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FULL SUBDIRECT AND WEAK 

DIRECT PRODUCTS OF ALGEBRAS 

ANDRZEJ WALENDZIAK 

(Communicated by Tibor Katrirldk) 

ABSTRACT. In this paper we give a common generalization of full subdirect 
product and weak direct product of given algebras. 

Let Ai (i £ / ) be a family of similar algebras, and let B = ]~I(Ai : i € I) 
denote the direct p roduc t of Ai , i £ / . For two elements x,y £ B we define 

I(x,y) = {iel: x(i)^y(i)}. 

A weak direct product of the algebras Ai (i £ / ) is a subalgebra A of B 

satisfying the following two condit ions: 

(i) if x,y £ A , t hen I(x,y) is finite, 

(ii) if x £ A, y £ Z3, and / ( x , H) is finite, t hen y £ A . 

Let A be a subdirect p roduc t of A; , i £ / . We say t h a t A is a /it// subdirect 
product of A; ( i £ / ) if t h e following condit ion is satisfied: 

(iii) for any i £ / and arry x, y £ A there is an element z £ A such t h a t 

z( i) = x ( i ) , z ( j ) = y(j) for each j £ I - {i} . 

Let / be a nonvoid set. 7 9 ( / ) and T(I) denote the set of all subsets of / and 

the set of all finite subsets of / , respectively. We denote by P(I) the Boolean 

algebra (V(I), H, U,7 , 0, / ) . A common generalizat ion of full subdirect and weak 

direct p roduc t s of algebras is the following concept: 

D E F I N I T I O N . Let Ai (i £ 1 ) be similar algebras and let C be an ideal of 
P(I) . We say that a subalgebra A of the direct product H ( A i : i £ / ) is 
an C-restricted full subdirect product of algebras Ai , i £ / , and write A — 
Wc(A} : i £ / ) if and only if the following two conditions hold: 

(iv) A is a full subdirect product of Ai , i £ / . 
(v) for every x,y £ A . I(x,y) £ C. 

A M S S u b j e c t C l a s s i f i c a t i on (1991): Pr imary 08A05, 08A30. 
Key w o r d s : Full subdirect product, Weak direct product, Congruence relation, Lattice. 
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P R O P O S I T I O N . Let A be a subalgebra of the direct product B - Yl(A, : i e I ) 

of algebras At . i G / . 

(<\\) A is a full subdircct product of A; (i G I ) if and only if 

A = \\V{l)(Al:
 l E l ) -

(a2) A is a weak direct product of A; (/' G / ) if and only if 

A = \\T(l](A,: ' ' £ / ) . 

P r o o f . S ta tement (a i) is obvious. 

l b prove the second s ta tement , first assume that A is a weak direct product 
of algebras A, (i G I ). Then A is a full subdircct product of A, ( / e / h and 
t herefore. 

Conversely, assume that .1 is an .F(/) -rest ricted full subdircct product of A, . 
i G I . Obviously, the condition (i) is satisfied. To prove (ii). let ./• G .1 and 
y G / i . Suj)pose that the set I(.v.y) contains only one element i\ . Since .1 i-
a subdircct product of A, (i G / ). there is / G A such that f(i\) !/(i\)-
Further , it follows from (iii) tha t there exists z G .1 satisfying :(/']) - f[/\). 
z(i) ~ :r(i) for each / G / , /' 7̂  /'1 . Clearly y = z. thus y G .1 . f rom this, we 
get bv induct ion that (ii) holds. Then A is a weak direct product of algebra-

A, (lei). 

Let A and A.-, (i G 1) be similar algebras. Let / be an embedding of .1 

into B = Y[(Aj : i G I) and let C be an ideal of P(I) . We write 

f:A^Hc(Ai: i G / ) <-=> f(A) = f j ( 1, i e I) . 

We denote by p, the /'th projection function of B . If f(A) is a subdircct prod

uct of the algebras A/ , / G / , then the mapping / / =- Pi° f is a homoniorphisni 

of yl onto A./. This mapping /.,• will be referred to as the / t h f-proj( ct/on. 

