} \ldots p_{s}^{\alpha_{s}-1}|G(e)| .
\end{gathered}
$$

In order to find a generalization of the Lagrange decomposition

$$
(x-1)(x-2) \ldots(x-p+1) \equiv x^{p+1}-1(\bmod p)
$$

Bauer (1902) considered the product

$$
\begin{aligned}
& F(x)=\prod_{v \in G(1)}(x-v) \text { and proved: For } p_{t}>2 \text { we have } \\
& \qquad F(x) \equiv\left(x^{p_{i}-1}-1\right)^{\varphi(m)\left(p_{i}-1\right)}\left(\bmod p_{i}^{\alpha}\right),
\end{aligned}
$$

and a similar result if $p_{i}=2$. Later Vandiver (1917) extended this result giving formulas for the value of $F(x)$ in S_{m} (i. e. not $\bmod p_{1}^{\alpha_{i}}$ but $\bmod m$). He also gave a formula for the product $\prod_{v \in S_{m}}(x-v)$. (See Theorem 2 and Theorem 7 below.)

The purpose of this paper is to give explicit formulae for the products $\prod_{v \in G(e)}(x-v)$ and $\prod_{v \in P(e)}(x-v)$, where e is any idempotent $\in S_{m}$. These formulae
are certainly new since a rather thorough investigation of the existing literature shows that there is a very limited number of papers dealing explicitly with the groups $G(e)$ and semigroups $P(e)$ for $e \neq[1]$.

In the following we shall use only a special case of Bauer's identity, namely the case $m=p^{\alpha}(\alpha \geqq 1)$, the proof of which is given in [2].

Denote $V=\left\{0,1, \ldots, p^{\alpha}-1\right\}, V^{(1)}=\{a \in V \mid(a, p)=1\}$, then the following holds :

Lemma 1.(Bauer). a) If $p>2$, then

$$
\begin{equation*}
\prod_{v \in V^{(1)}}(x-v) \equiv\left(x^{p-1}-1\right)^{p^{\alpha-1}}\left(\bmod p^{\alpha}\right) \tag{1}
\end{equation*}
$$

b) If $p=2$ and $\alpha>1$,

$$
\prod_{v \in V^{(1)}}(x-v) \equiv\left(x^{2}-1\right)^{2^{\alpha-2}}\left(\bmod 2^{\alpha}\right)
$$

Remark. When dealing with residue classes as elements $\in S_{p^{\alpha}}$ we may write (1) in the form $\prod_{v \in G(1)}(x-v)=\left(x^{p-1}-[1]\right)^{p^{\alpha-1}}$ (with the sign of equality). In the following we reserve the sign of the equality for all calculations to be carried out in S_{m}.

Notation. Throughout the paper we use the following notation. If \boldsymbol{A} is a nonempty subset of S_{m}, then $U[x ; A]$ denotes the product $\prod_{v \in A}(x-v)$ (with coefficients $\in S_{m}$).

As it does not lead to any misunderstanding we shall write $x+a, a \in S_{m}$ instead of [1] $x+a$ and replace $a x-a$ by $(x-1) a$ having in mind that all coefficients of the polynomials considered are elements $\in S_{m}$.

If $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, we denote $V_{i}=\left\{0,1, \ldots, p^{\alpha_{i}}-1\right\}, V_{i}^{(1)}=\left\{a \in V_{i} \mid\left(a, p_{i}\right)=1\right\}$, $V_{i}^{(0)}=\left\{a \in V_{i} \mid\left(a, p_{i}\right)>1\right\}$, so that $V_{i}=V_{i}^{(1)} \cup V_{i}^{(0)}$.

1. The product $U\left[x ; G_{i}\right]$

As remarked above the groups G_{i} play an important role, so that we have to deal first with the product

$$
U\left[x ; G_{i}\right]=\prod_{v \in G_{i}}(x-v)
$$

We suppose $m=p_{1}^{\alpha_{1}} \ldots p_{r_{r}}^{\alpha_{r}}$. The case $r=1$ is not interesting since it leads to Lemma 1. Hence we suppose $r \geqq 2$.

In the following Theorem $1\left|G_{i}\right|$ is the cardinality of G_{i}, hence $\left|G_{i}\right|=$ $p_{i}^{a_{i}-1}\left(p_{i}-1\right)$ for $p_{i} \geqq 2$.

Theorem 1. With the notations introduced above we have

$$
U\left[x: G_{i}\right]= \begin{cases}{\left[\left(x-\bar{f}_{i}\right)^{p_{i} 1}-f_{i}\right]^{\left|G_{i}\right|\left(p_{i}\right.} 1^{1)}} & \text { for } p_{1}>2, \\ {\left[\left(x-\bar{f}_{i}\right)^{2}-f_{i}\right]^{\left|G_{i}\right| 2}} & \text { for } p_{i}=2, \alpha_{t} \geqq 2, \\ x-[1] & \text { for } p_{i}^{k_{i}}=2\end{cases}
$$

Proof. Any element $v \in G_{i}$ can be written in the form $v=\bar{f}_{t}+h f_{i}, h \in V_{1}^{(1)}$. Hence

$$
x-v=x-\left[\bar{f}_{i}+h f_{i}\right]=x\left(f_{i}+\bar{f}_{t}\right)-\left(\bar{f}_{t}+h f_{t}\right)=(x-1) \bar{f}_{t}+(x-h) f_{i}
$$

and

$$
U\left[x ; G_{i}\right]=\prod_{h \in V_{i}^{(1)}}\left[(x-1) \bar{f}_{i}+(x-h) f_{i}\right]=(x-1)^{\gamma_{i}} \cdot \bar{f}_{i}+f_{i} \prod_{h \in V_{i}^{(1)}}(x-h),
$$

where $\gamma_{t}=\varphi\left(p_{i}^{\alpha_{i}}\right)$.
a) For $p_{i}>2$, we have by Lemma 1 , (with $\beta_{i}=p_{i}^{\alpha_{i}, 1}$).

$$
\prod_{h \in V_{i}^{(1)}}(x-h) \equiv\left(x^{p_{i}-1}-1\right)^{\beta_{i}}\left(\bmod p_{i^{\prime}}^{\alpha_{i}}\right)
$$

and, since $f_{i}\left[p_{i}^{\alpha_{i}}\right]=[0]$,

$$
\begin{gathered}
U\left[x ; G_{i}\right]=(x-1)^{\left(p_{i}-1\right) \beta_{i}} \cdot \bar{f}_{i}+\left(x^{p_{i}-1}-1\right)^{\beta_{i}} \cdot f_{i}= \\
=\left[(x-1)^{p_{i}-1} \bar{f}_{i}+\left(x^{p_{i}-1}-1\right) f_{i}\right]^{\beta_{i}}=\left[\left\{(x-1) \bar{f}_{i}+x f_{i}\right\}^{p_{i} 1}-f_{i}\right]^{\beta_{1}},
\end{gathered}
$$

whence the first formula immediately follows.
b) For $p_{i}=2, \alpha_{i} \geqq 2$, we have by Lemma 1,

