Mathematic Slovaca

N. Parhi; Radhanath N. Rath
On oscillation criteria for forced nonlinear higher order neutral differential equations

Mathematica Slovaca, Vol. 54 (2004), No. 4, 369--388

Persistent URL: http://dml.cz/dmlcz/130331

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON OSCILLATION CRITERIA FOR FORCED NONLINEAR HIGHER ORDER NEUTRAL DIFFERENTIAL EQUATIONS

N. Parhi* - R. N. Rath**
(Communicated by Milan Medved')

ABSTRACT. In this paper, sufficient conditions are obtained for oscillation of all solutions of neutral differential equations of the form

$$
\begin{equation*}
[y(t)-p(t) y(t-\tau)]^{(n)}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)=f(t) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
[y(t)-p(t) y(t-\tau)]^{(n)}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)=0 \tag{**}
\end{equation*}
$$

for different ranges of $p(t)$, where $n \geq 2$. For (*), one of the conditions states that $F(t)$ changes sign finitely, where $F \in C^{(n)}([0, \infty), \mathbb{R})$ with $F^{(n)}(t)=f(t)$. In results concerning (**), the nonlinearity of G, the nature of n and the range of $p(t)$ are closely related.

1. Introduction

In a recent paper [10], necessary and sufficient conditions are obtained for every bounded solution of

$$
\begin{equation*}
[y(t)-p(t) y(t-\tau)]^{(n)}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)=f(t), \quad t \geq 0 \tag{1}
\end{equation*}
$$

to oscillate or tend to zero as $t \rightarrow \infty$ for different ranges of $p(t)$. It is shown there, under some stronger conditions, that every solution of (1) oscillates or tends to zero as $t \rightarrow \infty$. In [10], a particular class of superlinear G is considered. However, similar results are obtained in [11] for superlinear/sublinear G under

[^0]stronger conditions. In [10], [11], one of the conditions states the existence of a function $F \in C^{(n)}([0, \infty), \mathbb{R})$ such that $F^{(n)}(t)=f(t)$ and $\lim _{t \rightarrow \infty} F(t)=0$. In this paper, we will not assume that $\lim _{t \rightarrow \infty} F(t)=0$. However, $F(t)$ is allowed to change sign finitely. (This condition is made precise in the following.) As this condition is not applicable to the associated homogeneous equation
\[

$$
\begin{equation*}
[y(t)-p(t) y(t-\tau)]^{(n)}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)=0, \quad t \geq 0 \tag{2}
\end{equation*}
$$

\]

it is studied separately. In this paper, we are able to show that every solution of $(1) /(2)$ oscillates under reasonably suitable conditions. While considering (2), different types of superlinear/sublinear G are taken. In (1)/(2), $n \geq 2, p, f \in$ $C([0, \infty), \mathbb{R}), Q_{i} \in C([0, \infty),[0, \infty)), 1 \leq i \leq m, G \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing and $u G(u)>0$ for $u \neq 0, \tau>0$ and $\sigma_{i}>0,1 \leq i \leq m$.

The oscillatory and asymptotic behaviour of solutions of (1) with $G(u)=u$ are investigated in [8] under the assumption that f is a very rapidly oscillating function. In [6], [7], equation (1) is studied under the assumption that f is small in some sense. Equation (2) is considered in [2], [13] under strong assumptions on Q_{i}. Moreover, in most of these works, $p(t)$ lies in the range $-1<p(t) \leq 0$ or $0 \leq p(t)<1$.

By a solution of (1) we mean a real-valued continuous function y on $\left[T_{y}-\rho, \infty\right)$, for some $T_{y} \geq 0$, such that $y(t)-p(t) y(t-\tau)$ is n-times continuously differentiable and (1) is satisfied for $t \geq T_{y}$, where $\rho=\max \left\{\tau, \sigma_{i}: 1 \leq i \leq m\right\}$. A solution of (1) is said to be oscillatory if it has arbitrarily large zeros. It is called nonoscillatory otherwise.

The nonhomogeneous equation is considered in the second section and the homogeneous equation is studied in Section 3. We need the following assumptions in the sequel.
$\left(\mathrm{H}_{1}\right)$ There exists $F \in C^{(n)}([0, \infty), \mathbb{R})$ such that $F^{(n)}(t)=f(t)$ and $F(t)$ changes sign with $-\infty<\lambda=\liminf _{t \rightarrow \infty} F(t)<0<\limsup _{t \rightarrow \infty} F(t)=\mu<\infty$.
$\left(\mathrm{H}_{1}^{\prime}\right)$ There exists $F \in C^{(n)}([0, \infty), \mathbb{R})$ such that $F^{(n)}(t)=f(t)$ and $F(t)$ changes sign.
$\left(\mathrm{H}_{2}\right)$ For $u>0$ and $\nu>0$, there exists a $\delta>0$ such that

$$
G(u)+G(\nu) \geq \delta G(u+\nu)
$$

$\left(\mathrm{H}_{2}^{\prime}\right)$ For $u<0$ and $\nu<0$, there exists a $\delta>0$ such that

$$
G(u)+G(\nu) \leq \delta G(u+\nu)
$$

$\left(\mathrm{H}_{3}\right)$ For $u>0$ and $\nu>0, G(u \nu) \leq G(u) G(\nu)$.
$\left(\mathrm{H}_{4}\right) \quad G(-u)=-G(u), u \in \mathbb{R}$.
$\left(\mathrm{H}_{5}\right) \underset{|u| \rightarrow \infty}{\liminf }(G(u) / u)>\alpha>0$.
$\left(\mathrm{H}_{6}\right) \liminf _{|u| \rightarrow 0}(G(u) / u)>\beta>0$.
$\left(\mathrm{H}_{7}\right) \quad$ (i) $\int_{0}^{k} \frac{\mathrm{~d} u}{G(u)}<\infty$,
(ii) $\int_{0}^{-k} \frac{\mathrm{~d} u}{G(u)}<\infty$,
for every $k>0$.
$\left(\mathrm{H}_{8}\right) \int_{ \pm k}^{ \pm \infty} \frac{\mathrm{d} u}{G(u)}<\infty$ for every $k>0$.
$\left(\mathrm{H}_{9}\right) \int_{0}^{\infty}\left(\sum_{i=1}^{m} Q_{i}(t)\right) \mathrm{d} t=\infty$.
$\left(\mathrm{H}_{10}\right) \int_{\tau}^{\infty}\left(\sum_{i=1}^{m} Q_{i}^{*}(t)\right) \mathrm{d} t=\infty$,
where $Q_{i}^{*}(t)=\min \left\{Q_{i}(t), Q_{i}(t-\tau)\right\}, t \geq \tau$ and $1 \leq i \leq m$.

Remark.

(i) $\left(\mathrm{H}_{1}\right)$ implies that $F(t)$ is bounded.
(ii) The possibility that $\liminf _{t \rightarrow \infty} F(t)=-\infty$ or $\limsup _{t \rightarrow \infty} F(t)=\infty$ is included in $\left(\mathrm{H}_{1}^{\prime}\right)$.
(iii) $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{4}\right)$ imply $\left(\mathrm{H}_{2}^{\prime}\right)$.