We shall now correla te /^ res t r i c ted factorizations of an algebra .1 with con
gruence rela t ions on A. Let Con(A) denote the set of all congruences on A. 
Then Oon(A) forms a complete latt ice with 0 \ and 1 \ . the smallest and the 
largest congruence rela t ion, respectively. Let 0,:, /' G / , be congruences on A. 
and let C be an ideal of P(I) . For any set M G C we define a congruence 
relation 0(M) of A by 

0(M) = /\(0r. j £ M). 
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For / G / we set 0? = /\(0j : j G / — {i}) . For some a G Con(A) we write 

a = Hc(0.t : iel) 

if and only if the following condit ions hold: 

(a) o = A(0, : iel), 
(b) lA = \J(0(M): MeC)^ 
(c) for all i G / , Vi = 0i ofl?: (i.e. congruences 0̂  and 02 pe rmute and 

their join is I A)-

T H E O R E M 1. Let A be an algebra and A% (i G / ) be a family of algebras. Let 

C be an ideal of P(I) . Then A is isomorphic to an C-restricted full subdirect 

product of algebras A-t , i G / . if and only if there exists a family Oi, i G / . O/ 

congruences on A such that 0^ = n L : ( ^ : i € I) and A/9i = Ah for every 

i G 7 . 

P r o o f . 

Necessity. Let / : _4 = E L C ^ : i e J) > a n d let 0; ( i G / ) be the kernel of the 

/ t h / -p ro jec t ion /A t h a t is the binary relation {(x,y) G -A2 : fi(x) = ft(y)} • 

By assumpt ion, the mapp ing / is one-to-one, and hence 0yi = /\(9t : i G / ) . 

To prove (b), let x,y G A. Clearly, 

M={i^L: fdx) ± f%(y)} = j ( / ( x ) , / (H)) G £ 

and (.r,H) G 0 ( A / ) . T h e n (x, y) G Y / ( W ) : M ^ £) . a n d h e n c e ( b ) h o l d s -
Condi t ion (c) immediate ly follows from (iii). 

Finally, it is obvious t h a t A/0?; = Ai for each i G / . 

Sufficiency We define the mapp ing / from A to n ( ^ / ^ : i £ I) by set t ing 

/(.! ') = (*/0v : i G / ) L .̂ T h e fact t h a t / is an embedding is easy to check. Of 

course, the mapping /,; = pi of is onto for each i G / . Now, from (c) we obta in 

(iii). Therefore, f(A) is a full subdirect p roduc t of algebras A/9i, i G / . 

Now, let 2,2/ G A . By (b), (x,H) G \J(9(M) : M G £ ) . T h e n there exists 

a finite number of sets A/i , A/2, . . . , A/n G £ such t h a t (x,H) G 9(M\) V . . . 

• •• V 0 ( A / n ) . Observe t h a t 

{ z G / : / , ( x ) ^ / , ( H ) } C A / 1 U - - . U A / n . (1) 

Indeed, let fi(x) 7̂  /;(H) for some i G / , and suppose on the contrary t h a t 

/ (/ AI! U • • • U A/n . T h e n 0(A/j) V • • • V 0(A/ n ) < 9t, and hence (x, H) G 0,; , i.e. 

.//(•r) — fi(y) •> which is a contradict ion. 

From (1) , by the definition of ideal, we conclude t h a t {i : fi(x) ^ fi(y)} £ £ , 

which was to be proved. Therefore the proof of Theorem 1 is complete . 

1 ̂  J'/O., is the congruence class containing x 
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LEMMA 1. Let I. J be two sets of indices and C\ , C2 ideals of the Boolean 
algebras P(I) . P(J), respectively. Let A be an algebra with Con(A) distribu
tive. If 

° ^ = n £ l («• = { e 7 ) = I L 2 (h • j e j) (-) 
for congruences cr̂  , /3j on A . lben tjbere exist congruences S[j (i G I. j E J ) 
such that, for all i and j . 

Qi = TT ( ^ : j E J ) and /3j = TT ( ^ : i G 7) . 
- - - - L 2 - , _ XL ' l 

P r o o f . For i G 7 and j G J we pu t <5̂ - = eY?; V /3j . Let i be a fixed but 
a rb i t ra ry element of 7 . Firs t we show t h a t 

<*- = /\(6ij : j € J ) • (3) 

B y d is t r ibut ivi ty of C o n ( A ) , for any j we have 

a{ A Sij = ~a~i A (o^ V /3j) = ~a~i A / ^ < /3j . 