$$
\prod_{h \in V_{i}^{(1)}}(x-h) \equiv\left(x^{2}-1\right)^{\beta_{i}}\left(\bmod 2^{\alpha_{i}}\right)
$$

where $\beta_{i}=2^{\alpha_{i}-2}$.
Hence

$$
\begin{aligned}
U\left[x ; G_{i}\right]=(x-1)^{2 \beta_{i}} \cdot \bar{f}_{i} & +\left(x^{2}-1\right)^{\beta_{i}} \cdot f_{i}=\left[(x-1)^{2} \bar{f}_{i}+\left(x^{2}-1\right) f_{i}\right]^{\beta_{i}}= \\
= & {\left[\left(x-\bar{f}_{i}\right)^{2}-f_{i}\right]^{\beta_{1}} . }
\end{aligned}
$$

c) If $p_{i}^{\alpha_{i}}=2$ (i. e. m is divisible by 2 , but not by 4), we have $V_{i}^{(1)}=\{1\}$, the group G_{i} reduces to the element $\bar{f}_{i}+1 \cdot f_{i}=[1]$, so that $U\left[x ; G_{i}\right]=x-[1]$.

This proves Theorem 1.
Suppose in the following again $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, where $r \geqq 2$. We use Theorem 1 to find $U[x ; G(1)]=U\left[x ; G_{1} G_{2} \ldots G_{r}\right]$.
$U[x ; G(1)]=\prod_{v \in G_{1} \ldots G_{r}}(x-v)=\prod\left(x-v_{1} \ldots v_{r}\right)$, where v_{1}, \ldots, v_{r} run independently over G_{1}, \ldots, G_{r}. Since $[1]=f_{1}+\ldots+f_{r}$, we may write $u[x ; G(1)]$ $=\sum_{i=1}^{r} U\left[x ; G_{1} \ldots G_{r}\right] \cdot f_{i}$ and compute each of these summands separately.

Write v in the form

$$
v=v_{1} \ldots v_{r}=\left(\bar{f}_{1}+h_{1} f_{1}\right) \ldots\left(\bar{f}_{r}+h_{r} f_{r}\right)
$$

with $h_{i} \in V_{i}^{(1)}$. For any $i(1 \leqq i \leqq r)$ we have $v \cdot f_{i}=v_{1} v_{2} \ldots v_{r} f_{i}=v_{i} f_{i}$ independently of the $\varphi(m) /\left|G_{i}\right|$ possible values of $v_{1} \ldots v_{i-1} v_{i+1} \ldots v_{r}$.

Hence

$$
\begin{gathered}
U[x ; G(1)] f_{i}=\prod_{v \in G_{i}}\left(x f_{i}-v f_{i}\right)^{\varphi(m) /\left|G_{i}\right|}= \\
=\left[\prod_{v \in G_{i}}(x-v)\right]^{\varphi(m)\left|G_{i}\right|} \cdot f_{i}=U\left[x ; G_{i}\right]^{\varphi(m) /\left|G_{i}\right|} \cdot f_{i}
\end{gathered}
$$

a) If p_{i} is odd, then by Theorem 1

$$
\begin{aligned}
& U\left[x ; G_{i}\right] \cdot f_{i}=\left\{\left[\left(x-\bar{f}_{i}\right)^{p_{i}-1}-f_{i}\right] f_{i}\right\}^{\left|G_{i}\right| /\left(p_{i}-1\right)}= \\
& =\left[x^{p_{i}-1} \cdot f_{i}-f_{i}\right]^{\mid G_{i} /\left(p_{i}-1\right)}=\left(x^{p_{i}-1}-1\right)^{\left|G_{i}\right| /\left(p_{i}-1\right)} \cdot f_{i}
\end{aligned}
$$

and

$$
U[x ; G(1)] \cdot f_{i}=\left(x^{p_{i}-1}-1\right)^{\varphi(m) /\left(p_{i}-1\right)} \cdot f_{i}
$$

b) If $m=2 \cdot p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$, then since $\left|G_{1}\right|=1$,

$$
U[x ; G(1)] \cdot f_{1}=U\left[x ; G_{1}\right]^{\varphi(m)} \cdot f_{1}=(x-1)^{\varphi(m)} \cdot f_{1}
$$

c) If $m=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \alpha_{1} \geqq 2$, then

$$
\begin{gathered}
U[x ; G(1)] \cdot f_{1}=U\left[x ; G_{1}\right]^{\left|G_{2} \ldots G_{r}\right|} f_{1}= \\
=\left[\left(x-\bar{f}_{1}\right)^{2}-f_{1}\right]^{\varphi(m) / 2} \cdot f_{1}=\left(x^{2} f_{1}-f_{1}\right)^{\varphi(m) / 2}=\left(x^{2}-1\right)^{\varphi(m) / 2} \cdot f_{1} .
\end{gathered}
$$

This can be modified (due to the fact that $r \geqq 2$). First

$$
\frac{1}{2} \varphi(m)=\frac{1}{2} \cdot 2^{\alpha_{1}-1} \cdot p_{2}^{\alpha_{2}-1}\left(p_{2}-1\right) \ldots=2^{\alpha_{1}-1} \cdot u
$$

where u is an integer. Next (with $\gamma=2^{\alpha_{1}-1} u$)

$$
\begin{gathered}
\left(x^{2}-1\right)^{\gamma} \cdot f_{1}=\left[(x-1)^{2}+2(x-1)\right]^{\gamma} \cdot f_{1}=(x-1)^{\varphi(m)} f_{1}+ \\
+\sum_{k \leq 1}\binom{2^{\alpha_{1}-1} \cdot u}{k} 2^{k}(x-1)^{\varphi(m)-k} \cdot f_{1} .
\end{gathered}
$$

It is easy to see that $\binom{2^{\alpha^{1}-1} \cdot u}{k} 2^{k}$ is divisible by $2^{\alpha_{1}}$ and since $\left[2^{\alpha_{1}}\right] f_{1}=0$, we finally have $U[x ; G(1)] f_{1}=(x-1)^{\varphi(m)} f_{1}$.
This implies:

Theorem 2. Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$. Then

$$
U[x ; G(1)]=\sum_{t-1}^{r} f_{i}\left(x^{p_{i}-1}-1\right)^{\Phi(m)\left(p_{i}-1\right)}
$$

This formula has been (in essential) found by Vandiver (1917). Of course, since he does not use explicitly the idempotents, his formulations are rather complicated. (See Dickson [1], p. 89.)

2. The product $U[x ; G(e)]$

Let now be e any idempotent $\in E, e \neq[1]$ and $e=\bar{f}_{1} \bar{f}_{2} \ldots \bar{f}_{s}$, where $s \leqq 1 \leqq r$. We again suppose $r \geqq 2$.

We shall find explicit formulas for the product $\prod_{v \in G(e)}(x-v), G(e)$ being (as above) the maximal subgroup of S_{m} belonging to the idempotent e.

In the following we suppose $s<r$, since for $s=r$ we have $e=[0]$ and $U[x ; G(0)]=x$.

