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ON T H E UNIQUE SOLVABILITY 
OF SEMI-LINEAR ELLIPTIC SYSTEMS 

JAROSLAV J A R O Š 

(Communicated by Milan Medvěd') 

A B S T R A C T . In this paper, we s tudy the unique solvability of semi-linear elliptic 
systems of partia l differential equations. Our method of the proof is based on t h e 
Banach fixed poin t theorem . 

1. Introduction 

In this paper, we study the unique solvability of semi-linear elliptic systems 
of partial differential equations of the form 

—Дu = f(x,u, Vu) in ft, 

u = 0 on <Эft. 
(Ь) 

where ft is a smooth bounded domain in R n , u: ft -> K M , / : ft x R M 

x KMn _^ R M _ 

It is known that the system (6) possesses multiple solutions if the nonlinearity 
/ interacts suitably with the spectrum of the operator — A D (i.e., the operator 
—A with a homogeneous Dirichlet boundary condition) (see, e.g., [AZ] or [H]). 
In this paper, we are concerned with the complementary case, where / does not 
interact with this spectrum. 

In his paper [A], H. A m a n n has given unique solvability results for semi-
linear systems in the case, where / does not interact with the spectrum of — AD , 
and / does not depend on the gradient: 

—Ai/, = f(x.u) in ft, , N 
J v ' J ' ( a ) 

u — 0 on <9ft . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 35J55, 35J65. 

K e y w o r d s : elliptic system, weak solution, eigenvalue, fixed point. 
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The gradient-dependent case (b) is studied in [QZ] for a single equation 
(M = 1). In this paper, / satisfies 

i} a < n*,uup)-f£w) < 6> ( a > b ) n a ( _ A D ) = 0 ) 

ii) | / (x , ?x, p-,̂ ) — / ( x , u , p 2 ) | < c|px — p2\, where c > 0 is sufficiently small. 

The method of proof is based on the Banach fixed point theorem: it is shown 

that the mapping w »-» u, where u is the weak solution of the problem 

—Au = f(x,u,Vw) in fi, 

u = 0 on c9fi 

is a contraction. 
Our method of proof of unique solvability of (b) is analogous to that in [QZ], 

but the estimates are carried out in a more precise way. Moreover, using the 
uniform contraction theorem, we show the continuous dependence of solutions 
of systems of the form 

—Au = f(x,u,X7u,\) in Q, 
(bx) 

u = 0 on dQ 

on the parameter A. Our main result is formulated in Theorem 4.4. 

2. Preliminaries 

Let us first introduce some notation. By K we shall denote the set of all 
reals. Q C W', for some n > 1, is a bounded domain with smooth boundary 
dft (C2). For p- = (pl,... ,ps-) £ R s , j = 1,2, we define the scalar product 

s 

(pl,p2)i&s — /CP1P2- The Lebesgue space L 2 (J7 ,RM ) will be equipped with 
i=i 

the usual scalar product (u,v)Q = f (u(x),v(x))RM dx , while the Sobolev space 
n 

JJQ (ft, R M ) will be equipped with the scalar product 
n , 

(u,v)г =J2( 
д д 

Q U, -5 V 
OX- OX- , 

_^((dux duM\ (dVl dvy 
- ^ v v ^ ' " " ^ r M ^ " - - ' dxt 

The corresponding norms will be denoted by I • |R» > || • | | 0 and || • | | x , respectively. 

We define now a linear operator AQ: dom(A 0 ) C £ 2 (Q,R) -> L2(tt,R) by 
dom(A0) = H^(n,RM)f)H2(n,RM) and 

V:=-ES for u£dom(AQ). 
2 = 1 L 
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It is well known that A0 is self-adjoint, that it has a compact resolvent and that 
the spectrum of A0, cr(A0) — {\i}

(^=1, where 0 < X1 < A2 < . . . and A?; —> oo. 
Let {v^j^i he the corresponding sequence of eigenfunctions, which we assume 
to be normalized in L 2(f2,R), i.e., 

II^IIL^.R) = J V$ dx = l , 2 = 1,2,... . 

n 

Thus it forms an orthonormal base in Z/2(fi,R) and it is also a complete ortho

gonal set in i J 0 ( n , R ) such that 

Эг\\щ(П,К) = J ( V V . ' V V . ) R » d x = Xi 

(н)< 

\<Pi\\Hi(nM = / ( V ( ^ V c ^ ; ) R r i dx = A?:, z = 1,2,... . 

