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THEOREMS OF THE NORDHAUS-GADDUM TYPE
FOR k-UNIFORM HYPERGRAPHS

FRANTISEK OLEJNIK

In 1956 E. A. Nordhaus and J. W. Gaddum (5] proved the assertion
2-Vn=x(G)+x(G)=n+1, _ (1)

where G is a finite undirected graph without loops and multiple edges, G is its
complement, n is the number of vertices of the graph G and x(G) or x(G) is the
chromatic number of the graph G or G, respectively. Since then several theorems
dealing with the characteristics of the graph G and its complement have been
published [2—4]. These theorems are called theorems of the Nordhaus—Gaddum
type.

In the presented paper a theorem of the Nordhaus—Gaddum type for the
chromatic and achromatic number of k-uniform hypergraphs is proved. The
method used in proving Theorem 1 may be applied for proving the known
Nordhaus—Gaddum theorem (1) as well. By means of the method used in this
proof one can obtain the description of the structures of all graphs for which the
relation x(G)+x(G) = n+1 is valid,

1. Basic Notions

(Cf. Berge [1].) The usual terminology for graphs and hypergraphs will be
applied. Let us recall the following notions.

By a hypergraph H is meant a couple (X, &), where X is a finite set of elements
called vertices and €=(E,, ..., E,} is a finite system of non-empty subsets of X
called edges, where E;# E; for i,je {1, ..., m}, i#].

A hypergraph is k-uniform, k> 1, if all edges have cardinality k. A k-uniform
hypergraph with n=k vertices is complete if its set of edges has the cardinality

(k)
k)
The complement of a k-uniform hypergraph H= (X, €) its the hypergraph
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A= (X, &) if |#07]=(]) and €0 =0. (By | £0 ] the cardinality of the set

£U€ is denoted.)

A hypergraph H{(N) = (X, &x) is said to be the k-uniform subhypergraph of
a k-uniform hypergraph H= (X, &) induced by a sct N if Nc X and &y is the
system of all edges E; e € such that E;c N.

A set Sc X of vertices of H is called stable if for all edges E; e € we have
En(X—=8)#0.

A stable set Sc X of H=(X, ¥) is said to be maximal if for each vertex
x €(X—3S) the set Su{x} fails to be a stable set of H.

A partition of the vertex set X of H= (X, €) into disjoint stable subsets is called
1 colouring of H, whereby the vertices belonging to the same stable subsets are
given the same colour and the vertices belonging to distinct stable subsets are given
different colours. Two colours are adjacent if there exists an edge containing
vertices to which these two distinct colours are given. A colouring of H 1s complete
if all pairs of the used colours are mutually adjacent.

The chromatic number x(H) or the achromatic number y(H) of a hypergraph H
is the least or greatest number, respectively, of colours used in a complete colouring
of H.

2. Chromatic number

Lemma 1. In a k-uniform hypergraph H= (X, €) with x(H)=q there exists
a colouring {S., ..., S,} having the following properties :

S, |Z[S,]=... 2S00 2k
IS, | =...=|S:| =k = 12]S,].
2" For eachi=1, 2. ..., q. the S, is a maximal stable set in H(S;_1.. US,).
3 If |S,u...uS\|Zk, then H{S.u...uS,) is a complete k-uniform subhyper-
graph of H.

Proof. From the assumption of the lemma it follows that there exists a partition
of the set of vertices X in ¢ disjoint stable sets Si, ..., S with the property
|Si|=...2]81]. Let SZ be a maximal stable set in H=(X, ¢) such that S, S..
Gradually for each i=q—1,...,2 let §7 be a maximal stable set in H(X —
(Squ...uS%,)) such that S} — (S2u...US?,, ) = S3. Let us arrange the sets Si. ..., St
according to the cardinality and let us denote them S, ..., S, thus |S}|=...=|S]|.
The method according to which we have obtained from the colouring {S., ..., Si}
the colouring {S3, ..., S1}, will be called the n-process. By a finite number of the
n-process application we have a colouring {S3, ..., S} which has the properties 1°
and 2°.
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If this colouring has not the property 3°, i. e.
=k, |SY=...=|S}|=k—-1Z|S]

and H(S%U...uS?) is not a complete k-uniform subhypergraph, we shall recolour
the vertices of this subhypergraph with r colours so that the k vertices which do not
form an edge will be given one colour and the other vertices will be coloured with
(r—1) colours. We shall arrange these colour classes of H according to the
cardinality and we use the n-process. Since the set of vertices X is finite, after
a finite number of applications of this method we get a colouring that has the
properties 1°, 2° and 3° from Lemma 1.