The group $G(e)$ is a direct product of its subgroups

$$
G(e)=\left(G_{s+1} e\right) \cdot\left(G_{s+2} e\right) \ldots\left(G_{r} e\right)
$$

Any element $v \in G(e)$ is of the form $v=v_{s+1} \ldots v_{r}$, where $v_{J} \in G, e$, and $v_{j}=$ $\left(\bar{f}_{j}+h_{j} f_{j}\right) \cdot \bar{f}_{1} \ldots \bar{f}_{s}, h_{j} \in V_{j}^{(1)}, j \geqq s+1$. Hence

$$
U[x ; G(e)]=\Pi\left(x-v_{s+1} \ldots v_{r}\right), \text { where } v_{s+1}, \ldots, v_{r}
$$

run independently through $G_{s+1} \cdot e, \ldots, G_{r} \cdot e$.
Write again

$$
U[x ; G(e)]=\sum_{i=1}^{r} U[x ; G(e)] \cdot f_{i}
$$

If $i \in\{1,2, \ldots, s\}$, then $v_{s+1} \ldots$ Ifr $\cdot f_{i}=[0]$, so that

$$
U[x ; G(e)] \cdot f_{i}=x^{|G(e)|} \cdot f_{i}
$$

If $i \in\{s+1, \ldots, r\}$, then $v_{s+1} \ldots v_{r} \cdot f_{i}=v_{s+1} f_{i} \cdot v_{s+2} f_{i} \ldots v_{r} f_{t}$. Since for $j \neq i v_{f} f_{i}=$ $=\left(\bar{f}_{j}+h_{j} f_{j}\right) \bar{f}_{1} \ldots \bar{f}_{s} \cdot f_{i}=\bar{f}_{j} \bar{f}_{1} \ldots \bar{f}_{s} \cdot f_{t}=f_{i}$, we have independently of the $\frac{|G(e)|}{\left|G_{i}\right|}$ choices of $v_{s+1}, \ldots, v_{i 1} \cdot v_{i+1} \ldots v_{r}$, that $\left(v_{s+1} \ldots v_{r}\right) f_{i}=v_{i} f_{i}$. Hence

$$
U[x: G(e)] f_{i}=\prod_{v \in G_{i}}\left(x f_{i}-v f_{i}\right)^{|G(e)|\left|G_{i}\right|}=\left[U\left(x ; G_{i}\right)\right]^{|G(e)| G_{i} \mid} \cdot f_{i}
$$

and

$$
\begin{equation*}
U[x ; G(e)]=\left(f_{1}+\ldots+f_{s}\right) x^{|G(e)|}+\sum_{i=s+1}^{r}\left[U\left(x ; G_{i}\right)\right]^{|G(e)|\left|G_{i}\right|} \cdot f_{i} \tag{2}
\end{equation*}
$$

By Theorem 1 we have again $U\left[x ; G_{i}\right] f_{i}=\left(x^{p_{i}-1}-1\right)^{\left|G_{i}\right| / p_{i}-1} \cdot f_{i}$ if p_{i} is odd and the same results hold if $p_{i}^{\alpha_{i}}=2$. If $p_{i}^{\alpha_{i}}=2^{\alpha_{i}}, \alpha_{i} \geqq 2$, we have $U\left[x ; G_{i}\right] f_{i}=$ $=\left(x^{2}-1\right)^{\mid G_{i} / 2} \cdot f_{i}$.

If all $p_{s+1,}, \ldots, p_{r}$ are odd, or one of them, say p_{r}, is even and $p_{r}^{\alpha_{r}}=2$, we immediately obtain

$$
U[x ; G(e)]=\left(f_{1}+\ldots+f_{s}\right) x^{|G(e)|}+\sum_{i=s+1}^{r}\left(x^{p_{i}-1}-1\right)^{|G(e)| / p_{i}-1} \cdot f_{i} .
$$

There remains the case in which one of the p_{s+1}, \ldots, p_{r}, say p_{r}, is even and $p_{r_{r}}^{\alpha_{r}}=2^{\alpha_{r}}, \alpha_{r} \geqq 2$. In this case the last term in (2) is
Recall that $|G(e)|=\varphi\left(p_{s+1}^{\alpha_{s+1}} \ldots p_{r}^{\alpha_{r}}\right)=\left|G_{s+1}\right| \ldots\left|G_{r}\right|$. If $r-s \geqq 2$, then (analogously to the proof of Theorem 1) the right-hand side of (3) can be rewritten as $(x-1)^{|G(e)|} \cdot f_{r}$. If $s=r-1$, i. e. $e=\bar{f}_{1} \ldots \bar{f}_{r-1}$ and $|G(e)|=2^{\alpha_{r}-1}$ this modification cannot be carried out but in this case we have

$$
\begin{gathered}
U[x ; G(e)]=\left(f_{1}+\ldots+f_{r-1}\right) x^{|G(e)|}+\left(x^{2}-1\right)^{|G(e)| / 2} f_{r}= \\
=\bar{f}_{r} x^{|G(e)|}+f_{r}\left(x^{2}-1\right)^{|G(e)| / 2}=\left[\bar{f}_{r} \cdot x^{2}+f_{r}\left(x^{2}-1\right)\right]^{|G(e)| / 2}= \\
=\left(x^{2}-f_{r}\right)^{\beta_{r}},
\end{gathered}
$$

where $\beta_{r}=2^{\alpha_{r}-2}$.
We have proved:
Theorem 3. Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ and $e=\bar{f}_{1} \ldots \bar{f}_{s}, s<r$. Then

$$
U[x ; G(e)]=\left(f_{1}+\ldots+f_{s}\right) x^{|G(e)|}+\sum_{i=s+1}^{r} f_{i}\left(x^{p_{i}-1}-1\right)^{|G(e)| /\left(p_{i}-1\right)}
$$

with the exception of the case $e=\bar{f}_{1} \ldots \bar{f}_{r-1}$ and $p_{r}^{\alpha_{r}}=2^{\alpha_{r}}, \alpha_{r} \geqq 2$, in which case $U[x ; G(e)]=\left(x^{2}-f_{r}\right)^{\beta_{r}}$, where $\beta_{r}=2^{\alpha_{r}-2}$.

Remark 1. In this exceptional case e is the primitive idempotent f_{r} with the corresponding maximal group of order $\left|G\left(f_{r}\right)\right|=2^{\alpha_{r}-1}$.