Hence, 

cYi A /\(Si3 : j G J ) = /\(cY2 A ^ : j £ J) < /\(P3 : j e J) = 0A . 

Therefore, using distr ibutivity , we get 

/ \ ( < ^ : 3 € J ) = /\(Sl3 : j E J ) A (a2 V cr2) = cr, A /\(StJ : J E J ) = a,- . 

i.e. (3) is satisfied. 

For M E C2 we set <5(M) = /\(Si3 : j £ M). Now we prove t h a t 

1A = \/(6(M): MeC2). (4) 

Let x,y E A. B y ( 2 ) , (x,y) E \J((3(M) : M E £ 2 ) • Hence, we can choose a fi

ni te number of sets M i , M 2 , . . . , M n E £ 2 such t h a t ( x , y ) E /?(Mi)V- • -V/3(Mn) . 

We set M = { j G J : (x, H) £ <5^} . Observe t h a t M C M± U • • • U M n . Indeed, 

let j E M and j £ Mi U • • • U M n . It is obvious that (3(Mk) < fy for each 

k = 1, 2 . . . , n. Therefore, /3(Mi) V • • • V /3(M„) < /?, < Sl3 . T h e n (x, y) E 6 0 , 

which gives us a con tradic t ion. Consequen t ly , M C M x U • • • U Mn , and hence 

M E £ 2 . Thus (x ,y) G 6 ( M ) , and we conclude that (4) holds. 

For each j E J , let us wri te Si3 for A ( < ^ : k G J — {j}) • Clearly, S,3 > 3y-

and 5 ^ > ^ . Since 1A = /3j o / ^ , we have 

lA = < -̂ oi5ij (-r>) 

for all j G J . From (3 ) , (4) and (5) it follows that a, = Uc2(
6U : J G J • 

T h e proof that (33 = \\c ( ^ j : ^ ^ -0 i s s - m - - a r -
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T H E O R E M 2. Under the assumptions of Lemma 1. if 

A = I T (Ai : i e / ) ano! A - TT (£,- : j e J ) , 
- -• - -•LI -•-•--•L2 

/beI;, l/iere exist algebras Dij (i £ I, j £ J ) sHcb tbat. /Or a// i ana! j . 

A * - n £ 2 & * : ^ e j ) ^ s i - n £ l ( ^ : «e I ) . 

P r o o f . Let / : A = IL^O 4* : * £ J) and O: .A =* I W ^ j : 3 ^ J) • 
Let a/ (i £ 7) and /3j ( j £ J ) be the kernels of the /-projections /? and the 
O-projections g3 , respectively. E>y the proof of Theorem 1, 

<^=ixAa« : z e / ) = r i £ 2 ^ :
 J ' G J ) -

For i £ / and j £ J , we set O?;j = a- V /3j . From Lemma 1 it follows that 

oii = TT ,. (Sij : j £ J ) and /3 • = TT (6^ : i £ I) . 
- L - L L 2 A L 1 

Then at/oi = f|£ (Sij/cti : j £ J ) 2). Hence, by Theorem 1, 

^M=rLA A l^ = ^ ' e j ) -

Therefore, A^ = JT£ (Dij : j £ J ) , where D^ — A/Sij . 

Similarly, B3 = f ] £ i (D{j : i £ I). 

It is easy to prove the following: 

LEMMA 2. Let C be an ideal of the Boolean algebra P(I) . If an algebra A is 
directly indecomposable and if f: A = Y\c(Ai ' i £ I), then there is an index 
i £ / for which fi'. A = Ai, where fi is the i th f-projection. 

THEOREM 3. Under the assumptions of Lemma 1, if 

?:A~nc/
Ai: iei) and g : A - H C / B > : jej)' 

where the algebras Ai (i £ I) and Bj ( j £ J ) are directly indecomposable, 
then there is a bisection a: I —> J for which the following conditions hold: 

(ai) for each i £ I, there exists an isomorphism hi: Ai -^ Ba^ such that 
hi ofi= g^ , 

M o-(l(f(x)J(y))) = J(g(x),g(y)) for all x,yeA. 

2) For 0, z/> e Con (A) with 0 C %b , tp / (j> = {(x/</>, y/(f>) : (x, y) £ V;} • 
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P r o o f . Let at ( i G / ) and (3j (j £ J ) be the kernels of /,• and g,. 
respectively. For each i £ / and each / £ J , set 

Sij = a.j V (3j and D}J = A/b}] . 

