Mathematic Slovaca

George Grätzer; Harry Lakser; E. Tamás Schmidt
Congruence representations of join-homomorphisms of distributive lattices: a short proof

Mathematic Slovaca, Vol. 46 (1996), No. 4, 363--369

Persistent URL: http://dml.cz/dmlcz/130332

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CONGRUENCE REPRESENTATIONS OF JOIN-HOMOMORPHISMS OF DISTRIBUTIVE LATTICES: A SHORT PROOF

G. Grätzer* - H. Lakser* - E. T. Schmidt ${ }^{* *}$
(Communicated by Tibor Katriñák)

Abstract

András Huhn proved the following theorem: Let D) and E be finite distributive lattices, and let $\psi: D \rightarrow E$ be a $\{0\}$-preserving joinhomomorphism. Then there are finite lattices K and L, and there is a lattice homomorphism $\varphi: K \rightarrow L$ such that Con K (the congruence lattice of K) represents D, Con L (the congruence lattice of L) represents E, and the mapping ext $\varphi: \operatorname{Con} K \rightarrow \operatorname{Con} L$ (obtained by mapping a congruence of K under φ to L as a binary relation and then forming the minimal extension of this binary relation to a congruence relation of L) represents ψ.

In this note, we give a short proof of this theorem. In fact, we prove a much stronger result: for K one can choose any finite lattice whose congruence lattice is isomorphic to D.

1. Introduction

One of the most persistent problems of lattice theory is the representation problem of distributive algebraic lattices as congruence lattice of lattices. A. P. Huhn in [5] attempted to solve this problem by simultaneous representation of finite distributive lattices as congruence lattices of finite lattices.

[^0]To state Huhn's result, we need a notation. Let K and L be lattices, and let φ be a homomorphism of K into L. Then φ induces a map ext φ of Con K into Con L : for a congruence relation Θ of K, let the image Θ under ext φ be the congruence relation of L generated by the set $\Theta \varphi=\{\langle a \varphi, b \varphi\rangle \mid a \equiv b(\Theta)\}$.

The following result was proved by A. P. Huhn in [5] in the special case when ψ is an embedding and was proved for arbitrary ψ in [3] (where you also find for a more complete history of this result):

Theorem 1. Let D and E be finite distributive lattices, and let

$$
\psi: D \rightarrow E
$$

be a $\{0, \vee\}$-homomorphism. Then there are finite lattices K and L, a lattice homomorphism $\varphi: K \rightarrow L$, and isomorphisms

$$
\alpha: D \rightarrow \operatorname{Con} K, \quad \beta: E \rightarrow \operatorname{Con} L
$$

with

$$
\psi \beta=\alpha(\operatorname{ext} \varphi)
$$

Furthermore, φ is an embedding if and only if ψ separates 0.
Theorem 1 concludes that the following diagram is commutative:

$$
\begin{array}{ccc}
D & \quad \psi & E \\
\cong \downarrow_{\alpha} & & \cong \downarrow \beta \\
\operatorname{Con} K & \xrightarrow{\operatorname{ext} \varphi} & \operatorname{Con} L
\end{array}
$$

In this paper, we give a short proof of this theorem. In fact, we prove the following much stronger version:

Theorem 2. Let K be a finite lattice, let E be a finite distributive lattice, and let ψ : Con $K \rightarrow E$ be a $\{0, \vee\}$-homomorphism. Then there is a finite lattice L, a lattice homomorphism $\varphi: K \rightarrow L$, and an isomorphism $\beta: E \rightarrow \operatorname{Con} L$ with $\operatorname{ext} \varphi=\psi \beta$. Furthermore, φ is an embedding if and only if ψ separates 0 .