For any other primitive idempotent which is necessarily of the form $e=$ $\bar{f}_{1} \ldots \bar{f}_{r-1}=f_{r}$ and $|G(e)|=\varphi\left(p_{r}^{\alpha_{r}}\right)$ we have (with $\beta_{r}=p_{r}^{\alpha_{r}-1}$)

$$
\begin{gathered}
U[x ; G(e)]=\left(f_{1}+\ldots+f_{r-1}\right) x^{|G(e)|}+f_{r}\left(x^{p_{r}-1}-1\right)^{|G(e)| /\left(p_{r}-1\right)}= \\
=\bar{f}_{r} \cdot x^{|G(e)|}+f_{r}\left(x^{p_{r}-1}-1\right)^{|G(e)| /\left(p_{r}-1\right)}=\left[\bar{f}_{r} \cdot x^{p_{r}-1}+f_{r}\left(x^{p_{r}-1}-1\right)\right]^{\beta_{r}}= \\
=\left[x^{p_{r}-1}-f_{r}\right]^{\beta_{r}} .
\end{gathered}
$$

Hence we state:
Corollary 3. If f_{i} is a primitive idempotent $\in S_{m}$, then

$$
U\left[x ; G\left(f_{i}\right)\right]=\left[x^{p_{i}-1}-f_{i}\right]^{\beta_{i}}, \beta_{i}=p_{i}^{\alpha_{i}-1}
$$

with the exception of the case that m is even, $f_{i}=\left[a \cdot m / 2^{\alpha_{i}}\right], \alpha_{t} \geqq 2, a \in G(1)$, in which case

$$
U\left[x ; G\left(f_{i}\right)\right]=\left(x^{2}-f_{i}\right)^{\gamma_{i}}, \gamma_{i}=2^{\alpha_{i}-2} .
$$

Remark 2. It is worth to note the following. Suppose, e. g., that p_{i} is odd. The group G_{i} and the group $G\left(f_{i}\right)$ are algebraically isomorphic, while

$$
\begin{aligned}
\prod_{v \in G}(x-v) & =\left[\left(x-\bar{f}_{i}\right)^{p_{i}-1}-f_{i}\right]^{\beta_{i}}, \beta_{i}=p_{i}^{i_{i}-1} \\
\prod_{v \in G\left(f_{i}\right)}(x-v) & =\left[x^{p_{i}-1}-f_{i}\right]^{\beta_{i}}
\end{aligned}
$$

which are different polynomials (over S_{m}).

3. The product $U[x ; P(e)]$

In the following we shall need a Lemma.
Denote $\quad Z_{\alpha}=\prod_{h=1}^{p^{\alpha-1}}(x-h p)$. Note: If $\quad V=\left\{0,1, \ldots, p^{\alpha}-1\right\}$, and $\quad V^{(0)}$ $=\{v \in V \mid(h, p)>1\}$, then $Z_{\alpha} \equiv \prod_{v \in(0)}(x-v)\left(\bmod p^{\alpha}\right)$.

Lemma 2. a) If $p>2$, then

$$
Z_{\alpha} \equiv x^{p^{\alpha-1}}\left(\bmod p^{\alpha}\right)
$$

b) If $p=2, \alpha \geqq 2$, then

$$
Z_{\alpha} \equiv\left(x^{2}-2 x\right)^{2^{\alpha-2}}\left(\bmod p^{\alpha}\right) .
$$

Remark. The first part of this Lemma is implicitly contained in paper [3].
Proof. a) Suppose $p>2$, the Lemma is true for $\alpha=1$, since $Z_{1}=x-p \equiv$ $x(\bmod p)$. Suppose that $Z_{\alpha} \equiv x^{p^{\alpha-1}}\left(\bmod p^{\alpha}\right)$, we prove $Z_{\alpha+1} \equiv x^{p^{\alpha}}\left(\bmod p^{\alpha+1}\right)$.

Now

$$
Z_{\alpha+1}=\prod_{j-0}^{p-1}\left(\prod_{h=1}^{p^{\alpha-1}}\left(x-h p-j p^{\alpha}\right)\right.
$$

For a fixed j

$$
\prod_{h=1}^{p^{\alpha-1}}\left(x-h p-j p^{\alpha}\right) \equiv \prod_{h=1}^{p^{\alpha-1}}(x-h p)+j p^{\alpha} \cdot g(x) \equiv Z_{\alpha}+j p^{\alpha} g(x)\left(\bmod p^{\alpha+1}\right)
$$

where $g(x)$ is a polynomial independent of j. This implies

$$
Z_{\alpha+1} \equiv \prod_{j=0}^{p-1}\left(Z_{a}+j p^{\alpha} g(x)\right) \equiv Z_{\alpha}^{p}+Z_{a}^{p-1} \cdot p^{\alpha} \cdot g(x) \cdot \sum_{j=0}^{p-1} j \equiv Z_{\alpha}^{p}\left(\bmod p^{\alpha+1}\right) .
$$

Since by the inductive supposition $Z_{\alpha}=x^{p^{\alpha-1}}+p^{\alpha} \cdot g_{1}(x)$ (with a polynomial $\left.g_{1}(x)\right)$, we have

$$
Z_{\alpha+1} \equiv\left[x^{p^{\alpha-1}}+p^{\alpha} \cdot g_{1}(x)\right]^{p} \equiv x^{p^{\alpha}}\left(\bmod p^{\alpha+1}\right)
$$

This proves our Lemma for $p>2$.
b) Suppose $p=2$. The statement holds for $\alpha=2$, since $Z_{2}=x(x-2)$. We suppose that

$$
Z_{\alpha}=\prod_{h=1}^{2^{\alpha-1}}(x-2 h) \equiv\left(x^{2}-2 x\right)^{2^{\alpha-2}}\left(\bmod 2^{\alpha}\right)
$$

we have to prove that $Z_{\alpha+1} \equiv\left(x^{2}-2 x\right)^{2^{\alpha-1}}\left(\bmod 2^{\alpha+1}\right)$. Now

$$
Z_{\alpha+1}=\prod_{h=1}^{2^{\alpha-1}}(x-2 h)\left(x-2\left(2^{\alpha-1}+h\right)\right) \equiv \prod_{h=1}^{2^{\alpha-1}}\left(x-2 h-2^{\alpha-1}\right)^{2}\left(\bmod 2^{\alpha}\right)
$$

(since $2(\alpha-1) \geqq \alpha$ for $\alpha \geqq 2$). Further

$$
\begin{aligned}
\prod_{h=1}^{2^{\alpha-1}}\left(x-2 h-2^{\alpha-1}\right)= & Z_{\alpha}\left(x-2^{\alpha-1}\right) \equiv\left[\left(x-2^{\alpha-1}\right)^{2}-2\left(x-2^{\alpha-1}\right)\right]^{2^{\alpha-2}} \equiv \\
& \equiv\left(x^{2}-2 x\right)^{2^{\alpha-2}}\left(\bmod 2^{\alpha}\right)
\end{aligned}
$$

hence

$$
\prod_{h=1}^{2^{\alpha-1}}\left(x-2 h-2^{\alpha-1}\right)=\left(x^{2}-2 x\right)^{2^{\alpha-2}}+2^{\alpha} \cdot g(x)
$$

where $g(x)$ is a polynomial. This implies finally

$$
Z_{\alpha+1}(x)=\left[\left(x^{2}-2 x\right)^{2^{\alpha-2}}+2^{\alpha} g(x)\right]^{2} \equiv\left(x^{2}-2 x\right)^{2^{\alpha-1}}\left(\bmod 2^{\alpha+1}\right)
$$

This completes the proof of Lemma 2.
The next theorem deals with the product $\prod_{v \in f_{i}}(x-v)$, where I_{i} has been defined in the introduction.