Finally we define a self-adjoint linear operator with compact resolvent: 

A: dom(A) C L2(ft,RM) -> L2(ft,RM) 

for some M > 1 by: 

dom(,4) : = [dom(A0)] and A : = diag(A 0 , . . . , AQ). 

Now we suppose that the function / : (1 x R M x R M n -> R M satisfies the 
hypothesis (H): 

' i) f is a Caratheodory function. 

ii) There exist cx,c2 > 0 sî c/i £/ia£ 

|/(.c, ,a1 ,p1) — / ( x , 'a2'P2)liRM — c i l u i ~ Uci\WA + C2l-°1 "~ P2llRMri 

for a.a. x £ Q and all ux,u2 G R M ana7 p a ,p 2 G R M n . 

I iii) / ( - , 0 , 0 ) G L 2 ( n , R M ) . 

Then, by a weak solution of the semi-linear elliptic system 

—Au = f(x,u,Vu) in ft, 

u = 0 on <9fi 

we mean a function u G Ff0(lTi,RM) such that 

£/(I^lCL d*=/(/(-̂ «MRM
 d-

' - 1 ft n 
for all u G t f ^ R 7 1 * ) . 

We get from standard regularity theory that u G .ff^(fi,)RM) H IJ2(ft,RM) and 
u is a solution of the operator equation 

Au = F(u), 

where F is the Nemytskii operator corresponding to / . 

293 



JAROSLAV JAROS 

3. Apriori estimates 

We introduce the following hypothesis: 

i) h: tt x 1RM —» R M is a Caratheodory function such that 
h(x,-) G C 1 ( R M , 1 R M ) with a symmetric derivative D2h(x,u) : — 
-J^h(x, u) for a.a. x G O and all u G R M . 

ii) There exist two symmetric MxM-matrices F>+. B" such that 

M 

B~ < D 2 h(x, u) < B+ and | J [fi~, /x+] n a(A) = 0 , 
2 = 1 

( H l ) < 

where /i1 < fi2 < • • • < / i M are the eigenvalues of the matrices 

B^, respectively. 

iii) ti(.,0) G F 2 ( f i , R M ) . 

The inequalities in ii) are to be understood in the sense that B+ > B~ means 
that F>+ — B~ is positive semi-definite. From [VK; p. 109, Courant-Fischer v 

(B^x.x) 

(x,x) 
theorem], we have the equalities // = min max 

1 d i m ( V ) = i x^O 

VCRM x e V 

which implies the inequalities fi~ < /if for i = 1, . . . , M. 

Now we put 

for І — 1, M. 

v:=TD\rx{\i\ XiEa(A), Az > yu+-} , 

dist(\J[^-,ßt),a(A)) f o r / x + > 0 , 

X1 for HXJ < 0 . 

(3.1) 

Recall that (Hl)i i) implies e > 0. 

Let us formulate the apriori estimates lemma: 

LEMMA 3 . 1 . Let B: Q xRM -> RM satisfy (Hi) with h replaced by B and 
B(x,0) = 0 for a.a. x G Vt. Let f: Q, x R M -> R M be a Caratheodory function, 
and let there exist 0 < 7 < § (e as in (3.1)) and p G L2(f2,R) such that: 

\f(x,u)\RM <l\u\RM + p(x) (3.2) 

for a.a. x G ft and all u G R M . Let z G H^(ft,RM) DH2(Q,RM) be a solution 
of the equation 

Az = G(z), (3.3) 

where G denotes the Nemytskii operator corresponding to B + f. Then 

< 10 — є 
2 7 

(3.4) 
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and 

ll-lla^T-r-IHIo- (3-5) 
2 1 

P r o o f . It is obvious that a (A) = a(AQ). We put H := L 2 ( f i , R M ) and 

°H-
 : = (A G a(A) : \: < Mf} > **+ := (A* e * M :

 MM < \;} > 
crz : = {Az 6 CT(A) : Lx" < A2 < M+ } . 

Let H = I/- © Z © iJ+ be the orthogonal decomposition of H corresponding 
to the decomposition of the spectrum a (A) = a H _ U a z U 6^+ . Let e2 (for 
2 = 1 , . . . , M) be the eigenvectors of B± corresponding to ji%- , respectively. We 
now put 

Z " = span{<^e7 : /L" < A. < (MJ , % g N, j = 1, 2 , . . . , M} , 

Z+ = s p a n ^ . e t : LI+ < A- < /i+ , i e N, j = 1, 2 , . . . , M) . 