Remark. The prototype of G satisfying $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{4}\right)$ is

$$
G(u)=\left(a+b|u|^{\lambda}\right)|u|^{\mu} \operatorname{sgn} u
$$

where $a \geq 0, b \geq 0, \lambda \geq 0$ and $\mu \geq 0$ such that $a^{2}+b^{2} \neq 0$. It satisfies $\left(\mathrm{H}_{3}\right)$ if $a \geq 1$ and $b \geq 1$. Moreover, $G \in C(\mathbb{R}, \mathbb{R}), u G(u)>0$ for $u \neq 0$ and $G(u)$ is nondecreasing. If $\lambda+\mu \geq 1$ and $b>0$, then G satisfies $\left(\mathrm{H}_{5}\right)$. On the other hand, $\left(\mathrm{H}_{6}\right)$ holds if $\lambda+\mu \leq 1$ and $b>0$. Further, $\lambda+\mu<1$ and $b>0$ imply that $\left(\mathrm{H}_{7}\right)$ holds, and $\lambda+\mu>1$ and $b>0$ imply that $\left(\mathrm{H}_{8}\right)$ holds because we may write $G(u) \geq b|u|^{\lambda+\mu} \operatorname{sgn} u$. If $G^{1}(u)=|u|^{\gamma} \operatorname{sgn} u$, where $\gamma>0$, then $G^{1} \in C(\mathbb{R}, \mathbb{R})$ with $u G^{1}(u)>0$ for $u \neq 0$ and it is nondecreasing. Further, G^{1} satisfies $\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$. It satisfies $\left(\mathrm{H}_{5}\right)$ if $\gamma \geq 1$ and $\left(\mathrm{H}_{8}\right)$ if $\gamma>1$. Further, it satisfies $\left(\mathrm{H}_{6}\right)$ if $\gamma \leq 1$ and $\left(\mathrm{H}_{7}\right)$ if $\gamma<1$.

N. PARHI - R. N. RATH

2. Oscillation of nonhomogeneous equation

The oscillatory behaviour of solutions of equation (1) is studied in this section.
THEOREM 2.1. Suppose that $0 \leq p(t) \leq 1$ and $\left(\mathrm{H}_{1}\right)$ holds. If

$$
\begin{aligned}
\left(\mathrm{H}_{11}\right) & \int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty \\
\left(\mathrm{H}_{12}\right) & \int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{-}\left(t+\tau-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty \\
\left(\mathrm{H}_{13}\right) & \int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(-F^{+}\left(t+\tau-\sigma_{i}\right)\right)\right] \mathrm{d} t=-\infty \\
& \int_{\rho}^{a n d}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(-F^{-}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=-\infty
\end{aligned}
$$

where $F^{+}(t)=\max \{F(t), 0\}$ and $F^{-}(t)=\max \{-F(t), 0\}$, then every solution of equation (1) oscillates.

Proof. Let $y(t)$ be a nonoscillatory solution of (1). Then there exists a $t_{0}>T_{y}$ such that $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}$. Let $y(t)>0$ for $t \geq t_{0}$. Setting

$$
\begin{equation*}
w(t)=y(t)-p(t) y(t-\tau)-F(t) \tag{3}
\end{equation*}
$$

for $t \geq t_{0}+\tau$, we obtain

$$
\begin{equation*}
w^{(n)}(t)=-\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \leq 0 \tag{4}
\end{equation*}
$$

for $t \geq t_{0}+\rho$. Hence the functions $w, w^{\prime}, \ldots, w^{(n-1)}$ are monotonic and of constant sign for $t \geq t_{1}>t_{0}+\rho$. We consider two possibilities, viz., either $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$ or $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell \in \mathbb{R}$. Suppose the former holds. Hence $\lim _{t \rightarrow \infty} w(t)=-\infty$. For any $L>\mu$ and for any $\varepsilon, 0<\varepsilon<L-\mu$, there exists a $t_{2}>t_{1}$ such that $F(t)<\mu+\varepsilon$ and $w(t)<-L$ for $t \geq t_{2}$. Hence $y(t)<y(t-\tau)$ for $t \geq t_{2}$. Thus $y(t)$ is bounded. Consequently, $w(t)$ is bounded, a contradiction. If $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell$, then from (4) we obtain

$$
\begin{equation*}
\int_{t_{1}}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty \tag{5}
\end{equation*}
$$

Since $w(t)$ is monotonic, then $w(t)>0$ or $w(t)<0$ for $t \geq t_{3}>t_{1}$. Let $w(t)>0$ for $t \geq t_{3}$. Then $y(t) \geq F^{+}(t)$ for $t \geq t_{3}$ and hence

$$
\int_{t_{3}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t \leq \int_{t_{3}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty
$$

by (5), which is a contradiction to $\left(\mathrm{H}_{11}\right)$. If $w(t)<0$ for $t \geq t_{3}$, then $y(t) \geq$ $F^{-}(t+\tau)$ and hence

$$
\int_{t_{3}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{-}\left(t+\tau-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty
$$

by (5), which contradicts $\left(\mathrm{H}_{12}\right)$.
If $y(t)<0$ for $t \geq t_{0}$, then we set $x(t)=-y(t)$ to obtain $x(t)>0$ for $t \geq t_{0}$ and

$$
[x(t)-p(t) x(t-\tau)]^{(n)}+\sum_{i=1}^{m} Q_{i}(t) H\left(x\left(t-\sigma_{i}\right)\right)=\tilde{f}(t), \quad t \geq 0
$$

where $\tilde{f}(t)=-f(t)$ and $H(u)=-G(-u)$. If $\tilde{F}(t)=-F(t)$, then $\tilde{F}^{(n)}(t)=\tilde{f}(t)$, $\tilde{F}(t)$ changes sign, $-\infty<-\mu=\liminf _{t \rightarrow \infty} \tilde{F}(t)<0<\limsup _{t \rightarrow \infty} \tilde{F}(t)=-\lambda<\infty$, $\tilde{F}^{+}(t)=F^{-}(t)$ and $\tilde{F}^{-}(t)=F^{+}(t)$. Then proceeding as above, we obtain a contradiction. Thus the theorem is proved.

THEOREM 2.2. Let $0 \leq p(t) \leq p$, where p is a constant. Let $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{3}\right)$, $\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{11}\right)$ and $\left(\mathrm{H}_{12}\right)$ hold. If

$$
\int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{+}\left(t+\tau-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty
$$

and

$$
\int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(F^{-}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty
$$

then every bounded solution of equation (1) oscillates and every unbounded solution of equation (1) oscillates or tends to $\pm \infty$ as $t \rightarrow \infty$.