Theorem 4.

$$
U\left[x ; I_{i}\right]= \begin{cases}\left(x-f_{i}\right)^{\left|I_{i}\right|} & \text { if } p_{i}>2, \\ \left(x^{2}-[2] x+\bar{f}_{i}\right)^{\frac{1}{2}\left|x_{i}\right|} & \text { if } p_{i}^{\alpha_{i}}=2^{\alpha_{i}}, \alpha_{i} \geqq 2 \\ x-\bar{f}_{i} & \text { if } p_{i}^{\alpha_{i}}=2\end{cases}
$$

where $\left|I_{i}\right|=p_{i}^{\alpha_{i}-1}$.
Proof. Any element $v \in I_{i}$ is of the form $v=\bar{f}_{i}+h f_{i}, h \in V_{i}^{(0)}$. We have

$$
x-v=(x-1) \bar{f}_{i}+(x-h) f_{i}, h \in V_{i}^{(0)}
$$

$$
U\left[x_{i} ; I_{i}\right]=\prod_{v \in i_{i}}(x-v)=(x-1)^{\left|r_{i}\right|} \cdot \bar{f}_{i}+f_{i} \cdot \prod_{h \in v_{0}}(x-h) .
$$

a) If $p_{i}>2$, by Lemma 2 (since $\left[p_{i}^{a_{i}}\right] f_{i}=[0]$)

$$
\begin{aligned}
& U\left[x ; I_{i}\right]=(x-1)^{\left|x_{i}\right|} \bar{f}_{i}+x^{\left|L_{i}\right|} f_{i}=\left[(x-1) \bar{f}_{i}+x f_{i}\right]^{\left|L_{i}\right|}= \\
&=\left(x-\bar{f}_{i}\right)^{\left|x_{1}\right|} .
\end{aligned}
$$

b) If $p^{\alpha_{i}}=2^{a_{i}}, \alpha_{i} \geqq 2$, again by Lemma 2

$$
\begin{gathered}
U\left[x ; I_{i}\right]=(x-1)^{\left|I_{i}\right|_{i}+\left(x^{2}-2 x\right)^{\frac{1}{2}\left|I_{i}\right|} f_{i}=} \\
=\left[(x-1)^{2} \bar{f}_{i}+\left(x^{2}-2 x\right) f_{i}\right]^{\frac{1}{2} i l}=\left(x^{2}-[2] x+\bar{f}_{i}\right)^{\frac{1}{t_{i}} I_{1}} .
\end{gathered}
$$

c) If $p_{i}^{a_{i}}=2, V_{i}^{(0)}=\{0\}$, so that I_{i} reduces to $\bar{f}_{i}+[0] f_{i}=\bar{f}_{i}$, hence $U\left[x ; I_{i}\right]=x-\bar{f}_{i}$. This proves Theorem 4.
To find $U[x ; P(e)]$ we may restrict ourselves to the case $e \neq[1]$ since $P(1)=$ $G(1)$.
Let $e=\bar{f}_{1} \ldots \bar{f}_{s}, s \leqq r$, (and $s \geqq 1$). The semigroup $P(e)$ admits the following (internal) direct decomposition

$$
P(e)=I_{1} \ldots I_{s} G_{s+1} \ldots G_{r},
$$

where if $s=r$, no G_{a} appears. Clearly $|P(e)|=\left|I_{1}\right| \ldots\left|I_{s}\right| \cdot\left|G_{s+1}\right| \ldots\left|G_{r}\right|$.
$U[x ; P(e)]=\Pi\left(x-v_{1} \ldots v_{s} v_{s+1} \ldots v_{r}\right)$, where $v_{k} \in I_{k}$ for $k \leqq s$, and $v_{k} \in G_{k}$, for $k>s$.
We write again $U[x ; P(e)]=\sum_{i=1}^{\prime} U[x ; P(e)] \cdot f_{i}$.
Recall $v_{k}=\bar{f}_{k}+h_{k} f_{k}$, where $h_{k} \in V_{k}^{(0)}$ for $k \leqq s$ and $h_{k} \in V_{k}^{(1)}$ for $k>s$.
a) If $i \leqq s$, then $v_{1} \ldots v_{r} \cdot f_{i}=v_{1} f_{i}$ for all possible $\left|P(e) /\left|I_{i}\right|\right.$ values of the product $v_{1} \ldots v_{i-1} v_{i+1} \ldots v_{r}$, so that

$$
U[x ; P(e)] f_{i}=\prod_{v \in L_{1}}(x-v)^{|P(e)|\left|x_{1}\right|} f_{i} .
$$

b) If $s<r$ and $i>s$, then again $v_{1} \ldots v_{r} f_{i}=v_{i} f_{i}$ for all possible $|P(e)| /\left|G_{i}\right|$ choices of the remaining v_{i}, so that

$$
U[x ; P(e)] f_{i}=\prod_{v_{1} \in G_{1}}\left(x-v_{i}\right)^{|P(e)|\left|G_{1}\right|} .
$$

Therefore:

$$
\begin{equation*}
U[x ; P(e))]=\left.\sum_{i=1}^{s} U\left(x ; I_{i}\right)^{|P(e)|\left|I_{i}\right|}\right|_{i}+\sum_{i=s+1}^{r}\left[U\left(x ; G_{i}\right)\right]^{\mid P(e)}\left|G_{i}\right| f_{i} . \tag{4}
\end{equation*}
$$

c) If $s=r$, the same formula holds if the last term to the right is omitted.
A) Suppose that $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$, where all $p_{i}^{\alpha_{i}}$ are odd or one of the factors is 2 . Then (4), Theorem 1 and Theorem 3 imply

$$
\begin{gather*}
U[x ; P(e)]=\sum_{i=1}^{s}\left(x-\bar{f}_{i}\right)^{|P(e)|} f_{i}+\sum_{i=s+1}^{r}\left[\left(x-\bar{f}_{i}\right)^{p_{i}-1}-f_{i}\right]^{|P(e)| /\left(p_{i}-1\right)} f_{i}= \\
=\left[f_{1}+\ldots+f_{s}\right] x^{|P(e)|}+\sum_{i=s+1}^{r} f_{i}\left(x^{p_{i}-1}-1\right)^{|P(e)| /\left(p_{i}-1\right)}, \tag{5}
\end{gather*}
$$

where if $s=r$, the second term should be omitted so that $U[x ; P(e)]=x^{|P(e)|}$.
There remains the case that one of the factors of $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ is equal to 2^{α}, where $\alpha \geqq 2$. In this case it is necessary to consider several possibilities.
B) Suppose first that $m=2^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \alpha_{1} \geqq 2$, and $r=s$, i. e. $e=[0]$ and $P(e)=P([0])=P(0)$.

