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ON OSCILLATION CRITERIA 
FOR FORCED NONLINEAR HIGHER ORDER 

NEUTRAL DIFFERENTIAL EQUATIONS 
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(Communicated by Milan Medved!) 

ABSTRACT. In this paper, sufficient conditions are obtained for oscillation of 
all solutions of neutral differential equations of the form 

m 

[y(t) - P(t)y(t - T)](n) + Yl Qi(t)G(y(t - a,)) = f(t) (*) 
i = l 

and 
m 

[y(t) - P(t)y(t - r)] (n ) +Y,Qi(t)G(y(t - a{)) = 0 (**) 
i = l 

for different ranges of p(t), where n > 2. For (*), one of the conditions states 
that F(t) changes sign finitely, where F G C(n) ([0, oo),R) with F<n)(t) = f(t). 
In results concerning (**), the nonlinearity of G, the nature of n and the range 
of p(t) are closely related. 

1. Introduction 

In a recent paper [10], necessary and sufficient conditions are obtained for 
every bounded solution of 

[y(t)-p{t)y(t-T)](n)+,£íQi(t)G(y(t-ai))=f(t)t t>0, (1) l ( n ) 
- 1 -

ѓ = l 

to oscillate or tend to zero as t -> oo for different ranges of p(t). It is shown 
there, under some stronger conditions, that every solution of (1) oscillates or 
tends to zero as t —•> oo. In [10], a particular class of superlinear G is considered. 
However, similar results are obtained in [11] for superlinear/sublinear G under 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 34C10, 34C15, 34K40. 
K e y w o r d s : neutral differential equation, oscillation, nonoscillation. 
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stronger conditions. In [10], [11], one of the conditions states the existence of a 
function F G C M ([0, oo),R) such that F<<n\t) = f(t) and lim F(t) = 0. In 

t—>oo 

this paper, we will not assume that lim F(t) = 0. However, F(t) is allowed to 
t->oo 

change sign finitely. (This condition is made precise in the following.) As this 
condition is not applicable to the associated homogeneous equation 

Ыt)-p(t)y(t - т)]{n) + J2Qг(t)G{y(t - aг)) =0, t > 0, (2) ] ( » ) 

-r 

it is studied separately. In this paper, we are able to show that every solution 
of (l)/(2) oscillates under reasonably suitable conditions. While considering (2), 
different types of superlinear/sublinear G are taken. In (l)/(2), n > 2, p, / G 
C([0,oo),R) , Q{ G C([0,oo),[0,oo)), 1 < i < r a , G G C(R,R) is nondecreasing 
and uG(u) > 0 fov u ^ 0, T > 0 and ai > 0, 1 < i < m. 

The oscillatory and asymptotic behaviour of solutions of (1) with G(u) = u 
are investigated in [8] under the assumption that / is a very rapidly oscillating 
function. In [6], [7], equation (1) is studied under the assumption that / is small 
in some sense. Equation (2) is considered in [2], [13] under strong assumptions 
on Q{. Moreover, in most of these works, p(t) lies in the range — 1 < p(t) < 0 
or 0 < p(t) < 1. 

By a solution of (1) we mean a real-valued continuous function y on 
[T —p, oo), for some T > 0, such that y(t)—p(t)y(t—T) is n-times continuously 
differentiable and (1) is satisfied for t>T, where p = maxjr, o{ : 1 < i < ra}. 
A solution of (1) is said to be oscillatory if it has arbitrarily large zeros. It is 
called nonosdilatory otherwise. 

The nonhomogeneous equation is considered in the second section and the 
homogeneous equation is studied in Section 3. We need the following assumptions 
in the sequel. 

( H J There exists F G C(n)([0,oo),R) such that F^(t) = f(t) and F(t) 
changes sign with - o o < A = \immiF(t) < 0 < limsupF(t) = fi < oo. 

(Hi) There exists F G CW([0, oo),R) such that F^(t) = f(t) and F(t) 
changes sign. 

(H 2) For u > 0 and v > 0, there exists a S > 0 such that 
G(u) + G(v) > 6G(u T v). 

(Hf

2) For u < 0 and v < 0, there exists a 5 > 0 such that 
G(u) + G(v)<5G(u + v). 

(H 3) For u > 0 and v > 0, G(uv) < G(u)G(v). 
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(H4) G(~u) = -G(u), « e l . 

(H5) l iminf (<?(«)/«) > a > 0. 
\u\—>-oo 

(H6) liminf (<?(«)/«) > ß > 0. 
|u|-»0 

(н7) ( І ) / 4 ^ ) < 0 ° ' 
o 

(") / ' l f t j < ° ° > 
0 

for every k > 0. 
±00 

dn ( H s) / c ^ ) < ° ° for every k>0. 
±k 

00 , m v 

(H 9) f(ZQi(t)) & = 00. 
0 v i = i ' 

oo / m v 

(H 1 0 ) / ( E <??(*)) d* = 00, 

where Q*(t) = m i n l Q ^ ^ . Q ^ t - r ) } , t > r and 1 < i < m. 