Proof. Let $y(t)$ be a nonoscillatory solution of (1) such that $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}>T_{y}$. Suppose that $y(t)>0$ for $t \geq t_{0}$. The case $y(t)<0$ for $t \geq t_{0}$ may similarly be dealt with. Setting $w(t)$ as in (3) and proceeding as in the proof of Theorem 2.1, we obtain either $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell \in \mathbb{R}$,
or $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$. Suppose that the former holds. Then (5) is true. If $w(t)>0$ for $t \geq t_{1}>t_{0}+\rho$, then $y(t) \geq F^{+}(t)$. Proceeding as in the proof of Theorem 2.1, a contradiction to $\left(\mathrm{H}_{11}\right)$ is obtained due to (5). If $w(t)<0$ for $t \geq t_{1}$, then $p y(t)>F^{-}(t+\tau)$ and hence $G(p) G\left(y\left(t-\sigma_{i}\right)\right) \geq G\left(F^{-}\left(t+\tau-\sigma_{i}\right)\right)$ for $t \geq t_{2}>t_{1}+\rho$ due to $\left(\mathrm{H}_{3}\right)$. This contradicts $\left(\mathrm{H}_{12}\right)$ in view of (5). If $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$, then $\lim _{t \rightarrow \infty} w(t)=-\infty$ and hence

$$
w(t)>-p(t) y(t-\tau)-F(t)>-p y(t-\tau)-F(t)
$$

implies that $\liminf _{t \rightarrow \infty} y(t)=\infty$ due to $\left(\mathrm{H}_{1}\right)$. If $y(t)$ is a bounded solution of (1), then a contradiction is obtained; otherwise, $\lim _{t \rightarrow \infty} y(t)=\infty$. Thus the proof of the theorem is complete.

Remark. From Theorems 2.1 and 2.2 it follows that $p>1$ changes the nature of the unbounded solutions of (1).

Theorem 2.3. Let $p(t)$ be monotonic decreasing and $-p \leq p(t) \leq 0$, where $p>0$ is a constant. Suppose that $\left(\mathrm{H}_{1}^{\prime}\right),\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$ hold. If

$$
\begin{gathered}
\left(\mathrm{H}_{14}\right) \int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty \\
\text { and } \\
\int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{-}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=\infty, \\
\text { where } Q_{i}^{*}(t) \text { is same as in }\left(\mathrm{H}_{10}\right),
\end{gathered}
$$

then every solution of equation (1) oscillates.

Proof. If possible, let $y(t)$ be a nonoscillatory solution of (1) with $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}>T_{y}$. Let $y(t)>0$ for $t \geq t_{0}$. Setting

$$
\begin{equation*}
z(t)=y(t)-p(t) y(t-\tau) \tag{6}
\end{equation*}
$$

and $w(t)$ as in (3), we obtain $z(t)>0$ for $t \geq t_{0}+\tau$. Proceeding as in the proof of Theorem 2.1 one obtains either $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$ or $\lim _{t \rightarrow \infty} w^{(n-1)}(t)$ $=\ell \in \mathbb{R}$. If the former holds, then $w(t)<0$ for $t \geq t_{2}>t_{1}>t_{0}+\rho$ and hence $F(t)>z(t)>0$, a contradiction to ($\left.\mathrm{H}_{1}^{\prime}\right)$. Suppose that the latter holds. Since $w(t)$ is monotonic, we may take $w(t)>0$ for $t \geq t_{3}>t_{2}$ because $w(t)<0$ leads to a contradiction as above. Hence $z(t) \geq F^{+}(t)$ for $t \geq t_{3}$. The use of
$\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ yields

$$
\begin{aligned}
& \begin{aligned}
0= & w^{(n)}(t)
\end{aligned}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
&+G(-p(t-\sigma))\left[w^{(n)}(t-\tau)+\sum_{i=1}^{m} Q_{i}(t-\tau) G\left(y\left(t-\tau-\sigma_{i}\right)\right)\right] \\
& \geq w^{(n)}(t)+G(p) w^{(n)}(t-\tau) \\
&+\sum_{i=1}^{m} Q_{i}^{*}(t)\left[G\left(y\left(t-\sigma_{i}\right)\right)+G\left(-p\left(t-\sigma_{i}\right)\right) G\left(y\left(t-\tau-\sigma_{i}\right)\right)\right] \\
& \geq w^{(n)}(t)+G(p) w^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(z\left(t-\sigma_{i}\right)\right) \\
& \geq w^{(n)}(t)+G(p) w^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)
\end{aligned}
$$

for $t \geq t_{3}+\rho$, where $\sigma=\min \left\{\sigma_{i}: 1 \leq i \leq m\right\}$. Thus

$$
\int_{t_{3}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty
$$

which contradicts $\left(\mathrm{H}_{14}\right)$. The case $y(t)<0$ for $t \geq t_{0}$ is treated similarly. This completes the proof of the theorem.

Theorem 2.4. Let $-1 \leq p(t) \leq 0$. Suppose that $\left(\mathrm{H}_{1}^{\prime}\right)$, $\left(\mathrm{H}_{2}\right)$, $\left(\mathrm{H}_{2}^{\prime}\right)$ and $\left(\mathrm{H}_{14}\right)$ hold. If

$$
\left(\mathrm{H}_{15}\right) \int_{\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}^{*}(t) G\left(-F^{-}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t=-\infty,
$$

then every solution of (1) oscillates.

Proof. In view of the proof of Theorem 2.3, it is enough to arrive at a contradiction in the case $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell \in \mathbb{R}$ and $w(t)>0$ for $t \geq t_{3}$. Since $F^{+}(t) \leq z(t) \leq y(t)+y(t-\tau)$ for $t \geq t_{3}$, the use of $\left(\mathrm{H}_{2}\right)$ yields

$$
\begin{aligned}
& 0=w^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)+w^{(n)}(t-\tau) \\
& +\sum_{i=1}^{m} Q_{i}(t-\tau) G\left(y\left(t-\tau-\sigma_{i}\right)\right) \\
& \geq w^{(n)}(t)+w^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(y\left(t-\sigma_{i}\right)+y\left(t-\tau-\sigma_{i}\right)\right) \\
& \geq w^{(n)}(t)+w^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)
\end{aligned}
$$

for $t \geq t_{3}+\rho$. Hence

$$
\int_{t_{3}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}^{*}(t) G\left(F^{+}\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty
$$

which is a contradiction to $\left(\mathrm{H}_{14}\right)$. Thus the theorem is proved.
THEOREM 2.5. Suppose that $p(t)$ changes sign with $-1 \leq p(t) \leq 1$. If $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{2}^{\prime}\right),\left(\mathrm{H}_{12}\right)-\left(\mathrm{H}_{15}\right)$ hold, then every solution of (1) oscillates.