HERE

Lemma 2. For a k-uniform hypergraph H = (X, €) with n vertices,

=]

holds.

(Ja[ denotes the smallest integer =a.)

Lemma 3. For a k-uniform hypergraph H=(X, €), X=S,0...US,, the in-
equality

X(H)=x(H(S))+ ...+ x(H(S..))

holds.
The proof of Lemma 2 and Lemma 3 follows immediately from the definition of
the chromatic number and subhypergraph.

Lemma 4. For a k-uniform hypergraph H=(X, €) and its complement H =
(X, &)

w= |

holds, where n is the number of vertices of the hypergraph H and k =3.

Proof. Let y(H)=gq. If g=1 or g =2, then the assertion of the lemma is valid.
Let g =3. According to Lemma 1 we can assume that the colouring {S,, ..., S;} of
H has the properties 1°, 2° and 3°. We shall define a colouring of the hypergraph H
by the means of the properties of the colouring of the hypergraph H.

Let x%,€S,.1: then there exist vertices X}, ..., X*3€S,,» such that
k 1 k=1

{xr-o-ls Xr42y «oey xr+2} € g-
Let x¥,2€S,42 — {X}42, ..., X;52}; then there exist vertices x;.s, ..., X¥73 € S,43

such that {x.2, X543, ..., X;3} € 8.
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Proceeding analogously in the next steps, we get finally:

If xg_1€8q-1—{x4-1, ..., x4-1}, then there exist vertices x,, ..., xg~' €S, such
that {xg_,, xg, ..., xg '} € €.

It means that for each i =1, 2, ..., q— 1 —r the vertices of the set {x;+, X}+is1, .-
x¥:%1} do not form an edge in H, i. e. we can colour them with one colour.

Let us analyse some examples.

1. If r=0 or r=1, then from the preceding consideration it follows that in H
there exist at least (q — 1) k-element subsets of the set X that do not form the edge
in H, thus to each of them we can coordinate just one colour. By using Lemma 2
and Lemma 3 we get

R e R L

k—1
2. If g—r=0. then H is a complete hypergraph and thus
x(H)=1.

3. If g —r =1, then the subhypergraph H(Sq_lu._..uS,) of the hypergraph H is
complete and thus S,-1u...US; is a stable set in H. Then

. x(H)§]‘&L[+ 1 =]” -JSJ_IU...US,“'_F | =

k—1 k—1 |
=D G-I g Jnma 2otk (23
=745

4. If 2=q—-r=gq—2, then in the subhypergraph H(X —(S,u...uS,)) there
exist at least (q —r — 1) k-element subsets of the set X which do not form an edge
in H, thus to each of them we can coordinate just one colour. Thus

_ > 1s-@-r-4
x(H(X—(Su..uS))) = |== ] L+
.ills.-|—q+r+l|»
+q-—r—1=4"' ] |

" but

S IS|=n—(r=1) (k=1)—]|S),

i=r+1
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hence

x(H<X—(s,u...us,)>)§]” UL L |Sil—q+r+ 1{.
Since

x(H(S,u...uS$;)) =1,

we have

x(H)<]n g+kr+1l LS,J[ +2$]£;—T{—2[-

The proof of Lemma 4 is complete.

Theorem 1. For a k-uniform hypergraph H= (X, €), k=3, with n vertices

2\/%§X(H)+X(H)§]2—(”kﬂ[+1

holds.
Proof. a) Let x(H)=gq. In H there exists at least one colour set S;, for which

|S:|= =1 Then in H the subhypergraph induced by the set of vertices S; is complete,
thus

n
TN=> o (F >_q_
and
x(H)+x(H)Zq+—7—F (k 0y

We shall find out for which q the expression q +

n ..

has the minimum
q(k—1)
value. We shall find the local minimum of the continuous function f(x)=

n . . n . . ) n
+m in the interval <1, Z—_l> The local minimum is for x = \/m It
means that

x(H)+x(H)>\/k 1 \/ "(k 1)
k-1
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and after a modification we get

A(H)+ ()22 .

b) From Lemma 4 it follows that

x(H) g]ﬂﬁ[, 2(H) g]”__ﬁﬂ—ﬁ[

k—1 k—1

These two inequalities can be modified :

(k= 1)y<n—x(H)+2~(A) (k- 1)
—(k=1)<n—y(H)+2—-x(H) (k-1).