R e m a r k . 

(i) (H x ) implies that F(£) is bounded, 
(ii) The possibility that liminf F(t) = —00 or l imsupF( t ) = 00 is included 

in (Hi) . ^ ° ° *->°° 
(iii) (H2) and (H4) imply (HJ,). 

R e m a r k . The prototype of G satisfying (H2) and (H4) is 

G(u) = (a -h &|ix|A)|^|Msgnu, 

where a > 0 , 6 > 0 , A > 0 and /L > 0 such that a2 + b2 ^ 0. It satisfies 
(H3) if a > 1 and b > 1. Moreover, G G C(R,M), t/G(u) > 0 for u / 0 and 
G(u) is nondecreasing. If A + [i > 1 and b > 0, then G satisfies (H5) . On the 
other hand, (H6) holds if A + /x < 1 and b > 0. Further, A + \i < 1 and b > 0 
imply that (H7) holds, and A + // > 1 and b > 0 imply that (H8) holds because 
we may write G(u) > b^|A+Msgn?x. If Gl(u) = |w|7sgnw, where 7 > 0, then 
G1 G C(R,K) with uGl(u) > 0 for u 7- 0 and it is nondecreasing. Further, G1 

satisfies (H 2 ) - (H 4 ) . It satisfies (H5) if 7 > 1 and (H8) if 7 > 1. Further, it 
satisfies (H6) if 7 < 1 and (H7) if 7 < 1. 
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2. Oscillation of nonhomogeneous equation 

The oscillatory behaviour of solutions of equation (1) is studied in this section. 

THEOREM 2.1. Suppose that 0 < p(t) < 1 and (Hx) holds. If 
OO r 772 

dt = —oo 

(H n ) / £ Qi(t)G{F+{t - a,))] dt = oo, 

(H12) / \ZQi{t)G(F-(t + T-ai))\ dt = oo, 
P L i= i J 

O O i- TTl -i 

(His) n~Qi(t)G(-F+(t + T -a,))] 
p L Z = 1 J 

and 
oo r m 1 

/ E Qi(*)G(-F"(t - a,)) dt = - o o , 
p li=l J 

uj/iere F+(£) = max{F'(t),0} and F~(t) = max{—F(t),0}, then every solution 
of equation (1) oscillates. 

P r o o f . Let y(t) be a nonoscillatory solution of (1). Then there exists a 
tQ > Ty such that y(t) > 0 or y(t) < 0 for t > tQ. Let y(t) > 0 for t > tQ. 
Setting 

w(t)=y(t)-p(t)y(t-T)-F(t) (3) 

for t > tQ + T , we obtain 

m 

u ;(n) ( t ) = _ ^ Q . ( f ) G ( j / ( t _ ( 7 . ) ) < 0 (4) 
i=l 

for t > tQ + p. Hence the functions w,w',... ^ ( n ~ 1 ; are monotonic and of 
constant sign for t > t1 > tQ + p. We consider two possibilities, viz., either 
lim w^'^tt) = — oo or lim w^^Ut) = £ E R. Suppose the former holds. 

Hence lim w(t) = —oo. For any L > a and for any £ , 0 < £ < L — /x, 
t—>OO 

there exists a t2 > t1 such that F(t) < p, + e and w(t) < —L for t >t2. Hence 
y(t) < y(t — T) for t>t2. Thus y(t) is bounded. Consequently, w(i) is bounded, 
a contradiction. If lim in(n""1)(t) = £, then from (4) we obtain 

t->OO 

OO 

/ [£]QiV)G{v(t-<Гi)) dť<oo. (5) 
tx i = 1 
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Since w(t) is monotonic, then w(t) > 0 or w(t) < 0 for t > t3 > tx. Let 
w(t) > 0 for t > t3. Then y(t) > F+(t) for t > t3 and hence 

/ [ E ^ W G ( F + ( , - a , ) ) ] dt< J [ E ^ W G ^ - o - , ) ) ] d*<oo 

t 3 + P i = 1 t3+P

 i = 1 

by (5), which is a contradiction to ( H n ) . If w(t) < 0 for t > t3, then y(t) > 
F~(t + T) and hence 

7 г m 

J [£Qť(í)G(F-(ť + т-<xť)) 
tз+P i = 1 

dt < oo 

by (5), which contradicts (H 1 2 ) . 
If y(t) < 0 for t > t0, then we set x(t) = —y(t) to obtain x(t) > 0 for t > t0 

and 
m 

[x(t) - p(t)x(t - T)] ( n ) + J2 <?.(*)-*(*(* - ^ ) ) = /(*), * > 0, 
i=l 

where f(t) = -f(t) and H(u) = -G(-u). If F(t) = -F(t), then F^ (t) = f(t), 
F(t) changes sign, —oo < — \x = liminfF(^) < 0 < limsupPT(t) = — A < oo, 

F+(t) = F~(t) and F~(t) = F+(t). Then proceeding as above, we obtain a 
contradiction. Thus the theorem is proved. • 

THEOREM 2.2. Let 0 < p(t) < p, where p is a constant. Let ( H J , (H 3), 
(H 4), ( H n ) and (H1 2) hold. If 

/ E « ł ( ť ) G ( ғ + ( ť + т - f f ł ) ) 
í *-i=l 

dt = oo 

and 

/

r TП 

Y^QІЇЩF-Џ-a,)) 

n

 L ѓ = l 

d í --- 0 0 , 

f̂ten e^er?/ bounded solution of equation (1) oscillates and every unbounded so
lution of equation (1) oscillates or tends to ±00 as t —> 00. 