Proof. Let $y(t)$ be a nonoscillatory solution of (1) with $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}>T_{y}$. We consider the case $y(t)>0$ for $t \geq t_{0}$. The case $y(t)<0$ for $t \geq t_{0}$ may similarly be dealt with. Setting $w(t)$ as in (3) and $z(t)$ as in (6) and then proceeding as in the proof of Theorem 2.1, one obtains that $w(t)$ is monotonic for large t and either $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$ or $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell \in \mathbb{R}$. If $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=-\infty$, then $\lim _{t \rightarrow \infty} w(t)=-\infty$. Proceeding as in the proof of Theorem 2.1, we obtain that $y(t)$ is bounded and hence $w(t)$ is bounded, a contradiction. If $\lim _{t \rightarrow \infty} w^{(n-1)}(t)=\ell \in \mathbb{R}$, then (5) holds. If $w(t)<0$ for large t, then proceeding as in the proof of Theorem 2.1 we obtain a contradiction to $\left(\mathrm{H}_{12}\right)$. Let $w(t)>0$ for $t>t_{2}>t_{1}>t_{0}+\rho$. Then $F(t)<z(t) \leq y(t)+y(t-\tau)$ for $t \geq t_{2}$. Proceeding as in the proof of Theorem 2.4, we obtain a contradiction to $\left(\mathrm{H}_{14}\right)$. Thus the proof of the theorem is complete.

Example. Consider

$$
\left[y(t)-\frac{2}{3} y(t-2 \pi)\right]^{\prime \prime}+\frac{4}{9} y^{3}(t-2 \pi)=\frac{1}{9} \cos 3 t, \quad t \geq 0
$$

Hence $F(t)=-\frac{1}{81} \cos 3 t$. Clearly, $F(t)$ changes sign with $\liminf _{t \rightarrow \infty} F(t)=-\frac{1}{81}$ and $\limsup _{t \rightarrow \infty} F(t)=\frac{1}{81}$. Further,

$$
F^{+}(t-2 \pi)= \begin{cases}0, & 0 \leq 3 t \leq \frac{\pi}{2} \\ -\frac{1}{81} \cos 3 t, & (4 n-3) \frac{\pi}{2} \leq 3 t \leq(4 n-1) \frac{\pi}{2} \\ 0, & (4 n-1) \frac{\pi}{2} \leq 3 t \leq(4 n+1) \frac{\pi}{2}\end{cases}
$$

and

$$
F^{-}(t)= \begin{cases}\frac{1}{81} \cos 3 t, & 0 \leq 3 t \leq \frac{\pi}{2} \\ 0, & (4 n-3) \frac{\pi}{2} \leq 3 t \leq(4 n-1) \frac{\pi}{2} \\ \frac{1}{81} \cos 3 t, & (4 n-1) \frac{\pi}{2} \leq 3 t \leq(4 n+1) \frac{\pi}{2}\end{cases}
$$

$n=1,2, \ldots$ imply that

$$
\begin{aligned}
\int_{2 \pi}^{\infty} Q(t) G\left(F^{+}(t-2 \pi)\right) \mathrm{d} t & =\frac{4}{9} \int_{2 \pi}^{\infty}\left(F^{+}(t-2 \pi)\right)^{3} \mathrm{~d} t \\
& =-\frac{12}{81^{4}} \sum_{n=4}^{\infty} \int_{(4 n-3) \frac{\pi}{2}}^{(4 n-1) \frac{\pi}{2}} \cos ^{3} u \mathrm{~d} u \\
& =-\frac{12}{81^{4}} \sum_{n=4}^{\infty}\left(\frac{-4}{3}\right)=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{2 \pi}^{\infty} Q(t) G\left(F^{-}(t)\right) \mathrm{d} t & =\frac{4}{9} \int_{2 \pi}^{\infty}\left(F^{-}(t)\right)^{3} \mathrm{~d} t \\
& >\frac{12}{81^{4}} \sum_{n=4}^{\infty} \int_{(4 n-1) \frac{\pi}{2}}^{(4 n+1) \frac{\pi}{2}} \cos ^{3} u \mathrm{~d} u \\
& =\frac{12}{81^{4}} \sum_{n=4}^{\infty}\left(\frac{4}{3}\right)=\infty
\end{aligned}
$$

Similarly, other two conditions of Theorem 2.1 are satisfied. Hence all solutions of the equation oscillate by Theorem 2.1. In particular, $y(t)=\cos t$ is an oscillatory solution.

Remark. We can have similar examples to illustrate other theorems.

N. PARHI - R. N. RATH

3. Oscillation of homogeneous equation

This section deals with the oscillation of solutions of equation (2). The results here differ substantially from those in [10], [11]. Different types of sublinear/superlinear G are considered in this paper. We need the following lemmas for our work in the sequel:
Lemma 3.1. ([4], [5; p. 193]) Let $y \in C^{(n)}([0, \infty), \mathbb{R})$ be of constant sign. Let $y^{(n)}(t)$ be of constant sign and $\not \equiv 0$ in any interval $[T, \infty), T \geq 0$, and $y(t) y^{(n)}(t) \leq 0$. Then there exists a number $t_{0} \geq 0$ such that the functions $y^{(j)}(t), j=1,2, \ldots, n-1$, are of constant sign on $\left[t_{0}, \infty\right)$ and there exists a number $k \in\{1,3, \ldots, n-1\}$ when n is even or $k \in\{0,2, \ldots, n-1\}$ when n is odd such that

$$
\begin{array}{rlll}
y(t) y^{(j)}(t)>0 & \text { for } & j=0,1,2, \ldots, k, & t \geq t_{0} \\
(-1)^{n+j-1} y(t) y^{(j)}(t)>0 & \text { for } & j=k+1, k+2, \ldots, n-1, & t \geq t_{0}
\end{array}
$$

LEMMA 3.2. ([3; p. 46]) If $q \in C([0, \infty),[0, \infty))$ and

$$
\liminf _{t \rightarrow \infty} \int_{t-\tau}^{t} q(s) \mathrm{d} s>\frac{1}{\mathrm{e}}
$$

then $x^{\prime}(t)+q(t) x(t-\tau) \leq 0, t \geq 0$, cannot have an eventually positive solution and $x^{\prime}(t)+q(t) x(t-\tau) \geq 0, t \geq 0$, cannot have an eventually negative solution.

LEMMA 3.3. ([3; p. 46]) If q satisfies the conditions of Lemma 3.2, then $x^{\prime}(t)-$ $q(t) x(t+\tau) \geq 0, t \geq 0$, has no eventually positive solution and $x^{\prime}(t)-q(t) x(t+\tau)$ $\leq 0, t \geq 0$, has no eventually negative solution.
LEMMA 3.4. Suppose that $0 \leq p(t) \leq p$, where p is a constant and $\left(\mathrm{H}_{9}\right)$ holds. If $y(t)$ is a solution of (2) with $y(t)>0$ for $t \geq t_{0}>0$ and $z(t)$ is set as in (6) for $t \geq t_{0}+\tau$, then either

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z^{(i)}(t)=-\infty, \quad i=0,1,2, \ldots, n-1 \tag{7}
\end{equation*}
$$

or

$$
(-1)^{n+k} z^{(k)}(t)<0, \quad k=0,1,2, \ldots, n-1, \quad t \geq t_{1}>t_{0}+\rho
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z^{(k)}(t)=0, \quad k=0,1,2, \ldots, n-1 \tag{8}
\end{equation*}
$$

Proof. From (2) we obtain

$$
z^{(n)}(t)=-\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \leq 0 \quad \text { for } \quad t \geq t_{0}+\rho
$$