2. Preliminaries

Let M be a finite lattice and let C be a finite set; the elements of C will be called colors. A coloring μ of M over C is a map

$$
\mu: \mathfrak{P}(M) \rightarrow C
$$

of the set of prime intervals $\mathfrak{P}(M)$ of M into C satisfying the condition: if two prime intervals generate the same congruence relation of M, then they have the same color; that is,

$$
\mathfrak{p}, \mathfrak{q} \in \mathfrak{P}(M) \text { and } \Theta(\mathfrak{p})=\Theta(\mathfrak{q}) \Longrightarrow \mathfrak{p} \mu=\mathfrak{q} \mu
$$

Since the join-irreducible congruences of M are exactly those that can be generated by prime intervals, equivalently, μ can be regarded as a map of the set $J($ Con $M)$ of join-irreducible congruences of M into C :

$$
\mu: J(\operatorname{Con} M) \rightarrow C
$$

In this paper, we need the more general concept. A multi-coloring over C is an isotone map μ from $\mathfrak{P}(M)$ into $P^{+}(C)$ (the set of all nonempty subsets of C); isotone means that if $\mathfrak{p}, \mathfrak{q} \in \mathfrak{P}(M)$ and $\Theta(\mathfrak{p}) \leq \Theta(\mathfrak{q})$, then $\mathfrak{p} \mu \subseteq \mathfrak{q} \mu$. Equivalently, a multi-coloring is an isotone map of the poset $J($ Con $M)$ into the poset $P^{+}\left(C^{\prime}\right)$.

We will now show that a multi-colored lattice has a natural extension to a colored lattice.

Lemma. Let M be a finite lattice with a multi-coloring μ over the set C. Then there exist a lattice M^{*} with a coloring μ^{*} over C such that the following conditions hold:
(1) M^{*} is the direct product of the lattices $M_{c}, c \in C$, where M_{c} is a homomorphic image of M colored by $\{c\}$.
(2) There is a lattice embedding $a \mapsto a^{*}$ of M into M^{*}.
(3) For every prime interval $\mathfrak{p}=[a, b]$ of M,

$$
\mathfrak{p} \mu=\left\{\mathfrak{q} \mu^{*} \mid \mathfrak{q} \in \mathfrak{P}\left(M^{*}\right) \text { and } \mathfrak{q} \subseteq\left[a^{*}, b^{*}\right]\right\}
$$

and the minimal extension of $\Theta(\mathfrak{p})$ under this embedding into M^{*} is of the form

$$
\prod\left(\Theta\left(\mathfrak{p}_{c}\right) \mid c \in C\right)
$$

where \mathfrak{p}_{c} is a prime interval of M_{c} if and only if $c \in \mathfrak{p} \mu$, and \mathfrak{p}_{c} is a trivial interval otherwise (in which case, $\Theta\left(\mathfrak{p}_{c}\right)=\omega_{M_{c}}$).

Proof. For $c \in C$, define the binary relation Φ_{c} on M as follows:

$$
u \equiv v \quad\left(\Phi_{c}\right) \Longleftrightarrow c \nLeftarrow \mathfrak{p} \mu \text { for every prime interval } \mathfrak{p} \subseteq[u \wedge v, u \vee v] .
$$

This relation is obviously reflexive and symmetric. To show transitivity, assume that $u \equiv v\left(\Phi_{c}\right)$ and $v \equiv u^{\prime}\left(\Phi_{c}\right)$, and let \mathfrak{q} be a prime interval in $\left.u \wedge w, u \vee w\right]$. Then q is collapsed by $\Theta(u, v) \vee \Theta\left(c^{\prime}, w^{\prime}\right)$. hence there is a prime intevval \mathfrak{p} in $\|\wedge r \cdot\| \vee r \mid$ or $\operatorname{in} \mid c \wedge w, v \vee w]$ satisfying $\Theta(q) \leq \Theta(p)$. It follows from the

G. GRÄTZER -- H. LAKSER - E. T. SCHMIDT

definition of multi-coloring that $\mathfrak{q} \mu \subseteq \mathfrak{p} \mu$; since $c \notin \mathfrak{p} \mu$, it follows that $c \notin \mathfrak{q} \mu$. hence $u \equiv w\left(\Phi_{c}\right)$. The proof of the Substitution Property is similar.