P r o o f . Let y(t) be a nonoscillatory solution of (1) such that y(t) > 0 or 
y(t) < 0 for t > t0 > Ty. Suppose that y(t) > 0 for t > t0. The case y(t) < 0 
for t > t0 may similarly be dealt with. Setting w(t) as in (3) and proceed
ing as in the proof of Theorem 2.1, we obtain either lim ut(n_1)(£) = t G K, 
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or lim w^n~1Ut) = - c o . Suppose that the former holds. Then (5) is true. If 
t—>-co 

w(t) > 0 for t > tx > t0 + p, then y(t) > F+(t). Proceeding as in the proof of 
Theorem 2.1, a contradiction to ( H n ) is obtained due to (5). If w(t) < 0 for 
t > *-_, then py(t) > F~(t + T) and hence G(p)G(y(t-ai)) > G(F~(t + T-ai)) 
for t > t2 > tx + p due to (H3). This contradicts (H12) in view of (5). If 
lim uj(n_1)(£) = —oo, then lim w(t) = — oo and hence 

t—)-oo t—>-co 

w(t) > -p(t)y(t - T) - F{t) > -py(t - r ) - F(t) 

implies that \im'miy(t) = oo due to (Hx) . If y(t) is a bounded solution of (1), 
t—>-co 

then a contradiction is obtained; otherwise, lim y(t) = oo. Thus the proof of 
t—>co 

the theorem is complete. • 

Remark. From Theorems 2.1 and 2.2 it follows that p > 1 changes the nature 
of the unbounded solutions of (1). 

THEOREM 2.3. Let p(t) be monotonic decreasing and —p < p(t) < 0. where 
p > 0 is a constant. Suppose that (H[), (H 2 ) - (H 4 ) hold. If 

= 00 
UU r 771 -I 

(H14) / E W ) G ( - ^ ( t - * . ) ) < - - = 
p li=l J 

and 
oo r m -

/ \-QmG(F-(t-<Ji))]dt = oo, 
p li=l J 

where Q*(t) is same as in (H 1 0 ) . 

then every solution of equation (1) oscillates. 

P r o o f . If possible, let y(t) be a nonoscillatory solution of (1) with y(t) > 0 
or y(t) < 0 for t > t0 > Ty. Let y(t) > 0 for t > t0. Setting 

z(t) = y(t)-p(t)y(t-T) (6) 

and w(t) as in (3), we obtain z(t) > 0 for t > t0 + r . Proceeding as in the 
proof of Theorem 2.1 one obtains either lim w^n~1>}(t) = —oo or lim w(^n~1\t) 

t-*oo t—>-co 

= I G K. If the former holds, then w(t) < 0 for t > t2 > ^ > £0 + p and hence 
F(t) > z(t) > 0, a contradiction to (H'J . Suppose that the latter holds. Since 
w(t) is monotonic, we may take w(t) > 0 for t > ts > t2 because w(t) < 0 
leads to a contradiction as above. Hence z(t) > F+(t) for t > t3. The use of 
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(H2) and (H3) yields 

m 

0 = w{n)(t) + Y,Qi(t)G(y(t-ai)) 
i=l 

m 

+ G ( _ p ( t _ a)) [„,<»)(* _ T) + Y,Qi(t - r)G(y(t -T- a,))] 
i=l 

>w(n)(t) + G(p)w{n)(t-T) 
m 

+ E ^ ( * ) [ G ( 2 / ( t - ^ ) ) + G ( - p ( * - a i ) ) G ( t / ( t - r - c T i ) ) ] 
1 = 1 

m 

> w{n)(t) + G(p)w{n)(t - T) + 5Y,Q*(t)G(z(t - a,)) 
2 = 1 

m 

> w{n)(t) + G(p)w{n)(t - T) + t>Y,QmG(F+(t - a,)) 
І=l 

for t>ts + p, where a = minion : 1 < i < m}. Thus 

oo rn 

I [f^QMGiF+it-vJ) dt<oo, 
tз+P i = 1 

which contradicts (H1 4). The case y(t) < 0 for t > t0 is treated similarly. This 
completes the proof of the theorem. • 

THEOREM 2.4. Let - 1 < p(t) < 0. Suppose that (Hi), (H2), (K'2) and (H14) 
hold. If 

OO - 771 -l 

(H15) / £ Q*(t)G(-F~(t - a.))] dt = -oo, 
P

 li=i J 

then every solution of (1) oscillates. 