Thus we have 

( ( i 4 - B - ) i t , « ) 0 < 0 for all u G Z~ \ {0} , 

( ( ^ l - 5 + ) u , n ) 0 > 0 for all u e Z+\ {0} , 

hence Z + n Z _ = {0}. It also follows from (3.6) that d imZ = dim Z + + d i m Z ~ . 
Consequently, 

Z = Z+ ®Z~. 

Putting X~ := H~ ®Z~ and X+ := H+ © Z+ we get the decomposition of H 

H = X+ ®X~ . 

In X + , X ~ , we can choose the orthonormal bases 

(^ii = ^.e7 : \: < /-7> * e N> j = 1,2,..., M} , 
{V;+ = ^ e + : A?: > M + , z G N , j = 1 ,2 , . . . , M } , 

respectively. Let z G H^fl, R M ) D H2(ft,RM) be a solution of (3.3). We have 
2 = z~ + z+, where z+ G X+ respectively. Define also z = — z~ + z+. For 
a.a. x ~ VL, the mean value theorem implies the existence of £(x) G K such 
that 

Az(x) = B(x,z(x))+f(x,z(x)) = D2B(x,£(x))z(x) + f(x,z(x)) . (3.7) 

Since by (Hl) i ) S(x) := D2B(x,£,(x)) is a symmetric MxM-mat r ix , we get 
from (Hl)i i) that 

(S(x)z(x),z(x))RM = (S(x)z+(x),z+(x))RM - (S(x)z~(x),z~(x))RM 

< (B+z+(x),z+(x))RM - (B-z-(x),z'(x))RM 
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for a.a. x e fi. Testing the equation (3.7) by z and using (3.2), (3.8) we get 

(Az,z)0 = (Az+,z+)Q - (Az-,z~)0 

< (B+z+,z+)0 - (B~z-,z-)Q + 7'PlloPllo + IHIoPllo • 

+ 

(3.9) 

Let z — Y^ z^фi- + E ^ijФtj' ztj ^ ^> be the Fourier series of z with respect 
гj r гj ' Z___ гj^гj •> гj 

+ 1 
гjJ to the base {>r.} U { > J } in L 2 ( f t , R M ) , where E = E a n d E = E 

iGN 
.7 = 1,...,M 

iЄN 
І = l M 

A_</_7 

Then 

e(ii--n. + P+iio) < Ě(A_ - M + )4 2 + £0*7 - v ť 
= ((A - B + ) _ + , _ + ) _ - ((A - B-)z~,z-)Q 

<7pll0Pllo +IHIoPllo-
Now, since 

K>џf 

(3.10) 

+ 4- „-11-Z + ± 2 ± 2 ( _ + , z - ) a + 
\ot li li a v ' / c_ 

y + l | 2 v - | | 2 
<P"ll_ + 2||̂ ||J|г-||a + ||--llQ 

(3.11) 

< 2 ( P + | | 2 + P - | | 2 ) 
(for a = 0 or 1), we get from (3.10) 

flklloPllo<7p|loPllo + PlloPllo. 

which implies (3.4). Using the Young inequality ab < | - + sb2 and (3.11) we 
have from (3.10) 

£ > . - 4H2+X>7 - A*)^2 <• 2(^+s)(H2+llo + P" Ho) + ^ (3-12) 

for arbitrary _G (0, ^ — ^y). Hence, 

Since 

X.-Џ+-2-Г- 2s 

\ v î 2 +£ 
A»т - Лť - 2 7 - 2s 

A z-2 < Ы ° Åѓzij ^-ĄГ 

v - / i ţ - 2 7 - -2s 

» • > 

- Л . - 2 7 - -2s 

e - 2 ( 7 + s) . 
> — T — - f o r A i > / - ; , 

e - 2 ( 7 + s) 
> ^ A. < n. , 
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we get, us ing (3 .11) , 

g--(7 + « ) | N | ? < i !pI 
2v " Hl ~ 4s 

Thus we have the inequality 

|U||? < min —JT— r| |p| |n, 

which implies (3.5). D 

4. Unique solvability results 

In the following, we shall use the result of H. A m a n n [A; p. 166, Theo
rem 4.2] on the unique solvability of nonlinear elliptic systems. 

LEMMA 4 . 1 . Suppose that the function g: ft x RM —> RM satisfies (HI) with 
h replaced by g. Then the semi-linear elliptic system (a) (with f replaced by g) 
possesses exactly one weak solution. 