For $c \in C$, we define the lattice M_{c} as M / Φ_{c}. A prime interval \mathfrak{p} of $M^{*}==$ $\prod\left(M_{c} \mid c \in C\right)$ is uniquely associated with a $c \in C$ and a prime intertal of $M_{c_{c}}$. We define $\mathfrak{p} \mu^{*}=c$. It is easy to see that μ^{*} is a coloring of M^{*} orer ('. establishing the first condition.

To establish the second condition, for $a \in M$, define a^{*} so that its M_{r}-component be $[a] \Phi_{c}$. The mapping $a \mapsto a^{*}$ is obviously a lattice homomorphism. We have to prove that it is one-to-one. Let $a, b \in M$ and $a \neq b$: we have to prove that $a^{*} \neq b^{*}$. Let \mathfrak{p} be a prime interval in $[a \wedge b, a \vee b]$. Since μ^{*} is a multi-coloring, there is a $c \in \mathfrak{p} \mu^{*}$. Obviously, then $a \not \equiv b\left(\bmod \Phi_{\text {, }}\right)$, from which the statement follows.

Finally, the third condition is trivial from the definition of M^{*} and $\mu^{*} . ~ Z$

3. Proof of Theorem 2

Let K, E, and ψ be given as in Theorem 2 .
Step 1. Since ψ preserves 0 and joins, there is a largest congruence Φ of \hbar such that $\Phi \psi=0_{E}$. Let $K_{1}=K / \Phi$. The mapping ψ has a natural decomposition, $\psi=\psi_{1} \psi_{2}$, where ψ_{1} : $\operatorname{Con} K \rightarrow \operatorname{Con} K_{1}$ is defined by $\Theta_{\iota_{1}}=\Theta \vee \Phi$. and $\psi_{2}: \operatorname{Con} K_{1} \rightarrow E$ is the restriction of ψ to $[\Phi) \cong \operatorname{Con} K_{1}$. Then ι_{2} separates () in Con K_{1}. It is sufficient to prove Theorem 2 for K_{1}, E, and ι_{2}.

Consequently, we need only prove Theorem 2 under the assmuption that !. separates 0 .

Step 2. We define a map μ of $\mathfrak{P}(K)$ to subsets of $J(E)$:

$$
\mathfrak{p} \mu=J(E) \cap(\Theta(\mathfrak{p}) \psi] .
$$

μ is obviously isotone. ψ separates 0 , so $\mathfrak{p} \mu \neq \emptyset$. Therefore, μ is a multi-coloring of K^{\prime} over $J(E)$. We apply the Lemma to obtain the lattice

$$
K^{*}==\prod\left(K_{r} \mid c \in J(E)\right)
$$

Step 3. Any finite lattice M can be embedded in a finite simple lattice $\overline{1}$ with the same zero and mit. Use such an extension for each ${\underset{y}{c}}^{2}$, to ohtain a simple lattice \bar{K}_{c}, then define:

$$
L_{0}=\prod\left(\bar{K}_{c} \mid r \in J(E)\right)
$$

and extend the coloring so that $\overline{K_{r}}$, is also colored $b y\{c\}$. Since I_{0} is a direce product of simple lattices, it follows that $J\left(\operatorname{Con} L_{0}\right)$ is mordered: the congruence
lat tice of L_{0} is a Boolean lattice with $|J(E)|$ atoms. K is a sublattice of K^{*}, and K^{*} is a sublattice of L_{0}, so we obtain an embedding $\varphi: K \rightarrow L_{0}$.