Proo f . In view of the proof of Theorem 2.3, it is enough to arrive at a 
contradiction in the case lim tn(n-1)(t) = £ eR and w(t) > 0 for t > to. Since 

t—>oo 

F+(t) < z(t) < y(t) + y(t - T) for t > t3, the use of (H2) yields 
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m 

O = w(n)(t) + Y,Qi(t)G(y(t - v{)) + w^(t - T) 
i=\ 

m 

+ J2Qi(t-r)G{y(t-T-ai)) 
i=\ 

m 

> w^(t) + «,(«>(« - T ) + * £Q*(t)G(y(t - a,) + y(t-T- a,)) 
i=\ 

m 

> w^(t)+w^(t^r) + 5y£Q;(t)G(F+(t-ai)) 
i=\ 

for t > t3 + p. Hence 

oo 

/ SWîG^t-tт,)) 
tz+P ^ i = 1 

åt < oo, 

which is a contradiction to (H14). Thus the theorem is proved. D 

THEOREM 2.5. Suppose that p(t) changes sign with - 1 < p(t) <1. If (H-j, 
(H2), (H2), (H12)-(H15) hold, then every solution of (1) oscillates. 

P r o o f . Let y(t) be a nonoscillatory solution of (1) with y(t) > 0 or 
y(t) < 0 for t > t0 > Ty. We consider the case y(t) > 0 for t > t0. The 
case y(t) < 0 for t > t0 may similarly be dealt with. Setting w(t) as in (3) 
and z(t) as in (6) and then proceeding as in the proof of Theorem 2.1, one 
obtains that w(t) is monotonic for large t and either lim w^'^Ct) = —oo or 

t->oo 

lim w^-^tt) = £ e R. If lim w^'^ft) = -oo , then lim w(t) = -oo . Pro-
ceeding as in the proof of Theorem 2.1, we obtain that y(t) is bounded and 
hence w(t) is bounded, a contradiction. If lim w^n~^(t) = £ G E, then (5) 

holds. If w(t) < 0 for large £, then proceeding as in the proof of Theorem 2.1 
we obtain a contradiction to (H12). Let w(t) > 0 for t > t2 > tx > t0 + p. 
Then F(t) < z(t) < y(t) + y(t - r) for t >t2. Proceeding as in the proof of 
Theorem 2.4, we obtain a contradiction to (H14). Thus the proof of the theorem 
is complete. D 

EXAMPLE. Consider 

[»(*) - f »(* - 2TT)] " + f 2/3(* - 2TT) = 1 cos 3t, t > 0 . 
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Hence F(t) = -^-cos3t . Clearly, F(t) changes sign with liminfF(^) = -gy 

and limsupF(t) = gy. Further, 
t—>CX) 

{ 0, 0 < 3t < f , 

-±cos3t, ( 4 n - 3 ) f <3t< ( 4 n - l ) f , 

0, ( 4 n - l ) f < 3 < < ( 4 n + l ) f 

and 

{ ^•cos3f, 0 < 3 t < f , 

0, ( 4 n - 3 ) f < 3 i < ( 4 n - l ) f , 

^ c o s 3 t , ( 4 n - l ) f < 3 * < (4n + l ) f , 
n = 1,2,... imply that 

00 oo 

[ Q(t)G(F+(t - 2TT)) dt = ^ f(F+(t - 2TT))3 dt 

2K 

(4«-l)f 
1 2 ^ f 3 J 

= _

8 l 4 2_, JCOSaudu 
n = 4 (4n-3) f 

i n OO 

- i E C i 1 ) -

2тr 2тr 

„ ( 4 n - l ) j 

ra=4 

and 

oo oo 

j Q(t)G(F-(ť)) dt=\ f (F-(ť)f dt 
2n 2ir 

„ (4»+l)f 
> 814"£ / ^udu 

n = 4 (4n - l ) f 

12 ^IA\ 
oo 814 Ш 

n=4 

Similarly, other two conditions of Theorem 2.1 are satisfied. Hence all solutions of 
the equation oscillate by Theorem 2.1. In particular, y(t) = cost is an oscillatory 
solution. 

Remark. We can have similar examples to illustrate other theorems. 
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3. Oscillation of homogeneous equation 

This section deals with the oscillation of solutions of equation (2). The re
sults here differ substantially from those in [10], [11]. Different types of sublin-
ear/superlinear G are considered in this paper. We need the following lemmas 
for our work in the sequel: 

LEMMA 3 .1 . ([4], [5; p. 193]) Let y G C(n) ([0, oo),M) be of constant sign. 
Let y(n)(t) be of constant sign and ^ 0 in any interval [T, oo). T > 0. and 
y(t)y(n)(t) < 0. Then there exists a number t0 > 0 such that the functions 
y^\t)} j = 1,2, . . . , n — 1 . are of constant sign on [t0,oo) and there exists a 
number k G {1, 3 , . . . , n—1} when n is even or k G {0, 2 , . . . , n—1} when n is 
odd such that 

y(t)yW(t)>0 for j = 0,1, 2 , . . . ,fc, t>t0, 

(-l)n+j-1y(t)y^(t)>0 for j = k+l,k+2,... , n - l , t>t0. 