After the addition we get
—2(k—1)<2n+4—k(x(H)+ x(H)),

hence we have

X(H)+X(H)§]§'ikil—)[+1.

3. Achromatic number

Theorem 2. For a k-uniform hypergraph H= (X, €), k 23, with n vertices,

n+1=y(H)+y(H)S2n

holds.
Proof. The validity of the upper bound is obvious. Now we shall prove the

validity of the lower bound.
1. Let k=4.1f w(H)=n or yw(H) = 1, then the assertion of Theorem 2 is valid.

_If 1<y (H)<n, then in H there exists a couple of non-adjacent vertices, i. e. in
H there are all edges containing this couple of vertices. From this it follows that

yY(H)=n, i. e. the assertion is valid.
2. Let k=3.1If w(H)=n or y(H)=1, then the assertion is valid.
Let 1 <y(H)<n. The set of vertices X of the hypergraph H may be decom-

posed into y'(H) disjoint coloured subsets as follows:

X=Mu...UM,UNU...UN,URU...UR,UL,U...UL,,

whereby we have
(a) IMi|=...=|M,|=|N\|=...=
IR1,==,R'I=2'
|L|=3 foreach i=1,2....,p.

N =1,
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(b) Each vertex belonging to the set M;u...UM,, is adjacent to all vertices of H.
The vertices belonging to the set N;u...UN; are not adjacent to all the vertices
of H.

Each vertex belonging to N,u...UN, is adjacent to all the vertices of H, because
of the 3-uniformity of the hypergraph.

Foreachi=1, 2, ..., p there exists in the set L; at most one vertex adjacent to all
the vertices of H, i. e. at least |L;| — 1 vertices belonging to L; are adjacent to all
the vertices of H.

Foreach i=1, 2, ..., r there exists at least one vertex x; € R; which is adjacent to
all the vertices of H, which follows from the following consideration:

If the vertices x;;, xi; belonging to R; are adjacent to all the vertices of the set
X — {xi1, X2} in the hypergraph H, then they are non-adjacent to each other, i. e.
in H they are adjacent to all the vertices. If some of the vertices x., x;, € R; is not
adjacent to all the vertices of the set X — {x, X;»} in the hypergraph H, then it is
adjacent to all the vertices of H.

Then for the achromatic number y(H) of H

YE)Zs+r+ 3 (ILI-1)+1
holds. Then
y(H)+y(H)Zm+s+r+p +s+r+i(|L,~|—1)+1,

but
P
p+m+s+2r+> (|L|-1)=n,
1=1

then
y(H)+y(H)Zn+s+1=Zn+1,

and the theorem is proved.

Remark. It is easy to verify that for each k& and each n>k+1 there exist
k-uniform hypergraphs for which the equality in the upper or the lower bound
from Theorem 2 is fulfilled. .
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TEOPEMbBI TUIIA HOPOXAYCA—TAJOYMA
A k-YHUPOPMHBIX TMITIEPTPA®OB

®pantuwek OneHuK

Pesiome

B aroit paGoTe mpuBCACHBI PE3YNbTAaThl, KOTOPUE MPUHAAIEKAT K TAK HA3bIBAEMOMY KJIACCy
Hoppxayca—Tagyma, ans k-ynndopMubIx runeprpacgos.

Xpomatuueckue uncia y(H) u x(H) k-ynudopmuoro runeprpacdpa H ¢ n BeplumHamu # ero
pononHenus H ynoBneTBOpAIOT HepaBeHCTBaM

z\kpﬁéxmwx(ﬁ)g]z(",‘—“)[ +1

Axpomatnueckue uncna Y(H) m Y(H) k-yundopmuoro runeprpada H ¢ n sepmHamu u ero
pononnenust H ynoBneTBOpsitOT HEPABEHCTBAM

n+1sy(H)+yp(H)=2n.
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