First we prove a more general existence and uniqueness theorem, in which 
we relax the assumptions on the function g. 

THEOREM 4.2. Let g: ft x R M —• R M be Caratheodory function such that 
g(- ,0) G L 2 ( f t , R M ) . Suppose there exist g.: ft x R M -+ R M for i = 1, 2 such 
that g -= gx + g2 and: 

(Gl) g1 satisfies (HI) with h replaced by gx, 
(G2) g2 satisfies the Lipschitz condition in the second variable with Lipschitz 

constant 8: 

\g2(x,u{) -g2(x,u2)\RM < 8\ux - u2\RM (4J) 

for a.a. x G ft and all u1,u2 £ 

If 0 < 8 < | ; then the system (a) (with f replaced by g) has exactly one weak 

solution. 

P r o o f . As a consequence of Lemma 4.1, we obtain that the mapping 
T: L 2 ( f t ,R M ) - • L 2 ( f t ,R M ) defined by u = Tq and 

-Au = g1(x,u)+g2(x,q) in ft, 

u = 0 on 9ft 

is well defined. We show that T is a contraction in the space L 2 ( f t , R M ) , so 
that Theorem 4.2 will follow from the Banach fixed point theorem. So choose 
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arbitrary qx,q2 G L2(tt,R
M) , and let u{ = Tqj, i = 1,2. Denote h = qx — q2, 

z = ux — u2 . If we put B(x, w) = gx (x, w + u2(x)) — g1 (x, u2(x)) and f(x) = 

g2(x, q2(x) + h(x)) — g2(x, q2(x)) , then z is a solution of the semi-linear system 

-Az = B(x,z) + f(x) in ft, 

z = 0 on dQ , 

and the assumptions of Lemma 3.1 are fulfilled with 7 = 0. Hence we get 

Mlo < f- | | / l | |o 
since 

\f(x)\RM <S\h(x)\RM 

for a.a. x G ft by (4.1). We see that the mapping T is a contraction since y < 1. 

• 
In the sequel, we shall use the following classical generalization of Banach 

fixed point theorem. 

L E M M A 4.3. ( U N I F O R M C O N T R A C T I O N T H E O R E M ) Let (X, d) be a com
plete metric space, (A,dA) a metric space, and let U be an open subset of A. 
We assume that K: X x U —» X is a uniform contraction in the first variable, 
that is, there exist a constant 0 < k < 1 such that 

d(K(x,X),K(y,X))<kd(x,y) 

for all x,y G X and X G U. Assume, moreover, that K(x,-): U —> X is 
continuous in XQ for all x G X. Then for every X G U there exists a unique xx 

such that xx = K(xx, X). Moreover, the mapping X 1—» xx : U —> X is continuous 
in XQ. 

After these preparations, we can now prove the main theorem. 

THEOREM 4.4. Let A be an open subset of a metric space (X, d), and let the 
function g:UxRM X R M n x A - » R M be such that: 

i) for every X e A, gx = g(-, •, •, A): ft x RM x R M n -> RM is a 
Caratheodory function, and 
D2g(x,u,p,X) := -§^g{x,u,p,X), D3g(x,u,p, X) := -§^g(x,u,p,X) exist 
for all (x,u,p,X) e ft x RM x RMn x A; 

ii) A —> A0 G A im.plies 

sup \D2g(x,u,p,X)-D2g(x,u,p,X0)\RM2 - » 0 , 
x,u,p 

sup \D3g(x,u,p,X) - D 3 5 ( x , u , p , A 0 ) | R M 2 n - > 0 , 
x^u^p 

| | 5 ( - , 0 , 0 , A ) - f f ( - , 0 , 0 , A 0 ) | | 0 - 0 ; 
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iii) there exist A0 G A such that ^ ( - ,0 ,0 , A0) G L 2 ( f i , R M ) and gx = 

9ix0 + 92\0 > where 9ix0 : ^ i M x RMn -> RM (i = 1, 2) and: 

(Gl) g1A (*,-,P) satisfies (HI) wif/i /i replaced by gix (- , - ,p) /or a// 

p G R M n with B± independent of p, 

(G2) g2X satisfies a Lipschitz condition in the second variable with con

stant 0 < 6 < | . 

(G3) gx satisfies a Lipschitz condition in the third variable with con

stant 0 < c < •2-r^ . 