Then

$$
U\left[x ; I_{1}\right]^{|P(e)|| | I_{1} \mid} f_{1}=\left(x^{2}-2 x+\bar{f}_{1}\right)^{\frac{1}{2}|P(e)|} f_{1}=\left(x^{2}-2 x\right)^{\frac{1}{2}|P(e)|} f_{1},
$$

and

$$
\begin{gathered}
U[x ; P(0)]=\left(x^{2}-2 x\right)^{\frac{1}{2}|P(0)|} f_{1}+\left(f_{2}+\ldots+f_{r}\right) x^{|P(0)|}= \\
=\left(x^{2}-2 x\right)^{\frac{1}{2}|P(0)|} f_{1}+\bar{f}_{1} x^{|P(0)|}=\left[\left(x^{2}-2 x\right) f_{1}+\bar{f}_{1} x^{2}\right]^{\frac{1}{2}|P(0)|}=\left(x^{2}-2 x f_{1}\right)^{\frac{1}{2}|P(0)|} .
\end{gathered}
$$

Hereby $|P(0)|=2^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \ldots p_{r_{r}}^{\alpha_{r}-1}$.
C) Suppose $s<r, e=\bar{f}_{1} \ldots \bar{f}_{s}$, and the maximal idempotent which is a multiple of [2^{α}] is a factor of $e=\bar{f}_{1} \ldots \bar{f}_{s}$. Write $m=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$, so that \bar{f}_{1} is a multiple of [$\left.2^{\alpha_{1}}\right]$. We have again

$$
U\left[x ; I_{1}\right]^{\left\lvert\, \frac{\mid f(x)}{\left|f_{1}\right|}\right.} \cdot f_{1}=\left(x^{2}-2 x\right)^{\frac{1}{2}|P(e)|} f_{1}
$$

But since $|P(e)|=2^{\alpha_{1}-1} \ldots \varphi\left(p_{r}^{\alpha_{r}}\right),|P(e)|$ is divisible by $2^{\alpha_{1}}$ and $\frac{1}{2}|P(e)|=$ $=2^{\alpha_{1}-1} \cdot u$, where u is an integer. Hence

$$
\left(x^{2}-2 x\right)^{\frac{1}{2}|P(e)|} f_{1}=x^{|P(e)|} f_{1}+f_{1} \cdot \sum_{k=1}(-1)^{k}\binom{\frac{1}{2}|P(e)|}{k} 2^{k} x^{|P(e)|-k}=x^{|P(e)|} \cdot f_{1},
$$

since for $k \geqq 1$ the term $\binom{\frac{1}{2}|P(e)|}{k} 2^{k}$ is divisible by $2^{\alpha_{1}}$ and $\left[2^{\alpha_{1}}\right] f_{1}=[0]$. For $U[x ; P(e)]$ we obtain the same result as in (5).
D) Suppose $s<r, e=\bar{f}_{1} \ldots \bar{f}_{s}$, and write $m=p_{1}^{\alpha_{1}} \ldots p_{r_{-1}-1}^{\alpha_{r-1}} \cdot 2^{\alpha_{r}}, \alpha_{r} \geqq 2$, so that the maximal idempotent corresponding to $\left[2^{\alpha_{r}}\right]$ is not a factor of e.

By Theorem 1 we have

$$
U\left[x ; G_{r}\right]=\left[\left(x-\bar{f}_{r}\right)^{2}-f_{r}\right]^{\frac{1}{\mid}\left|G_{r}\right|},
$$

and the last term in (4) is now

$$
\left(U\left[x ; G_{r}\right]\right)^{|P(e)|\left|G_{r}\right|} \cdot f_{r}=\left[\left(x-f_{r}\right)^{2}-f_{r}\right]^{\frac{1}{|P(P)|}} f_{r}=\left(x^{2}-1\right)^{\left.\frac{1}{2} \right\rvert\, P(e)} \cdot f_{r}
$$

 is an integer. In this case (with $\beta=2^{\alpha_{r}-1} \cdot u$)

$$
\left(x^{2}-1\right)^{\frac{1}{2}|P(e)|} \cdot f_{r}=\left[(x-1)^{2}+2(x-1)\right]^{\beta} \cdot f_{r},
$$

and by the same argument as in the proof of Theorem 1 (case c) we obtain

$$
\left(U\left[x ; G_{r}\right]\right)^{|P(e)|!G_{r} \mid} f_{r}=(x-1)^{|P(e)|}
$$

so that the formula (5) holds.
 $\left(x^{2}-1\right)^{\frac{1}{2}|P(e)|} f_{r}$, which cannot be directly reduced to a simpler form.

But in this case we have

$$
\begin{gathered}
U[x ; P(e)]=\left(f_{1}+\ldots+f_{r}\right) x^{|P(e)|}+\left(x^{2}-1\right)^{\frac{1}{2}, P(e) \mid} f_{r}= \\
=\bar{f}_{r} x^{|P(e)|}+\left(x^{2}-1\right)^{\left.\frac{1}{2}|P(e)| \right\rvert\,} f_{r}=\left[\bar{f}_{r} x^{2}+\left(x^{2}-1\right) \cdot f_{r}\right]^{\frac{1}{2}|P(e)|}=\left(x^{2}-f_{r}\right)^{\left.\frac{1}{2} \right\rvert\, P(e)} .
\end{gathered}
$$

Summarily we have proved the following two statements:
Theorem 5a. Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$. Then $U[x ; P(0)]=x^{|P(0)|}$ with the exception of the case that m is even and one of the factors, say $p_{r_{r}}^{\alpha_{r}}$, is $2^{\alpha_{r}}$ with $\alpha_{r} \geqq 2$. In this case $U[x ; P(0)]=\left(x^{2}-2 x f_{r}\right)^{\frac{1}{2}|P(0)|}$.

Theorem 5b. Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$, and $e=\bar{f}_{1} \ldots \bar{f}_{s} \neq[0]$, Then $U[x ; P(e)]=\left[f_{1}+\ldots+f_{s}\right] x^{|P(e)|}+\sum_{i=s+1}^{r} f_{t}\left(x^{p_{t}-1}-1\right)^{|P(e)|\left(p_{1}-1\right)}$, with the exception of the case that $s=r-1$ and $p_{r}^{\alpha_{r}}=2^{\alpha_{r}}, \alpha_{r} \geqq 2$, in which case $U[x: P(e)]=$ $\left(x^{2}-f_{r}\right)^{\frac{1}{2}|P(e)|}$.

Remark 1. The second case in Theorem 5b corresponds to the case of $m=p_{1}^{\alpha_{1}} \ldots p_{r_{r-1}}^{\alpha_{r}} 2^{\alpha_{r}}, \alpha_{r} \geqq 2$, and e is a primitive idempotent of the form $f_{r}=\left[\frac{m}{2^{\alpha_{r}}} \cdot a\right]$, $a \in \mathrm{G}(1)$.