Hence $z, z^{\prime}, \ldots, z^{(n-1)}$ are monotonic and are of constant sign for $t \geq t_{1}>t_{0}+\rho$. Further, either $\lim _{t \rightarrow \infty} z^{(n-1)}(t)=-\infty$ or $\lim _{t \rightarrow \infty} z^{(n-1)}(t)=\ell \in \mathbb{R}$. If the former holds, then $\lim _{t \rightarrow \infty} z^{(i)}(t)=-\infty, i=0,1,2, \ldots, n-1$. Suppose the latter holds. Then (5) is true. We claim that $\liminf _{t \rightarrow \infty} y(t)=0$. If not, then $y(t)>\alpha>0$ for $t \geq t_{2}>t_{1}$. Hence

$$
G(\alpha) \int_{t_{2}+\rho}^{\infty}\left(\sum_{i=1}^{m} Q_{i}(t)\right) \mathrm{d} t \leq \int_{t_{2}+\rho}^{\infty}\left[\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)\right] \mathrm{d} t<\infty
$$

due to (5), a contradiction to $\left(\mathrm{H}_{9}\right)$. Thus our claim holds. Consequently, there exists a $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} y\left(t_{n}\right)=0$. Since $z(t)$ is monotonic, $z(t) \leq y(t)$ and $z(t+\tau)>-p y(t)$, then $\lim _{t \rightarrow \infty} z(t)=0$ and hence (8) holds. Thus the lemma is proved.

LEMMA 3.5. If the range of $p(t)$ in Lemma 3.4 is replaced by $0 \leq p(t) \leq 1$, then only (8) holds.

Proof. If (7) holds, then $\lim _{t \rightarrow \infty} z(t)=-\infty$. Since $z(t)<0$ for large t, then $y(t)<p(t) y(t-\tau) \leq y(t-\tau)$ and hence $y(t)$ is bounded. Consequently, $z(t)$ is bounded, a contradiction. Thus the lemma follows from Lemma 3.4.

THEOREM 3.6. Let $-p \leq p(t) \leq 0$, where $p>0$ is a constant, and $p(t)$ be monotonic decreasing. Let $\tau<\sigma=\min \left\{\sigma_{i}: 1 \leq i \leq m\right\}$. If $\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$, $\left(\mathrm{H}_{7}\right)(\mathrm{i})$ and $\left(\mathrm{H}_{10}\right)$ hold, then every solution of (2) oscillates.

Proof. If possible, let $y(t)$ be a nonoscillatory solution of (2). We may take $y(t)>0$ for $t \geq t_{0}>T_{y}$ in view of $\left(\mathrm{H}_{4}\right)$. Setting $z(t)$ as in (6), we obtain $z(t)>0$ for $t \geq t_{0}+\tau$ and either $\lim _{t \rightarrow \infty} z^{(n-1)}(t)=-\infty$ or $\lim _{t \rightarrow \infty} z^{(n-1)}(t)=\ell \in \mathbb{R}$. If either the former holds or $\ell<0$, then $z(t)<0$ for large t, a contradiction. Hence $0 \leq \ell<\infty$. Since $z(t)>0$ and $z^{(n)}(t) \leq 0$ for $t \geq t_{0}+\rho$, then by Lemma 3.1, there exists an integer $k \leq n-1$ and $t_{1}>t_{0}+\rho$ such that $n-k$ is odd, $z^{(j)}(t)>0$ for $j=0,1, \ldots, k$ and $z^{(j)}(t) z^{(j+1)}(t)<0$ for $j=k, k+1, \ldots, n-2$ and $t \geq t_{1}$. By the Taylor series expansion we have, for $t \geq t_{1}+r$,

$$
z(t)=z(t-r)+r z^{\prime}(t-r)+\frac{r^{2}}{2!} z^{\prime \prime}(t-r)+\cdots+\frac{r^{k}}{k!} z^{(k)}(x)>\frac{r^{k}}{k!} z^{(k)}(x)
$$

where $r>0$ and $t-r<x<t$. Since $z^{(k)}(t)$ is decreasing, then $z(t)>\frac{r^{k}}{k!} z^{(k)}(t)$. Another Taylor series expansion yields

$$
\begin{aligned}
z^{(k)}(t)= & z^{(k)}(t+r)+(-r) z^{(k+1)}(t+r)+\frac{(-r)^{2}}{2!} z^{(k+2)}(t+r)+\ldots \\
& \cdots+\frac{(-r)^{n-k-1}}{(n-k-1)!} z^{(n-1)}(x) \\
> & \\
&
\end{aligned}
$$

because $r>0, t<x<t+r$ and $z^{(n-1)}(t)$ is monotonically decreasing. Hence, for $t \geq t_{1}+r$,

$$
\begin{equation*}
z(t)>\frac{r^{n-1}}{k!(n-k-1)!} z^{(n-1)}(t+r)>\frac{r^{n-1}}{(n-1)!} z^{(n-1)}(t+r) \tag{9}
\end{equation*}
$$

The use of $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and (9) yields, for $t \geq t_{2}>t_{1}+(\sigma-\tau)+\rho$,

$$
\begin{aligned}
& \begin{aligned}
0 & z^{(n)}(t)
\end{aligned}+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
&+G(-p(t-\sigma))\left[z^{(n)}(t-\tau)+\sum_{i=1}^{m} Q_{i}(t-\tau) G\left(y\left(t-\tau-\sigma_{i}\right)\right)\right] \\
& \geq z^{(n)}(t)+G(p) z^{(n)}(t-\tau) \\
&+\sum_{i=1}^{m} Q_{i}^{*}(t)\left[G\left(y\left(t-\sigma_{i}\right)\right)+G\left(-p\left(t-\sigma_{i}\right)\right) G\left(y\left(t-\tau-\sigma_{i}\right)\right)\right] \\
& \geq z^{(n)}(t)+G(p) z^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(z\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+G(p) z^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(\frac{\left(\sigma_{i}-\tau\right)^{n-1}}{(n-1)!} z^{(n-1)}(t-\tau)\right) \\
& \geq z^{(n)}(t)+G(p) z^{(n)}(t-\tau)+\delta G\left(\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}(t-\tau)\right) \sum_{i=1}^{m} Q_{i}^{*}(t)
\end{aligned}
$$

Hence

$$
\delta \sum_{i=1}^{m} Q_{i}^{*}(t)+\frac{z^{(n)}(t)}{G(u)}+\frac{G(p) z^{(n)}(t-\tau)}{G(\nu)} \leq 0
$$

where $u=\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}(t)$ and $\nu=\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}(t-\tau)$ and the fact that $z^{(n-1)}(t)$ is monotonically decreasing is used. Integrating the above inequality
we obtain

$$
\delta \int_{t_{2}}^{\infty}\left(\sum_{i=1}^{m} Q_{i}^{*}(t)\right) \mathrm{d} t+\frac{(n-1)!}{(\sigma-\tau)^{n-1}} \int_{c_{1}}^{\ell} \frac{\mathrm{d} u}{G(u)}+G(p) \frac{(n-1)!}{(\sigma-\tau)^{n-1}} \int_{c_{2}}^{\ell} \frac{\mathrm{d} \nu}{G(\nu)} \leq 0
$$

where $c_{1}=\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}\left(t_{2}\right)$ and $c_{2}=\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}\left(t_{2}-\tau\right)$. This leads to a contradiction to $\left(\mathrm{H}_{10}\right)$ in view of $\left(\mathrm{H}_{7}\right)(\mathrm{i})$. Thus the theorem is proved.