LEMMA 3.2. ([3; p. 46]) If q G C([0,oo),[0,oo)) and 

t 

liminf / q(s) ds > — , 
t->oo J e 

t~T 

then x'(t) +q(t)x(t — r) < 0, t > 0, cannot have an eventually positive solution 
and x'(t) + q(t)x(t — T) > 0. t > 0. cannot have an eventually negative solution. 

LEMMA 3.3. ([3; p. 46]) If q satisfies the conditions of Lemma 3.2. then x'(t) — 
q(t)x(t+r) >0,t>0, has no eventually positive solution and x'(t) — q(t)x(t+T) 
< 0. t > 0, has no eventually negative solution. 

LEMMA 3.4. Suppose that 0 < p(t) < p, where p is a constant and (H9) holds. 
If y(t) is a solution of (2) with y(t) > 0 for t > 10 > 0 and z(t) is set as in (6) 
for t >t0 +T , then either 

lim z{i)(t) = - o o , i = 0, l , 2 , . . . , n - l (7) 
t—>oo 

or 

(-l)n+kz{k)(t) < 0 , A; = 0 ,1 , 2 , . . . , n - 1 , t>t1>t0+p, 

and (8) 

lim zw(t) = 0, k = 0 ,1 , 2 , . . . , n - 1 . 

P r o o f . From (2) we obtain 
m 

z(n)(t) = _J2Qi(t)G(y(t-ai))<0 for t>t0+p. 
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Hence z, z1,..., z(n~l> are monotonic and are of constant sign for t>tl> t0+p. 
Further, either lim z^~l)(t) = - o o or lim z^'^Ct) = £ e R. If the former 

t-+oo V y *-»oo 

holds, then lim z^(t) = - o o , i = 0 ,1 , 2 , . . . , n - l . Suppose the latter holds. 

Then (5) is true. We claim that liminf y(t) = 0. If not, then y(t) > a > 0 for 
t—5>00 

t>t2>tl. Hence 

7 ( m \ 7 r m 

G(a) / £Qž(ť) U í < / ^ Q ^ G ^ ř - ^ ) ) dř < oo 

due to (5), a contradiction to ( H 9 ) . Thus our claim holds. Consequently, there 
exists a {tn}n=zl such that lim y(t ) = 0. Since z(t) is monotonic, z(t) < y(t) 

n—too 
and z(t + T) > —py(t), then lim z(t) = 0 and hence (8) holds. Thus the lemma 

t-+oo 
is proved. • 

LEMMA 3.5. If the range of p(t) in Lemma 3.4 is replaced by 0 < p(t) < 1, 
then only (8) holds. 

P r o o f . If (7) holds, then lim z(t) = —oo. Since z(t) < 0 for large t, then 
t—>oo 

y(t) < p(t)y(t — T) < y(t — r ) and hence y(t) is bounded. Consequently, z(t) is 
bounded, a contradiction. Thus the lemma follows from Lemma 3.4. • 

THEOREM 3.6. Let —p < p(t) < 0. where p > 0 is a constant, and p(t) 
be monotonic decreasing. Let r < a = minlO^ : 1 < i < m}. If ( H 2 ) - ( H 4 ) , 
(H 7 )(i) and (H 1 0 ) hold, then every solution of (2) oscillates. 

P r o o f . If possible, let y(t) be a nonoscillatory solution of (2). We may 
take y(t) > 0 for t > t0 > Ty in view of ( H 4 ) . Setting z(t) as in (6), we obtain 
z(t) > 0 for t > U+T and either lim z^n-l\t) = - o o or lim z^-Vtf) = £eR. 

v J — ° t-+oo V J t-+oo v ' 

If either the former holds or £ < 0, then z(t) < 0 for large t, a contradic
tion. Hence 0 < I < oo. Since z(t) > 0 and z^(t) < 0 for t > t0 + p , 
then by Lemma 3.1, there exists an integer k < n — 1 and tx > t0+ p such 
that n - k is odd, z^(t) > 0 for j = 0 , 1 , . . . ,k and ^ ) ( t ) ^ + 1 ) ( £ ) < 0 for 
j — k, k+1,..., n—2 and t > ^ . By the Taylor series expansion we have, for 
t > tx + r , 

Z(t) = Z(t ~Г)+ Гz'(t - Г) + -Z"(t - Г) + • • • + - / * ) ( ! ) > ^ - ^ " Ҷ ^ ) , 
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where r > 0 and t-r < x < t. Since zW(t) is decreasing, then z(t) > jrz^(t). 
Another Taylor series expansion yields 

zW(t) = zW(t + r) + (-r)z<*+1>(* + r) + i ^ L ^ * + 2 > ( t + r) + ... 
2! 
—r 

(*"-"*-1)!' 