For any other primitive idempotent f_{l} of the form

$$
e=f_{i}=\left[\frac{m}{p_{t}^{a_{i}}} a_{t}\right], p_{t} \neq 2, \quad a_{t} \in G(1)
$$

the formula (5) may be rewritten as follows:

$$
U\left[x ; P\left(f_{i}\right)\right]=\bar{f}_{1} x^{|P(e)|}+f_{i}\left(x^{P_{1}-1}-1\right)^{|P(e)| /\left(p_{i}-1\right)}=
$$

$$
=\left[\bar{f}_{i} \cdot x^{p_{i}-1}+f_{i}\left(x^{p_{i}-1}-1\right)\right]^{\left|P\left(f_{i}\right)\right| /\left(p_{i}-1\right)}=\left(x^{p_{i}-1}-f_{i}\right)^{\left|P\left(f_{i}\right)\right| /\left(p_{i}-1\right)} .
$$

Corollary 4. For a primitive idempotent we have

$$
U\left[x ; P\left(f_{i}\right)\right]=\left(x^{p_{i}-1}-f_{i}\right)^{|P(f, i)| /\left(p_{i}-1\right)}
$$

with the exception of the case that m is even, $f_{i}=\left[\frac{m}{2^{\alpha_{i}}} a\right], \alpha_{i} \geqq 2, a \in G(1)$, in which case

$$
U\left[x ; P\left(f_{i}\right)\right]=\left(x^{2}-f_{i}\right)^{\frac{1}{2}|P(f)|} .
$$

Remark 2. It seems to be worth to remark that $\Pi(x-v), v$ running through all elements $\in P(0)$ (i. e. all nilpotent elements $\in S_{m}$) is in "most cases" $x^{|P(0)|}$. But by Theorem 5 a this is not true if m is divisible by $2^{\alpha_{r}}, \alpha_{r} \geqq 2$. The corresponding result $\left(x^{2}-2 x f_{r}\right)^{\frac{1}{2}|P(0)|}$ can be rewritten. Since $\binom{\frac{1}{2} P(0)}{k} 2^{k}$ for $k \geqq 3$ is divisible by $2^{\alpha_{r}}$, at most three terms are $\neq[0]$ and a simple calculation shows that

$$
U[x ; P(0)]= \begin{cases}x^{|P(0)|}-|P(0)| f_{r} \cdot x^{|P(0)|-1} & \text { for } \alpha_{r}=2, \\ x^{|P(0)|}-|P(0)| \cdot f_{r} \cdot x^{|P(0)|-1}-|P(0)| f_{r} x^{|P(0)|-2} \text { for } \alpha_{r} \geqq 3 .\end{cases}
$$

To have a numerical example consider, e. g., $m=5 \cdot 2^{3}=40$. Here $f_{1}=[16]$, $f_{2}=[25], P(0)=\{[0],[10],[20],[30]\}$.

$$
\begin{aligned}
& U[x ; P(0)]=x(x-[10])(x-[20])(x-[30])= \\
& \quad=\left(x^{2}-2 \cdot[25] x\right)^{2}=x^{4}+[20] x^{3}+[20] x^{2} .
\end{aligned}
$$

Theorems 3 and 5b lead to the following remarkable result:
Theorem 6. Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, r \geqq 2$, and $e \neq[0]$. Then

$$
U[x ; P(e)]=U[x ; G(e)]^{L},
$$

where $L=|P(e)| /|G(e)|$.
Proof. Due to the orthogonality of the set $\left\{f_{i}\right\}$, the formula of Theorem 3 implies for any integer $k \geqq 1$:

$$
U[x ; G(e)]^{k}=\left(f_{1}+\ldots+f_{s}\right)^{k \cdot|G(e)|}+\sum_{i=s+1}^{r} f_{i}\left(x^{p_{i}-1}-1\right)^{k \cdot|G(e)| /\left(p_{i}-1\right)}
$$

Putting $k=|P(e)| /|G(e)|$ the right-hand side gives exactly the formula of Theorem 5b.

Our statement holds also in the exceptional case mentioned in Theorem 3 and Theorem 5b, since in this case

$$
U[x ; G(e)]=\left(x^{2}-f_{r}\right)^{\frac{1}{2}|G(e)|}, U[x ; P(e)]=\left(x^{2}-f_{r}\right)^{\frac{1}{2}|P(e)|} .
$$

Finally it is true also if $e=[1]$, since in this case $|P(e)|=|G(e)|$.
Remark. If $[e]=[0], U[x: G(0)]=x$, so that Theorem 6 is true if m is odd or m is divisible by 2 but not by 4 . In the exceptional case mentioned in Theorem 5a, the statement of Theorem 6 does not hold.

4. The product $U\left[x ; S_{m}\right]$

In order to find the formula for the product $\Pi(x-v)$, where v runs trough the whole semigroup S_{m}, we recall that $S_{m}=T_{1} \ldots T_{r}$, where T_{i} has been defined in the introduction.

It is natural to find first the product $U\left[x ; T_{i}\right]$.
Since $T_{i}=G_{i} \cup I_{i}$, we have $U\left[x ; T_{i}\right]=U\left[x ; G_{i}\right] \cdot U\left[x ; I_{i}\right]$.
Theorem 7. a) If $p_{t}>2$, then

$$
U\left[x ; T_{i}\right]=\left[\left(x-\bar{f}_{i}\right)^{p_{i}}-x f_{i}\right]^{\beta_{i}}, \beta_{i}=p_{i}^{\alpha_{i}-1} .
$$

b) If $p_{i}=2, U\left[x ; T_{i}\right]=\left(x-\bar{f}_{i}\right)(x-[1])$.
c) If $p_{i}^{\alpha_{i}}=2^{\alpha_{i}}, \alpha_{i} \geqq 2$, then

$$
U\left[x ; T_{i}\right]=\left(x^{2}-2 x+\bar{f}_{i}\right)^{\gamma_{i}} \cdot\left[\left(x-\bar{f}_{t}\right)^{2}-f_{i}\right]^{\gamma_{i}}, \gamma_{i}=2^{\alpha_{i}-2} .
$$

Proof. By Theorem 1 and Theorem 4 we obtain for $p_{t}>2$

$$
\begin{aligned}
& U\left[x ; T_{i}\right]=\left(x-\bar{f}_{i}\right)^{\beta_{i}} \cdot\left[\left(x-\bar{f}_{i}\right)^{p_{i}-1}-f_{i}\right]^{\beta_{i}}= \\
& \quad=\left[\left(x-\bar{f}_{i}\right)^{p_{i}}-\left(x-\bar{f}_{i}\right) f_{i}\right]^{\beta_{i}}=\left[\left(x-\bar{f}_{i}\right)^{\beta_{i}} .\right.
\end{aligned}
$$

The remaining cases follow directly from the corresponding statements of Theorems 1 and 4.

Any element $v \in S_{m}$ can be written uniquely in the form $v=t_{1} t_{2} \ldots t_{r}$, with $t_{i} \in T_{i}$. For any $v \in S_{m} v \cdot f_{i}=\left(t_{1} \ldots t_{r}\right) \cdot f_{i}=t_{t} f_{i}$ independently of the $m / p_{t}^{\alpha_{i}}$ possible values of $t_{1} \ldots t_{i-1} t_{i+1} \ldots t_{r}$.