Theorem 3.7. Let $-1 \leq p(t) \leq 0$. If $\left(\mathrm{H}_{2}\right)$, $\left(\mathrm{H}_{2}^{\prime}\right)$, $\left(\mathrm{H}_{7}\right)$ and $\left(\mathrm{H}_{10}\right)$ hold, then every solution of (2) oscillates, where $\tau<\sigma=\min \left\{\sigma_{i}: 1 \leq i \leq m\right\}$.

Proof. Proceeding as in the proof of Theorem 3.6 we obtain (9). Since $z(t) \leq y(t)+y(t-\tau)$, then $\left(\mathrm{H}_{2}\right)$ and (9) yield, for $t \geq t_{2}>t_{1}+(\sigma-\tau)+\rho$,

$$
\begin{aligned}
0 & =z^{(n)}(t)+z^{(n)}(t-\tau)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right)+\sum_{i=1}^{m} Q_{i}(t-\tau) G\left(y\left(t-\tau-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+z^{(n)}(t-\tau)+\delta \sum_{i=1}^{m} Q_{i}^{*}(t) G\left(z\left(t-\sigma_{i}\right)\right)
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 3.6. Thus the proof of the theorem is complete.

THEOREM 3.8. Let $0 \leq p(t) \leq 1$. If n is odd and if $\left(\mathrm{H}_{7}\right)$ and $\left(\mathrm{H}_{9}\right)$ hold, then every solution of (2) oscillates.

Proof. Let $y(t)$ be a nonoscillatory solution of (2) with $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}>T_{y}$. We consider the case $y(t)>0$ for $t \geq t_{0}$. The case $y(t)<0$ is similar. Setting $z(t)$ as in (6), we get $z(t) \leq y(t)$ for $t \geq t_{0}+\tau$. Then (8) holds by Lemma 3.5. Since n is odd, then $z(t)>0$ for $t \geq t_{1}>t_{0}+\rho$. Taylor series expansion yields, for $t \geq t_{1}$,

$$
\begin{align*}
z(t-r) & =z(t)+(-r) z^{\prime}(t)+\frac{(-r)^{2}}{2!} z^{\prime \prime}(t)+\cdots+\frac{(-r)^{n-1}}{(n-1)!} z^{(n-1)}(x) \tag{10}\\
& >\frac{r^{n-1}}{(n-1)!} z^{(n-1)}(t)
\end{align*}
$$

N. PARHI - R. N. RATH

because $z^{(n-1)}(t)$ is monotonically decreasing, where $r>0, t-r<x<t$. Hence, for $t \geq t_{1}$,

$$
\begin{aligned}
0 & =z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(z\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(\frac{\sigma_{i}^{n-1}}{(n-1)!} z^{(n-1)}(t)\right) \\
& \geq z^{(n)}(t)+G\left(\frac{\sigma^{n-1}}{(n-1)!} z^{(n-1)}(t)\right) \sum_{i=1}^{m} Q_{i}(t),
\end{aligned}
$$

where $\sigma=\min \left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$. Proceeding as in the proof of Theorem 3.6 and using $\left(\mathrm{H}_{7}\right)$ (i) we obtain a contradiction to $\left(\mathrm{H}_{9}\right)$. Hence the theorem is proved.

Remark. Theorem 3.8 improves [1; Theorem 3]. Moreover, the proof of Theorem 3.8 is simpler than that of Theorem 3. As Theorem 3.8 does not hold for linear G, we have the following theorem.

Theorem 3.9. Let $0 \leq p(t) \leq 1$, n be odd and $\left(\mathrm{H}_{6}\right)$ hold. If

$$
\left(\mathrm{H}_{16}\right) \liminf _{t \rightarrow \infty} \int_{t-\sigma}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s>\frac{(n-1)!}{\beta \mathrm{e} \sigma^{n-1}}, \text { where } 2 \sigma=\min \left\{\sigma_{i}: 1 \leq i \leq m\right\}
$$

then every solution of (2) oscillates.

Proof. Suppose that $y(t)$ is a nonoscillatory solution of (2) with $y(t)>0$ for $t \geq t_{0}>T_{y}$. The case $y(t)<0$ for $t \geq t_{0}$ may similarly be dealt with. Then $z(t) \leq y(t)$ for $t \geq t_{0}+\tau$, where $z(t)$ is same as in (6). We claim that $\left(\mathrm{H}_{16}\right)$ implies $\left(\mathrm{H}_{9}\right)$. Indeed, if $\left(\mathrm{H}_{9}\right)$ fails, then

$$
0<\lambda=\int_{0}^{\infty}\left(\sum_{i=1}^{m} Q_{i}(t)\right) \mathrm{d} t<\infty
$$

Hence

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} \int_{t-\sigma}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s \\
= & \liminf _{t \rightarrow \infty}\left[\int_{0}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s-\int_{0}^{t-\sigma}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s\right] \\
\leq & \liminf _{t \rightarrow \infty} \int_{0}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s+\limsup _{t \rightarrow \infty}\left[-\int_{0}^{t-\sigma}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s\right] \\
\leq & \liminf _{t \rightarrow \infty} \int_{0}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s-\liminf _{t \rightarrow \infty} \int_{0}^{t-\sigma}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s \\
= & \lambda-\lambda=0
\end{aligned}
$$

which is a contradiction. Thus (8) holds by Lemma 3.5. Since n is odd, then $z(t)>0$ for $t \geq t_{1}>t_{0}+\tau$. Further, $\left(\mathrm{H}_{6}\right)$ yields $G(z(t)) \geq \beta z(t)$ for $t \geq$ $t_{2}>t_{1}$. Proceeding as in the proof of Theorem 3.8, we obtain (10). Hence, for $t \geq t_{2}+\rho$,

$$
\begin{aligned}
0 & =z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(z\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\beta \sum_{i=1}^{m} Q_{i}(t) z\left(t-\sigma_{i}\right) \\
& \geq z^{(n)}(t)+\beta\left(\sum_{i=1}^{m} Q_{i}(t)\right) z(t-2 \sigma) \\
& \geq z^{(n)}(t)+\beta \frac{\sigma^{n-1}}{(n-1)!}\left(\sum_{i=1}^{m} Q_{i}(t)\right) z^{(n-1)}(t-\sigma),
\end{aligned}
$$

where the fact that $z(t)$ is decreasing is used. This contradicts Lemma 3.2 due to $\left(\mathrm{H}_{16}\right)$ because $z^{(n-1)}(t)$ is eventually positive. Thus the theorem is proved.