t ,r\n—k—1 

+ : r ) , ^(n-i)(^ 

rn—k—l 

>(^FГT)!2("-1,(< + '-) 

because r > 0 , t < x <t + r and z^n~~l\t) is monotonically decreasing. Hence, 
for t > tx + r, 

Z(<) > t l ( „ - T . ,)•''"-"('+ r) > (^I)! 2 < "- 1 , ( < + r)' (9) 

The use of (H2), (H3) and (9) yields, for t > t2 > tx + (a - r) + p, 

m 

0 = /n\t) + J2Qi(t)G(y(t-<Ji)) 
i=l 

m 

+ G(-p(t - a)) [z^(t - T) + J " Q& - T)G{y(t - r - at))] 
i=l 

>z^(t) + G(p)z{n\t-T) 
m 

+ E W ) [G0/(* - CTi))+G(-^(* - -.)M"(* - - - *.))] 
i = l 

m 

> *(n)(*) + O(p)z(")(< - r) + <*£ <?*(*)(?(*(* - a,)) 
i = l 
m 

> ^»)(«) + C(p)z(n)(t - r) + « * E Q ; ( * ) G ( - ^ r i ^ ( n - 1 ) ( . - r)) 
2 = 1 

m 

> z(n)(<) + G(p)z^(t - r) + ( J G ( ^ ^ - z ( n - 1 ) ( < - r)) £ Q * ( t ) . 
2 = 1 

Hence 

* V*n*m 4. 2 W W 4. g(p)^(n)(*~^) < n 

where u = i£^jrz{n~1)(t) and 1/ = i-^lEjj--.j-(»--)(i - T) and the fact that 

2("-i)(i) j s monotonically decreasing is used. Integrating the above inequality 
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we obtain 

r / Y v ^ * , . A , (n -1) ! f dw ^ / N (n -1) ! /* di/ ^ n 

»/(Eow)d«+^^y^+Gw^75ii/^<o, 
t 2 * Ci C2 

where cx =
 {°[n

T}ly *{n~l)(t2) and c2 = ^I^u"* z^n~l)(t2 - r ) . This leads to 
a contradiction to (H10) in view of (H7) (i). Thus the theorem is proved. • 

THEOREM 3.7. Let - 1 < p(t) < 0. If (H2), (Hi>), (H7) and (H10) hold, then 
every solution of (2) oscillates, where T < a — minion : 1 < i < m}. 

P r o o f . Proceeding as in the proof of Theorem 3.6 we obtain (9). Since 
z(t) < y(t) + y(t - T) , then (H2) and (9) yield, for t > t2 > tx + (a - r) + p, 

m m 

0 = zM(t) + z^(t-r)+Y/Qi(t)G{y(t-ai))+J2Qi(t-r)G{y(t-T-ai)) 
i=l 2 = 1 

m 

> *<»>(«) + *<»>(t - r) + *£Q?(t)G(*(t - ^)) • 
i = l 

The rest of the proof is similar to that of Theorem 3.6. Thus the proof of the 
theorem is complete. • 

THEOREM 3.8. Let 0 < p(t) < 1. If n is odd and if (H7) and (H9) hold, then 
every solution of (2) oscillates. 

P r o o f . Let y(t) be a nonoscillatory solution of (2) with y(t) > 0 or 
y(t) < 0 for t > t0 > Ty. We consider the case y(t) > 0 for t > t0. The 
case y(t) < 0 is similar. Setting z(t) as in (6), we get z(t) < y(t) for t > t0 + r . 
Then (8) holds by Lemma 3.5. Since n is odd, then z(t) > 0 for t > tx > t0 + p. 
Taylor series expansion yields, for t > tx, 

z(* - r) = z(() + (-r)z'(t) + {-^f-z"(t) + ••• + tp-^/»-»{x) 

>(^T)T^-1)('). 
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because z^n 1;(t) is monotonically decreasing, where r > 0 , t — r < x < t. 
Hence, for t > tx, 

0 = ^)( í ) + X;Qi(í)G(у(ŕ-tri)) 
І=l 

m 

>*<">(*) + £ Q i ( í ) G ( ; - ( í - 0 r i ) ) 
Ż = 1 

ra 

> *(»>(*) + £ QiW^-g^^Ҳt)) 
i = l 

m 

> z{n)(t) + G(^z^\t))J2Qгit) 
І=l 

where a = m i n ^ , . . . , a m } . Proceeding as in the proof of Theorem 3.6 and 
using (H7)(i) we obtain a contradiction to (H 9). Hence the theorem is proved. 

• 

Remark. Theorem 3.8 improves [1; Theorem 3]. Moreover, the proof of The
orem 3.8 is simpler than that of Theorem 3. As Theorem 3.8 does not hold for 
linear G, we have the following theorem. 