Hence

$$
U\left[x ; S_{m}\right] \cdot f_{i}=\prod_{v \in S_{m}}\left(x f_{i}-v f_{i}\right)=\prod_{t \in t_{i}}\left(x f_{i}-t f_{i}\right)^{u_{i}}=\left(U\left[x ; T_{i}\right]\right)^{u_{i}} \cdot f_{t},
$$

where $u_{t}=m / p_{i}^{\alpha_{i}}$
Since $U\left[x ; S_{m}\right]=\sum_{i=1}^{r} U\left[x ; S_{m}\right] \cdot f_{i}$, we have finally

$$
U\left[x ; S_{m}\right]=\sum_{i=1}^{r} U\left[x ; T_{i}\right]^{u_{i}} f_{i} .
$$

a) If $p_{i}>2$, we have (with $\beta_{i}=p_{i}^{\alpha_{i}-1}$)

$$
\left.U \mid x ; T_{i}\right]^{u_{i}} \cdot f_{i}=\left(\left[x^{p_{i}}-x\right]^{\beta_{i}} \cdot f_{i}\right)^{u_{i}}=\left(x^{p_{i}}-x\right)^{m p_{i}} \cdot f_{i} .
$$

b) If $p_{i}=2$,

$$
U\left[x ; T_{i}\right]^{m / 2} f_{i}=\left[\left(x-\bar{f}_{i}\right)(x-1) f_{i}\right]^{m / 2}=\left(x^{2}-x\right)^{m / 2} \cdot f_{i} .
$$

c) If $p_{i}^{\alpha_{i}}=2^{\alpha_{i}}, \alpha_{i} \geqq 2$, (with $v_{i}=m / 2^{\alpha_{i}}$)

$$
\begin{gathered}
U\left[x ; T_{i}\right]^{v_{i}} f_{i}=\left(x^{2}-2 x\right)^{m / 4} \cdot\left(x^{2}-1\right)^{m / 4} \cdot f_{i}= \\
=\left[\left(x^{2}-x\right)^{2}-2\left(x^{2}-x\right)\right]^{m / 4} \cdot f_{i} .
\end{gathered}
$$

We have proved:
Theorem 8. Let $m=p_{1}^{\alpha_{i}} \ldots p_{r}^{\alpha_{r}}$. If all p_{i} are odd or m is divisible by 2 but not by 4 , then

$$
\begin{equation*}
U\left[x ; S_{m}\right]=\sum_{i=1}^{r} f_{i} \cdot\left(x^{p_{i}}-x\right)^{m / p_{i}} . \tag{6}
\end{equation*}
$$

If $m=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \alpha_{1} \geqq 2$, then

$$
\begin{equation*}
U\left[x ; S_{m}\right]=\left[\left(x^{2}-x\right)^{2}-2\left(x^{2}-x\right)\right]^{m / 4} f_{1}+\sum_{i=2}^{r} f_{i}\left(x^{p_{i}}-x\right)^{m / p_{i}} . \tag{7}
\end{equation*}
$$

Remark. The first term in (7) can be directly computed and we obtain (analogously to the Remark after Corollary 4):

$$
\left[\left(x^{2}-x\right)^{2}-2\left(x^{2}-x\right)\right]^{m / 4} f_{1}= \begin{cases}\left(y^{m / 2}+\frac{m}{2} y^{m / 2-1}\right) \cdot f_{1}, & \text { for } \alpha_{1}=2 \\ \left(y^{m / 2}+\frac{m}{2} y^{m / 2-1}+\frac{m}{2} y^{m / 2-2}\right) \cdot f_{1}, & \text { for } \alpha_{1} \geqq 3\end{cases}
$$

where $y=x^{2}-x$.
The formula (6) has been proved (in essential) by Vandiver. His formula for $U\left[x ; S_{m}\right.$] in the case of m even (as reproduced in Dickson [1], p. 89) is not correct. The correct result is (7).

5. Concluding remarks

Theorems 1 and 4 enable to find also formulae for $U\left[x ; G_{1} \ldots G_{s}\right]$, $U\left[x ; I_{1} \ldots I_{\mathrm{s}}\right], U\left[x ; T_{1} \ldots T_{\mathrm{s}}\right]$ with $s<r$. We omit this since these products seem to be of minor interest.

There are several applications of the results obtained. We outline one of them.
Suppose, e. g., that m is odd (and $r \geqq 2$).
Let $e=\bar{f}_{1} \ldots \bar{f}_{s}$ be a non-primitive idempotent $\in S_{m}$ (i. e. $s \leqq r-2$). Then putting $x=0$ in the formula of Theorem 3 we obtain

$$
[-1]^{|G(e)|} \cdot \prod_{u \in G(e)} u=\prod_{u \in G(e)} u=f_{s+1}+\ldots+f_{r}=1-f_{1}-\ldots-f_{s}=\bar{f}_{1} \ldots \bar{f}_{s}=e .
$$

If $e=f_{i}$ is a primitive idempotent $\in S_{m}$, then Corollary 3 implies (with $\beta_{t}=p_{i}^{a-1}$):

$$
[-1]^{\left|G\left(f_{i}\right)\right|} \prod_{u \in G(e)} u=\prod_{u \in G(e)} u=\left[-f_{i}\right]^{\beta_{i}}=-f_{i}=-e .
$$

Hence (if m is odd) $\prod_{u \in G(e)} u$ is e for any non-primitive idempotent and $-e$ for any primitive idempotent $\in S_{m}$. By considering also the case of m even, we arrive at Theorem 8,1 of paper [4], where the value of $\prod_{u \in G(e)} u$ has been derived directly. Also Theorem 8, 2 of paper [4] follows immediately from Theorem 6.

REFERENCES

[1] DICKSON, L. E. : History of the Theory of Numbers. Volume I. Stechert \& Co, New York, 1934.
[2] HARDY, G. H.-WRIGHT, E. M.: An Introduction to the Theory of Numbers. Second edition. Clarendon Press, Oxford, 1945.
[3] LUBELSKI, S.: Zur Theorie der höheren Kongruenzen. J. reine und angew. Math. 162, 1930, 63-68.
[4] SCHWARZ, Š.: The role of semigroups in the elementary theory of numbers. Math. Slovaca 31, 1981, 369-395.

Received June 5, 1981
Matematický ústav SAV Obrancov mieru 49 81473 Bratislava

ОБОБЩЕНИЯ СРАВНЕНИЙ М. БАУЭРА

Štefan Schwarz

Резюме
Пусть S_{m} - мультипликативная полугруппа кольца классов вычетов $(\bmod m)$. Пусть e - идемпотент $\in S_{m}, \boldsymbol{G}(e)$ и $P(e)$ - максимальная группа и максимальная полугруппа принадлежащая и идемпотенту e. Целью статьи является вычисление произведения $\Pi(x-v)$, где v пробегает все элементы $\in G(e)$ и $\in P(e)$ соотвественно. Основными результатами являются формулы данные в Теореме 3, в Теоремах 5a, в и в Теореме 6.