By Theorem 2, Ax = Tic2(
D?j : j £ J ) and ^ ^ 1 1 ^ ( A j : / G I). Since 

Ai is direc t ly indecomposable, it follows from L e m m a 2 (see also the proof of 

Theorem 1) t h a t there exists an index a(i) = j £ J such t ha t the m a p 

fi(x)^x/6ij (x eA) 

defines an isomorphism of Ai wi th Dij . Therefore, 

A/a% 9* A% =• Dij = A/a% V 05 . 

Then a.i = a2; V /3j , and hence a?; > /3j . Since Bj is direc t ly indecomposable , 

we conclude that there is an index r(j) = if £ I such that the m a p 

g3(x) h-> x/cS.tj ( a ; E . 4 ) 

defines an isomorphism from Bj on to Di>j . Now we infer similarly that J ; > n , ' . 

Consequen t ly, a^ > /3j > ay . Observe that i = if. Indeed, if i ^ i', then 

&i _ ^ i ' _ « i ; and hence a2 = 1^ , contrary to the fact t ha t Af is directly 

indecomposable . Therefore, Ta(i) = i for all i £ 7 , and similarly <JT(J) = j 

for all j £ J . Then r is a two-sided inverse of cr, and this proves that a is a 

bijection. 

If a(i) = j , then we have Ai = D ^ = Bj , and it is easy to see tha t the 

mapp ing b2 defined on Ai by 

hi(fi(x)) =9j(x) 

is an isomorphism of Ai wi th Bj . 

To prove (a2) , let x, H £ A . We have 

iel(f(x),f(y)) —-+ fi(x)?fi(y) — Ko f{(x) ^ hi o fi{y) 

< > ^ ( i ) ^ ) 7̂  9a(i)(y) < > 0r(0 ^ J((j(*)< #(//)) • 

Therefore, (a2) is satisfied. 

A congruence a £ Con(A) is called a decomposition congruence if and only 
if there is (3 £ Con(A) such t ha t aAd = OA and a o / j = Vi . DCon(.4) denotes 
the set of all decomposi t ion congruences of A . 

From [2; Theorem 6.2] it follows: 
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LEMMA 3 . Let A be an algebra with Co\\(A) distributive. Then D C o n ( / i ) is 
a Boolean sublattice of Con(Ai) and every element of DCon(yi) is permutable 
wit}} any congruence on A . 

LEMMA 4 . Let A be an algebra whose congruence lattice is distributive. If 9 

is a coatorn of DCon(yi) . then A/0 is directly indecomposable. 

P r o o f . Suppose on the con t ra ry that there exist two congruences 07, fi 
such that 0 < (\, fi < 1A , a o [1 = 1A and a A (3 = 9. Let 9' be a congruence 
satisfying ()A = 9 A 9' and 1A = 9 o 9'. Obviously 

aA(fiA6') = 0A. ((>) 

Observe that 

ao((lA0') = lA. (7) 

Indeed, o o (fi A 0') D cv, and by L e m m a 3, and using dis tr ibu t ivi ty we get 

a o (fi A 6') DOo (fi A ()') = 0 V (f3 A 0') = (9 V f3) A (0 V 0') = fi. 

Therefore, ao((3f\9') D cro/3 = 1A , and hence we ob ta in (7 ) . From (6) and (7) 

it follows t ha t a G D C o n ( y l ) , con t radic t ing that 9 is a coa tom of DCon(yl) . 

Then A/9 is direc t ly indecomposable . 

We call a subla t t ice of a comple te la t t ice V-closed whenever it is closed under 
a rb i t ra ry joins. 

T H E O R E M 4. Let A be an algebra with Con(A) distributive. If DCon(AL) is 

V-closed in Con(A) , then there exists a family Ai (i £ I) of directly indecom

posable algebras such that A = \\c(Ai : i £ / ) . where C is an ideal of P(I) 

containing all finite subsets of I. 

P r o o f . By Lemma 3, DCon(A) is a Boolean subla t t ice of Con(y4) and 

from the proof of [2; L e m m a 4.3] it follows that DCon(yl) is a tomic. Let 

{(\j : / £ / } be the set of all a toms of D c o n ( A ) . 