THEOREM 3.9. Let 0 <p(t) < 1, n be odd and (H6) hold. If 

(H1 6) liminf J ( £ Q.(sj) ds > 4 ^ r , where 2a = mm{ai : 1 < i < m} ; 

t-+oo ±_0 \ i = 1 J 

then every solution of (2) oscillates. 

P r o o f . Suppose that y(t) is a nonoscillatory solution of (2) with y(t) > 0 
for t > t0 > T . The case y(t) < 0 for t > t0 may similarly be dealt with. Then 
z(t) < y(t) for t > t0 + r, where z(t) is same as in (6). We claim that (H16) 
implies (H9). Indeed, if (H9) fails, then 

oo 

-/(Ewo) 
n *—1 

0 < A = I I > QЛt) ) d ť < o o . 
o 

382 



OSCILLATION CRITERIA FOR NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS 

Hence 

W*/(£««(*)) d* 
t-a i~1 

r t t-a -i 

/ (E^( s ) ) d s - / (£^( S ) )d S 
- n - = 1 n ^ = 1 

= liminf 
t—юo 

< lim težsf/(E«.( 
n i—1 

(5) ) ds + lim sup 
t—>oo -/(|H 

n г— --

ds 

ť-ст 

-- w / ( £ < w - ) ) «-*--&£* / (E«i(*))ds 

0 i _ 1 0 * - 1 

= A - A = 0, 

which is a contradiction. Thus (8) holds by Lemma 3.5. Since n is odd, then 
z(t) > 0 for t > tx > t0 + r . Further, (H6) yields G(z(t)) > f3z(t) for t > 
t2 > t1. Proceeding as in the proof of Theorem 3.8, we obtain (10). Hence, for 
t > t2 + p, 

m 

0 = zW(t) + YtQi(t)G(y{t-oi)) 
1 = 1 
m 

>^n )(t)+E«i(*)G(^-^)) 
2 = 1 

m 

i = i 

>*<">(*)+/?(f>i(t)W-2<7) 
. ѓ = l 

T П - 1 

--^W + ZÍT-rrw -E°*(*) P((B"1)(É-ff)' ( n - l ) ! 
. ѓ = l 

where the fact that z(t) is decreasing is used. This contradicts Lemma 3.2 due 
to (H 1 6 ) because z^n~l\t) is eventually positive. Thus the theorem is proved. 

• 
THEOREM 3.10. Let 1 < p(t) < p, where p > 0 is a constant. Let n be odd 
and T > cr* = maxfc^ : 1 < i < m}. If (H 8) and (H 9) hold, then every solution 
0/(2) oscillates. 
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P r o o f . If possible, let y(t) be a nonoscillatory solution of (2). Let y(t) > 0 
for t >t0 > T . The case y(t) < 0 for t > t0 may similarly be dealt with. Then 
either (7) holds or (8) holds by Lemma 3.4, where z(t) is defined by (6). If (7) 
holds, then z^\t) < 0 for t > tx > t0, 0 < j < n - 1. By the Taylor series 
expansion we have, for t > tx + r, 

r2 „n—1 

z(t) = z(t -r)+rz'(t-r) + -z"(t-r) + --- + - — ^ " ^ (*), 

where t — r < x < t and r > 0. Since z^n~l\t) is monotonically decreasing, 
then z(t) < ^ll)\^n~l) (t - r) . Further, z(t) > -py(t - r) for t > tx implies 
that y(t) > —\z(t + T). Hence, for t > tx + p, 

m 

o = z^(t) + Y,Qi(t)G(y(t-<?>)) 
i=l 
m 

>zM(t) + ~]Qi(t)G(-lz(t + T-ai)) 
i=l 

m 

> z (n ) ( t ) + G ( _ i z ( f + T _ - . ) ) - r Q . ( f ) 

2 = 1 

m 

> z(n){t) + G ( _ _ ^ r i l z ( n - l ) ( t ) ) ~-Qt(t) 
i=l 

that is, 

771 1 

where u = - ^ - I V ' ^ " " ^ ( O - H e n c e 

t 2
 z ~ 1 C 

where t2 > t1 + p and c -- — ^ - i ) . ^n~~^(^2) • This contradicts (H9) due to 
(H8). Hence (8) holds. Consequently, (5) is true. Since n is odd, then z(t) > 0 
for t > t, and hence y(t) > p(t)y(t - T) > y(t - T) . Thus liminf y(t) > 0. This 

t—>oo 

contradicts (H9) in view of (5). Hence the proof of the theorem is complete. • 
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THEOREM 3.11. Let 1 < p(t) < p, where p > 0 is a constant. Let n be odd, 
T > a* = ma>x{ai : 1 < i < m} and (H5) hold. If 

(H17) liminf / ( g Q.(aj) ds > ea(T
p_n

a7%n-i , where 0 < 6 < T - a*, 

then every solution of (2) oscillates. 