Finally, we construct a special ideal of L_{0}. Let p_{c} be an arbitrary atom of the direct component \bar{K}_{c}; then the prime interval $\left[0, p_{c}\right]$ of L_{0} has color c. The atoms p_{c}, or $c \in J(E)$, generate an ideal B_{0} of L_{0} which is a Boolean lattice sat isfying the following properties:
(1) any two distinct atoms have different colors;
(2) every color $c \in J(E)$ occurs in B_{0}.

Step 4. We continue by forming a finite atomistic lattice L_{1} with $E \cong$ ('on L_{1} under the isomorphism β_{1}. For L_{1}, we take the oldest published construction as in [4], except that we use a uniform "tripling" (first done in [2]) as opposed to "doubling" of non-maximals as in [4]. To recap, using the exposition in [1], we construct a partial lattice P_{1} with 0 as follows. For every join-irreducible element p of E, we take three atoms p_{1}, p_{2}, and p_{3}, so that in P_{1} they are the three atoms of a sublattice isomorphic to M_{3} with zero 0 ; and if $p, q \in J(E)$, then $p_{i} \wedge q_{j}=0(0 \leq i, j \leq 3)$. If $q \prec p$ in $J(E)$, then we add the clement $p(q)$ so that $p_{3} \vee q_{i}=p(q) \quad(0 \leq i \leq 3)$. Let L_{1} be the ideal lattice of I_{1}. The isomorphism $J(E) \cong J\left(\operatorname{Con} L_{1}\right)$ is given as follows: for $p \in J(E)$, the congruence $\Theta(0, p)$ of L_{1} corresponds to p. Let β_{1} denote the corresponding isomorphism $\beta_{1}: E \rightarrow \operatorname{Con} L_{1}$.

We consider on L_{1} the natural coloring over $J(E)$ (a prime interval \mathfrak{p} is colored by $\left.\Theta(\mathfrak{p}) \beta_{1}^{-1} \in J(E)\right)$. Note that L_{0} and L_{1} are colored over the same set, $J(E)$. Let B_{1} be the ideal of L_{1} generated by the atoms p_{2} for $p \in J(E)$. Then the ideal B_{1} is a Boolean lattice satisfying the properties (1) and (2) stated in Step 3.

Step 5. We have the lattice L_{0} with the ideal B_{0} and L_{1} with an ideal B_{1}. Note that B_{0} and B_{1} are isomorphic finite Boolean lattices with the same coloring. Take the dual L_{2} of L_{1}; in this lattice, B_{1} corresponds to a dual ideal B_{2}. Again, note that B_{0} and B_{2} are isomorphic finite Boolean lattices with the same coloring. Glue together L_{0} and L_{2} by a color preserving identification of B_{0} and B_{2}. The resulting lattice is L. The prime intervals of L are colored by $J(E)$, and we have the isomorphism $\beta: E \rightarrow$ Con L. Since L_{0} is a sublattice of L, we may view φ as an embedding of K into L.

Step 6. Finally, we have to verify that $\operatorname{ext} \varphi=\psi \beta$. It is enough to prove that $\Theta(\operatorname{ext} \varphi)=\Theta \psi \beta$ for join-irreducible congruences Θ in K.

So let $\Theta=\Theta(\mathfrak{p})$, where $\mathfrak{p}=[a, b]$ is a prime interval of K. By the Lemma, $\Theta(\mathfrak{p}) \operatorname{ext} \varphi==\Theta\left(a^{*}, b^{*}\right)$ collapses in K^{*} the prime intervals of color $\leq \Theta \psi$; the same holds in L_{0} and in L.

Computing $\Theta \psi \beta$ we get the same result, hence $\Theta(\operatorname{ext} \varphi)=\Theta \psi \beta$, completing the proof.