By [4; Lemma 4.83|, we conclude that 1A = \/(c\i : i £ I) . 

For /' £ I, we set 

<>> = V ( r t . ' : j e 7 - w) and d* = A(e> • •'G 7 - i f » • 

Now we prove t ha t for each i £ / , 

i)A = 9, A9, . (H) 
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It is a well-known fact that distributivity of Con(A) implies infinite distributiv-
ity. Then we have 

0t A 0, = Oi A \J(a3 : j e l - {*}) ^^(d.Aa,: j e l - {i}) = 0A • 

because a3 A ̂  = 0^ for all j ^ i. Therefore, (8) holds. 

To prove (c), first we observe that cY; < Oi for each i E I. Hence \A == 

otiV6i <0i\/0i. Moreover, 9i and 6i are permutable (because 0r £ DCon(.4) ). 

and then 1A = Oi o Oi. 

Finally, we have to show that (b) is satisfied. Since 0t — V(° j : J' / 0 -̂  

\J(03 : j ^ i) , we obtain 1A = 0t V 0, < \/(dt : i E / ) = V ( # ( W ) : ' £ ' ) 

< V ( # ( M ) : M e C). Hence, 1A = \J(0(M) : M G £ ) . Thus the family 

6i (i £ J) of congruences on A satisfies the conditions (8), (b) . and (c) . 

Therefore, QA = nLX^i : l ^ ^) ? a n d hence by Theorem 1 we conclude that 

A =• l\ c(Ai : i e / ) , where A* = A/0,. 

From Lemma 4, it follows that every A{ is directly indecomposable, because 
Oi is a coatom of DCon(yL). This ends the p>roof of Theorem 4. 

Now we obtain: 

THEOREM 5. Let A be an algebra whose congruence lattice is distributive 
and let DCon(A) be a V-closed sublattice in Con(yl) . Then any full subdirect 
decomposition of A into directly indecomposable factors is a weak direct product 
decomposition of A. 

P r o o f . Let A be a full subdirect product of directly indecomposable alge
bras A% (i £ J), i.e. 

By Theorem 4, A is isomorphic to a weak direct product of directly indecom
posable algebras B3 , j £ J. Let 

/ ;^IWß- j є Ј ) 

Using Theorem 3, we obtain that there exists a bijection a: I —> J such 
that a(l(x,y)) = J(f(x),f(y)) for all x,H £ A. From the fact that the set 
J(f(x),f(y)) is finite, we deduce that I(x,y) is finite. Therefore. .4 is a weak 
direct product of algebras At; , i £ I. 

The following lemma can be deduced from the proof of [1; Lemma 1.4]. 
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LEMMA 5. If A is an algebra whose congruence lattice is completely distribu
tive, then DCon(AL) is a V-closed sublattice of Con(yl) . 

R e m a r k 1. By this lemma, Theorem 4 implies [1; Theorems 1.6 and 1.7]. 

R e m a r k 2. By Lemma 5 and Theorem 5 we obtain [1; Theorem 1.8]. 

Let L be a lattice.. We say that L satisfies the restricted chain condition 
if every interval of L satisfies the ascending or the descending chain condition 
(cf. [2]). 

The lattice L is called discrete if all bounded chains in L are finite 
(cf. [3]) and L is weakly discrete if there exists a maximal finite chain between 
any comparable elements (cf. [1]). 

Each discrete lattice is weakly discrete and it satisfies the restricted chain 
condition. If a lattice L satisfies the restricted chain condition, then we conclude 
from the proof of Theorem 6.3 (see [2; p. 106]) that DCon(L) is V-closed in 
Con(L). If L is a weakly discrete lattice, then by [1; Lemma 1.9] we get that 
Con(L) is completely distributive, and hence DCon(L) is a V-closed sublattice 
of Con(L). 

From this and Theorem 4 we obtain: 

THEOREM 6. (see H a s h i m o t o [2; Theorem 6.3] and D r a s k o v i c o v a 
[1; Corollary 1.12]). If a lattice L is weakly discrete or if L satisfies the restricted 
chain condition, then L is isomorphic to a weak direct product of directly inde
composable lattices. 

COROLLARY, (cf. [3; Theorem 2.16]). Any discrete lattice is isomorphic to a 
weak direct product of directly indecomposable lattices. 
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