P r o o f . We may note that (H17) implies (H9). Proceeding as in the proof 
of Theorem 3.10, we obtain z(t) < {£_.^2 (n_1)(* - r) for t > tx + r when (7) 
holds. Further, y(t) > —-z(t+r) for t>tx. From (7) it follows that z(t) -> — oo 
as t -> co. Hence G(z(t)) > az(t) for t >t2> t-^+p. Hence, for t > t3 > t2+p, 

m 

0 = z^(t) + Y/QMG(y(t-ai)) 
i=l 
m 

>Z(n)(t) + Y,Qi(t)G{-iz(t + T--i)) 
i=l 

m 

> z (n) ( f ) _^Q. ( t ) ^ + T _ a . ) 
P 2 = 1 

m 

>z^(t)-%(t + T-a*)J2Qi(t) 
P .=1 

/ э|e £\fi 1 ^ 

г 2<"'<') - Z-~$ г < "" '" + ð > ?«•«> 
which contradicts Lemma 3.3 in view of (H17) because z^n-l\t) < 0 for t > t3. 
If (8) holds, we arrive at a contradiction as in the proof of Theorem 3.10. Thus 
the theorem is proved. • 

THEOREM 3.12. Suppose that 0 < p(t) < 1. If n is even, r < a = minion : 
1 < i < m} and (H7) and (H9) hold, then every solution of (2) oscillates. 

P r o o f . Let y(t) be a nonoscillatory solution of (2) with y(t) > 0 for t > 
t0> T . From Lemma 3.5 it follows that (8) holds, where z(t) is given by (6). 
Since n is even, then z(t) < 0, z'(t) > 0, . . . , z^n-^(t) > 0 for t > tx > t0 + p. 
Further, 

z(t - r) - z(t) + (-r)z'(t) + {-^f-z"(t) + ••• + t ^ z ( ^ ) ( x ) , 
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where r > 0 and t - r < x < t, implies that z(t - r) < (JZ^i ^n x\t) for 

t > tx. Since y(t) > -z(t + r) for t>tx, then 

m 

Q = zW{t) + Y,Qi(t)G(v{t-<'i)) 
i=l 
m 

>*(»)(*)+ £ Q . ( * ) G ( _ _ ( * + T _,-.)) 
i=l 

m 

>z^{t) + G{-z{t-a + T))Y,Qi(t) 
i=l 

m 

> *(n)w + G(^S^z^\t)) Y,Qm 
i=l 

for t > t2 > tx -f p. Since z(n-1)(/_) —> 0 as £ —,> oo, then integrating the above 
inequality from t2 to oo yields a contradiction to (H9) due to (H7) (i). A similar 
contradiction is obtained if y(t) < 0 for t >tQ. Hence the proof of the theorem 
is complete. • 

Following theorems may be proved using the techniques employed in the 
above theorems. 

THEOREM 3.13. Let 0 < p(t) < 1. n be even and r < a = min{cr. : 1 < 
i < m}. If (H6) holds and 

( n - l ) ! Iţпtaf/(£<?,(.)) _ > ? ; J 
+—S. г—1 

r - c)71-1 ' 

where 0 < c < a — r, then every solution of (2) oscillates. 

THEOREM 3.14. Let 1 < p(t) < p, n be even and r < a = min{ai : 1 < 
i < m}. If (H 7) and (H 9) hold, then every bounded solution of (2) oscillates. 

4. Summary 

We have observed that the behaviour of the forcing term f(t) greatly in
fluences the nature of solutions of (1). It is not known how the solutions of 
(1) would behave when f(t) is such that 0 < liminfF(l:) < l imsupF(£) < oo 

*->oo £-+oo 

or - o o < liminfFXl:) < limsupF(F) < 0, where F e C(n) ([0, oo), R) with 
t~^°° t-^-oo 

F^(t) = f(t) and p(t) > 0. We may note that this condition can be reduced 
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to (Hx) if limsupF(£) < oo or liminfF(^) > — oo. This can be reduced to 
<->00 t-K* 

(H[) otherwise. In Theorems 2.1-2.5, the conditions on Qi, 1 < i < m, are so 
strong that the superlinearity or sub-linearity of G does not matter. We expect 
to weaken these conditions. Further, we note that these conditions are sufficient. 
It would be interesting to obtain conditions which are necessary as well as suf
ficient for oscillation of all solutions of (1) when F satisfies (Hx) or (H'J. No 
result is known for (1) if p(t) changes sign but not necessarily —1 < p(t) < 1. 

It is interesting to notice that the range of p(t), the nature of n and super-
linearity/sublinearity of G are closely related in the results concerning (2). We 
have no result for superlinear G when 0 < p(t) < 1 or — p < p(t) < 0 irrespec
tive of n odd or even, where p is any positive scalar. No result for (2) is known 
if p(t) changes sign with or without — 1 < p(t) < 1. The conditions imposed on 
Qi(t), 1 < ^ < m, in Theorems 3.6-3.14 are sufficient. 

In [12], equations (1) and (2) are studied for n == 1. For n =- 1 or n > 2, 
similar results may be obtained for (l)/(2) when Q{(t) < 0, 1 < i < m. It seems 
that no result is known for Q{(t) changing sign. 
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