G. GRÄTZER - H. LAKSER - E. T. SCHMIDT

4. Concluding remarks

The proof in [3] of Theorem 1 gave a slightly stronger result the latticen K and L can be chosen to be atomistic. In our proof, here K can be chosen to be atomistic, but L is not atomistic. However, in his thesis ([7; Lemma 4.18]). M. Tischendorf proved that any finite lattice L can be embedded in a finite atomistic lattice L^{\prime} by an embedding $\varepsilon: L \rightarrow L^{\prime}$ with ext ε an isomorphism. Consequently, extending L in Theorem 2 by such an L^{\prime}, enables us to choose' both K and L atomistic in Theorem 1.

Theorem 2 also yields a substantial simplification of the proof of $\mathrm{H} u \mathrm{~h} n$ s theorem [6] that any algebraic distributive lattice with countably many compact elements is the congruence lattice of a lattice. Let us denote by S the join-semilattice of compact elements of the given algebraic distributive lattice. Huhn observes that S is the direct limit (union) of an increasing countable family $\left(D_{i} \mid i<\omega\right)$ of finite distributive 0 -preserving subsemilattices of S. The D_{i} are, of course, distributive lattices. For each $i<\omega$, let us denote by $\psi_{i}: D_{i} \rightarrow D_{i+1}$ the $\{0, \vee\}$-embedding. Huhn constructs a sequence $\left(L_{i} \mid i<\omega\right)$ of lattices with lattice embeddings $\varphi_{i}: L_{i} \rightarrow L_{i+1}$ such that ext $\varphi_{i}:$ Con $L_{i} \rightarrow$ Con L_{i+1} represents ψ_{i}. Then, denoting by L the direct limit of the sequence $\left(L_{i} \mid i<\omega\right)$, it follows that Con $L \cong D$. The construction of the L_{i} and φ_{i} is the most complicated part of his paper - it comprises everything but the introduction. However, using our Theorem 2, we can proceed in a straight-forward manner. We first represent D_{0} by a finite lattice L_{0}, and, inductively, given L_{i}, we immediately get a finite lattice L_{i+1} and an embedding $\varphi_{i}: L_{i} \rightarrow L_{i+1}$ with ext φ_{i} representing ψ_{i}.

REFERENCES

[1] GRÄTZER, G.: General Lattice Theory. Pure and Applied Mathematics Series, Academic Press, New York, 1978; Mathematische Reihe, Band 52, Birkhäuser Verlag. Basel: Akademie Verlag, Berlin.
[2] GRÄTZER, G.--LAKSER, H.: Homomorphisms of distributive lattices as restrictions of congruences, Canad. J. Math. 38 (1986), 1122-1134.
[3] GRÄTZER, G. LAKSER, H. SCHMIDT, E. T.: Isotone maps as maps of congruences. I. Manuscript.
[4] GRÄTZER, G. SCHMIDT, E. T.: On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179185.
[5] HUHN, A. P.: On the representation of distributive algebraic lattices. I. Acta Sci. Matl. (Szeged) 45 (1983), 239-246.
[6] HUHN, A. P.: On the representation of distributive algebraic lattices. II. Acta S'ci. Math: (Szeged) 53 (1989), 310 .

CONGRIJENCE REPRESENTATIONS OF JOIN-HOMOMORPHISMS OF LATTICES

[7] TISCHENDORF, M.: The Representation Problem for Algebraic Distributive Lattices, Fachbereich Mathematik der Technischen Hochschule Darmstadt, Darmstadt, 1992.

Received October 23, 1995

* Department of Mathematics
University of Manitoba
Winnipeg, Man. R3T 2N\&
CANADA
E-mail: George_Gratzer@umanitoba.ca
\quad hlakser@cc.umanitoba.ca
** Department of Mathematics
Transport Engineering Faculty
Technical University of Budapest
Müegyetem RKP. 9
H-1111 Budapest
HUNGARY
E-mail: schmidt@euromath.vma.bme.hu

[^0]: AMSSubject Classification (1991): Primary 06B10; Secondary 06D05. Key words: lattice, finite, congruence, distributive, join homomorphism.

 The research of the first and second authors was supported by the NSERC of Canada. The research of the third author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. T7442.