Then there exists an open ball B :— £(A 0 , r ) in (X,d) such that the system 

—Au = g(x,u,Vu,\) m (1, 

u = 0 on dft ^ x) 

has exactly one weak solution ux for all A G B. Moreover, \\ux — ux 1̂  —> 0 
w/ien d(A, A0) —•> 0. 

P r o o f . It follows from iii) that there are symmetric matrices B+ , B~ and 
constants e, 8, c, v such that 

e - - 6 
0<8 < - and 0 < c < - £ - = - , (4.2) 

S - < D 2 5 l A o < B + , 

l ^2A 0 ( X ^ l^ ) - ^ 2 A 0 ( X ^ 2 ^ ) I R ^ -̂  % 1 - ^ I R ^ > , v 

I P A O ^ ' ^ ' ^ I ) - 5 A 0 ( X ^ ^ 2 ) I R ^ --- Cl^l ~ ^ 2 I R ^ 

for a.a. x G ft and all (u., / i ) e R M x R M n or (u, Ji.) G R M x R M n , respectively. 
Now, it follows from (4.2) that we can choose L > 0 such that 

0<8 + L<- and 0 < c + L < 2 ~ (6 +L) ^ 
2 yJV 

The assumption ii) implies the existence of r > 0 such that jf3(A0,r) C A and 

\D2g(x,u,p,\) -D2g(x,u,p,\0)\RM2 < L , 

\D3g(x,u,p,\) -D 3 5(x , i4 ,p ,A 0 ) | R M 2 n < L 

for a.a. x E ft and all (u,p) e r x R M n . For A e B(X0,r) we define 

•9IA = 9lXo and s2A = sA - 21Ao . 

From (4.3) and (4.5), we get 

\g2X(x,ulyh) -g2X(x,u2,h)\UM < (6 + L)\^ - U 2 | R M , 

\gx(x,u,hx) - gx(x,u,h2)\RM < (c + L)|/i1 -h2\RMn. 
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Now we define the operator T: H*(n,RM) x B(\0,r) -> H*(n,RM) by 
T(h,\) = u and 

—Au = g(x,u,Vh,\) in Ct, 

u = 0 on <9fi . 

It follows from (4.2) that T is well defined. First we show the uniform contrac-
tivity of T . We choose arbitrary A E B(\Q,r), qx,q2 G HQ (Q,RM), and denote 
ui = T(qv A) for i = 1, 2, h = q1 — q2, and z = t^ — ?z2 . Then z £ # Q ( £ J , I R M ) 

is a weak solution of 

—Az = B(x, z) + f(x,z) in Q , 

z = 0 on <9f} , 

where 

B(x,w) = ff1A(x,w; + u2(a;),Vg1(x)) - gix(x,u2(x), Vq^x)) 

f(x, w) = [g2X (a,, w + u2(x), Vqx(x)) - y2A (x, u 2(x) , Vgx (x))] 

The functions B and / satisfy the assumptions of Lemma 3.1, so that we get 

1,21,1 - § -(6 + L ) I N l ' 

The inequality (4.4) implies the uniform contractivity of T. Now we put ux = 
T(h,\), uXo = T(h,X0) for A e B(A0,r) and h e H^(Q,RM). Then z := 
u\ ~ uXo is a weak solution of the system 

-Az = B(x, z) + f(x,z) in Cl, 

z = 0 on dCl 

with 

B(x,w) = glx(x,w + uXo(x),Vh(x)) - glx(x,uXo(x), Vh(x)) 

f(x,w) = [g2X(x,w + uXo(x),Vh(x)) - g2X(x,uXo(x), Vh(x))] 

+ [(9\ ~ 9\0)(x,uXo(x),Vh(x)) -(gx-gXo)(x,0,0)] 

+ [(gx-gJ(x,o,o)]. 

From (4-5), (4.6), we get 

<(S + l)\w\RM + LXXo(\uXo(x)\RM + \Vh(x)\RMn ) + \(gx-gXo)(x,0,0)\RM 
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with 

Л,Лo 
S U P I D

2 ( 3 л - З A J І R M 2 + sup | D 3 (9 Л ~ 5 Л O )ІRM2П 

We recall that (ii) implies Lx A —> 0 if A —> A0. Now we have from Lemma 3.1 

мii < - J | ^ [ ^ , A „ ( I K I I o + W 1 ) + ll(ffA-í/A„)(-.0.0)llo] 

So that, the assumptions of Lemma 4.3 are fulfilled. D 
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