ThEOREM 3.10. Let $1 \leq p(t) \leq p$, where $p>0$ is a constant. Let n be odd and $\tau>\sigma^{*}=\max \left\{\sigma_{i}: 1 \leq i \leq m\right\}$. If $\left(\mathrm{H}_{8}\right)$ and $\left(\mathrm{H}_{9}\right)$ hold, then every solution of (2) oscillates.

Proof. If possible, let $y(t)$ be a nonoscillatory solution of (2). Let $y(t)>0$ for $t \geq t_{0}>T_{y}$. The case $y(t)<0$ for $t \geq t_{0}$ may similarly be dealt with. Then either (7) holds or (8) holds by Lemma 3.4, where $z(t)$ is defined by (6). If (7) holds, then $z^{(j)}(t)<0$ for $t \geq t_{1}>t_{0}, 0 \leq j \leq n-1$. By the Taylor series expansion we have, for $t \geq t_{1}+r$,

$$
z(t)=z(t-r)+r z^{\prime}(t-r)+\frac{r^{2}}{2!} z^{\prime \prime}(t-r)+\cdots+\frac{r^{n-1}}{(n-1)!} z^{(n-1)}(x),
$$

where $t-r<x<t$ and $r>0$. Since $z^{(n-1)}(t)$ is monotonically decreasing, then $z(t)<\frac{r^{n-1}}{(n-1)!} z^{(n-1)}(t-r)$. Further, $z(t)>-p y(t-\tau)$ for $t \geq t_{1}$ implies that $y(t)>-\frac{1}{p} z(t+\tau)$. Hence, for $t \geq t_{1}+\rho$,

$$
\begin{aligned}
0 & =z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(-\frac{1}{p} z\left(t+\tau-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+G\left(-\frac{1}{p} z\left(t+\tau-\sigma^{*}\right)\right) \sum_{i=1}^{m} Q_{i}(t) \\
& \geq z^{(n)}(t)+G\left(-\frac{\left(\tau-\sigma^{*}\right)^{n-1}}{p(n-1)!} z^{(n-1)}(t)\right) \sum_{i=1}^{m} Q_{i}(t)
\end{aligned}
$$

that is,

$$
\sum_{i=1}^{m} Q_{i}(t)+\frac{1}{G(u)} z^{(n)}(t) \leq 0
$$

where $u=-\frac{\left(\tau-\sigma^{*}\right)^{n-1}}{p(n-1)!} z^{(n-1)}(t)$. Hence

$$
\int_{t_{2}}^{\infty}\left(\sum_{i=1}^{m} Q_{i}(t)\right) \mathrm{d} t \leq \frac{p(n-1)!}{\left(\tau-\sigma^{*}\right)^{n-1}} \int_{c}^{\infty} \frac{\mathrm{d} u}{G(u)},
$$

where $t_{2}>t_{1}+\rho$ and $c=-\frac{\left(\tau-\sigma^{*}\right)^{n-1}}{p(n-1)!} z^{(n-1)}\left(t_{2}\right)$. This contradicts $\left(\mathrm{H}_{9}\right)$ due to $\left(\mathrm{H}_{8}\right)$. Hence (8) holds. Consequently, (5) is true. Since n is odd, then $z(t)>0$ for $t \geq t_{1}$ and hence $y(t)>p(t) y(t-\tau) \geq y(t-\tau)$. Thus $\liminf _{t \rightarrow \infty} y(t)>0$. This contradicts $\left(\mathrm{H}_{9}\right)$ in view of (5). Hence the proof of the theorem is complete.

Theorem 3.11. Let $1 \leq p(t) \leq p$, where $p>0$ is a constant. Let n be odd, $\tau>\sigma^{*}=\max \left\{\sigma_{i}: 1 \leq i \leq m\right\}$ and $\left(\mathrm{H}_{5}\right)$ hold. If

$$
\left(\mathrm{H}_{17}\right) \liminf _{t \rightarrow \infty} \int_{t-\delta}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s>\frac{p(n-1)!}{\mathrm{e} \alpha\left(\tau-\sigma^{*}-\delta\right)^{n-1}}, \text { where } 0<\delta<\tau-\sigma^{*},
$$ then every solution of (2) oscillates.

Proof. We may note that $\left(\mathrm{H}_{17}\right)$ implies $\left(\mathrm{H}_{9}\right)$. Proceeding as in the proof of Theorem 3.10, we obtain $z(t)<\frac{r^{n-1}}{(n-1)!} z^{(n-1)}(t-r)$ for $t \geq t_{1}+r$ when (7) holds. Further, $y(t)>-\frac{1}{p} z(t+\tau)$ for $t \geq t_{1}$. From (7) it follows that $z(t) \rightarrow-\infty$ as $t \rightarrow \infty$. Hence $G(z(t))>\alpha z(t)$ for $t \geq t_{2}>t_{1}+\rho$. Hence, for $t \geq t_{3}>t_{2}+\rho$,

$$
\begin{aligned}
0 & =z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(-\frac{1}{p} z\left(t+\tau-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)-\frac{\alpha}{p} \sum_{i=1}^{m} Q_{i}(t) z\left(t+\tau-\sigma_{i}\right) \\
& \geq z^{(n)}(t)-\frac{\alpha}{p} z\left(t+\tau-\sigma^{*}\right) \sum_{i=1}^{m} Q_{i}(t) \\
& \geq z^{(n)}(t)-\frac{\alpha\left(\tau-\sigma^{*}-\delta\right)^{n-1}}{p(n-1)!} z^{(n-1)}(t+\delta) \sum_{i=1}^{m} Q_{i}(t)
\end{aligned}
$$

which contradicts Lemma 3.3 in view of $\left(\mathrm{H}_{17}\right)$ because $z^{(n-1)}(t)<0$ for $t \geq t_{3}$. If (8) holds, we arrive at a contradiction as in the proof of Theorem 3.10. Thus the theorem is proved.

THEOREM 3.12. Suppose that $0 \leq p(t) \leq 1$. If n is even, $\tau<\sigma=\min \left\{\sigma_{i}\right.$: $1 \leq i \leq m\}$ and $\left(\mathrm{H}_{7}\right)$ and $\left(\mathrm{H}_{9}\right)$ hold, then every solution of (2) oscillates.

Proof. Let $y(t)$ be a nonoscillatory solution of (2) with $y(t)>0$ for $t \geq$ $t_{0}>T_{y}$. From Lemma 3.5 it follows that (8) holds, where $z(t)$ is given by (6). Since n is even, then $z(t)<0, z^{\prime}(t)>0, \ldots, z^{(n-1)}(t)>0$ for $t \geq t_{1}>t_{0}+\rho$. Further,

$$
z(t-r)=z(t)+(-r) z^{\prime}(t)+\frac{(-r)^{2}}{2!} z^{\prime \prime}(t)+\cdots+\frac{(-r)^{n-1}}{(n-1)!} z^{(n-1)}(x)
$$

N. PARHI - R. N. RATH

where $r>0$ and $t-r<x<t$, implies that $z(t-r)<\frac{(-r)^{n-1}}{(n-1)!} z^{(n-1)}(t)$ for $t \geq t_{1}$. Since $y(t)>-z(t+\tau)$ for $t \geq t_{1}$, then

$$
\begin{aligned}
0 & =z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(y\left(t-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+\sum_{i=1}^{m} Q_{i}(t) G\left(-z\left(t+\tau-\sigma_{i}\right)\right) \\
& \geq z^{(n)}(t)+G(-z(t-\sigma+\tau)) \sum_{i=1}^{m} Q_{i}(t) \\
& \geq z^{(n)}(t)+G\left(\frac{(\sigma-\tau)^{n-1}}{(n-1)!} z^{(n-1)}(t)\right) \sum_{i=1}^{m} Q_{i}(t)
\end{aligned}
$$

for $t \geq t_{2}>t_{1}+\rho$. Since $z^{(n-1)}(t) \rightarrow 0$ as $t \rightarrow \infty$, then integrating the above inequality from t_{2} to ∞ yields a contradiction to $\left(\mathrm{H}_{9}\right)$ due to $\left(\mathrm{H}_{7}\right)$ (i). A similar contradiction is obtained if $y(t)<0$ for $t \geq t_{0}$. Hence the proof of the theorem is complete.

Following theorems may be proved using the techniques employed in the above theorems.

THEOREM 3.13. Let $0 \leq p(t) \leq 1$, n be even and $\tau<\sigma=\min \left\{\sigma_{i}: 1 \leq\right.$ $i \leq m\}$. If $\left(\mathrm{H}_{6}\right)$ holds and

$$
\liminf _{t \rightarrow \infty} \int_{t-c}^{t}\left(\sum_{i=1}^{m} Q_{i}(s)\right) \mathrm{d} s>\frac{(n-1)!}{\beta \mathrm{e}(\sigma-\tau-c)^{n-1}}
$$

where $0<c<\sigma-\tau$, then every solution of (2) oscillates.
ThEOREM 3.14. Let $1 \leq p(t) \leq p, n$ be even and $\tau<\sigma=\min \left\{\sigma_{i}: 1 \leq\right.$ $i \leq m\}$. If $\left(\mathrm{H}_{7}\right)$ and $\left(\mathrm{H}_{9}\right)$ hold, then every bounded solution of (2) oscillates.

4. Summary

We have observed that the behaviour of the forcing term $f(t)$ greatly influences the nature of solutions of (1). It is not known how the solutions of (1) would behave when $f(t)$ is such that $0 \leq \liminf _{t \rightarrow \infty} F(t)<\limsup _{t \rightarrow \infty} F(t) \leq \infty$ or $-\infty \leq \liminf _{t \rightarrow \infty} F(t)<\limsup _{t \rightarrow \infty} F(t) \leq 0$, where $F \in C^{(n)}([0, \infty), \mathbb{R})$ with $F^{(n)}(t)=f(t)$ and $p(t)>0$. We may note that this condition can be reduced
to $\left(\mathrm{H}_{1}\right)$ if $\limsup _{t \rightarrow \infty} F(t)<\infty$ or $\liminf _{t \rightarrow \infty} F(t)>-\infty$. This can be reduced to $\left(\mathrm{H}_{1}^{\prime}\right)$ otherwise. In Theorems 2.1-2.5, the conditions on $Q_{i}, 1 \leq i \leq m$, are so strong that the superlinearity or sub-linearity of G does not matter. We expect to weaken these conditions. Further, we note that these conditions are sufficient. It would be interesting to obtain conditions which are necessary as well as sufficient for oscillation of all solutions of (1) when F satisfies $\left(\mathrm{H}_{1}\right)$ or $\left(\mathrm{H}_{1}^{\prime}\right)$. No result is known for (1) if $p(t)$ changes sign but not necessarily $-1 \leq p(t) \leq 1$.

It is interesting to notice that the range of $p(t)$, the nature of n and superlinearity/sublinearity of G are closely related in the results concerning (2). We have no result for superlinear G when $0 \leq p(t) \leq 1$ or $-p \leq p(t) \leq 0$ irrespective of n odd or even, where p is any positive scalar. No result for (2) is known if $p(t)$ changes sign with or without $-1 \leq p(t) \leq 1$. The conditions imposed on $Q_{i}(t), 1 \leq i \leq m$, in Theorems 3.6-3.14 are sufficient.

In [12], equations (1) and (2) are studied for $n=1$. For $n=1$ or $n \geq 2$, similar results may be obtained for $(1) /(2)$ when $Q_{i}(t) \leq 0,1 \leq i \leq m$. It seems that no result is known for $Q_{i}(t)$ changing sign.

REFERENCES

[1] DAS, P.: Oscillation criteria for odd order neutral equations, J. Math. Anal. Appl. 188 (1994), 245-257.
[2] GOPALSAMY, K.-GRACE, S. R.-LALLI, B. S.: Oscillation of even order neutral differential equations, Indian J. Math. 35 (1993), 9-25.
[3] GYORI, I.-LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
[4] KIGURADZE, I. T.: On the oscillation of solutions of the equation $\frac{\mathrm{d}^{m} u}{\mathrm{~d} t^{m}}+a(t) u^{m} \operatorname{sign} u$ $=0$, Mat. Sb. 65 (1964), 172-187.
[5] LADDE, G. S.-LAKSHMIKANTHAM, V.-ZHANG, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker Inc., New York, 1987.
[6] PARHI, N.-MOHANTY, P. K. : Maintenance of oscillation of neutral differential equations under the effect of a forcing term, Indian. J. Pure Appl. Math. 26 (1995), 909-919.
[7] PARHI, N.-MOHANTY, P. K.: Oscillation of solutions of forced neutral differential equations of nth order, Czechoslovak Math. J. 45 (1995), 413-433.
[8] PARHI, N.-MOHANTY, P. K.: Oscillatory behaviour of solutions of forced neutral differential equations, Ann. Polon. Math. 65 (1996), 1-10.
[9] PARHI, N.: Oscillation of higher order differential equations of neutral type, Czechoslovak Math. J. 50 (2000), 155-173.
[10] PARHI, N.-RATH, R. N.: On oscillation of solutions of forced non-linear neutral differential equations of higher order, Czechoslovak Math. J. 53 (2003), 805-825.
[11] PARHI, N.-RATH, R. N.: On oscillation of solutions of forced nonlinear neutral differential equations of higher order-II, Ann. Polon. Math. 81 (2003), 101-110.
[12] PARHI, N.-RATH, R. N.: Oscillations of solutions of a class of first order neutral differential equations, J. Indian Math. Soc. (To appear).

N. PARHI - R. N. RATH

[13] TANG, D.: Oscillation of higher order non-linear neutral functional differential equations, Ann. Differential Equations 12 (1996), 83-88.

Received May 6, 2003

* Plot No-1365/3110 Shastri Nagar, Unit-4 Bhubaneswar-751001
Orissa
INDIA
E-mail: parhi2002@rediffmail.com
** P.G. Department of Mathematics Khallikote Autonomous College Berhampur-760001
Orissa
INDIA
E-mail: radhanathmath@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification: Primary 34C10, 34C15, 34K40.
 Keywords: neutral differential equation, oscillation, nonoscillation.

