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ABSTRACT. In this paper we give a common generalization of full subdirect
product and weak direct product of given algebras.

Let A; (7 € I) be a family of similar algebras, and let B = [[(A; : i € 1)
denote the direct product of A;, i € I. For two elements x,y € B we define

Ix,y) ={iel: z(i)#y(i)}.

A weak direct product of the algebras A; (i € I) is a subalgebra A of B
satisfying the following two conditions:
(i) if z,y € A, then I(z,y) is finite,
(ii) if r € A, y€ B, and I(z,y) is finite, then y € A.
Let A be a subdirect product of A;, i € I. We say that A is a full subdirect
product of A; (i € I') if the following condition is satisfied:
(iii) for any ¢ € I and any x,y € A there is an element z € A such that
2(i) = x(i), z(j) = y(j) for each j e I — {i}.
Let I be a nonvoid set. P(/) and F(I) denote the set of all subsets of I and
the set of all finite subsets of I, respectively. We denote by P(I) the Boolean

algebra (P(I),N,U,”,0,I). A common generalization of full subdirect and weak
direct products of algebras is the following concept:

DEFINITION. Let A; (i € 1) be similar algebras and let L be an ideal of
P(I). We say that a subalgebra A of the direct product [[(A; : @ € I) is
an L-restricted full subdirect product of algebras A;, i € I, and write A =
[1-(A; - i el) if and only if the following two conditions hold:

(iv) A s a full subdirect product of A;, i € I,

(v) for cvery x.y € A, I{z,y) € L.

ANMS Subject Classification (1991): Primary 08A05, 08A30.
Key words: Full subdirect product, Weak direct product, Congruence relation, Lattice.

45



ANDRZEJ WALENDZIAK

PROPOSITION. Let A be a subalgebra of the direet product 13 =[], 0 (¢ 1)
of algebras A;, i€ 1.

(ay) A s a full subdirect product of A; (i€ L) if and only if
A= H.p(l)(fl,'i rel).

(ay) A s a weak dircet product of A; (i € 1) if and only if
A:H}-(”(;’l,: rel).

Proof. Statement (a;) is obvious.

To prove the second statement. first assume that .1 is a weak direct product
of algebras A; (i € [). Then A is a full subdirect product of .\, (7€ [ anl

thercfore.
A= H_’]--‘([)(Ai e [)

Conversely, assume that A is an F(I) -restricted full subdirect product of A,

i € 1. Obviously. the condition (i) is satisfied. To prove (i), Tet o = 1 and
y € B. Suppose that the set I(r.y) contains only one element 7. Since (1 s
a subdirect product of A, (7 € ). there is (€ 0 such that /(i) gl
['urther, it follows from (iii) that there exists = € 1 satisfving (/) feiy.
(1) = (i) foreach i € I, i # i;. Clearly y = z. thus y € 4. From this. we

get by induction that (ii) holds. Then A is a weak direct product of algebras

A (el

Let A and i € 1) be similar algebras. Let [ be an embedding ol |

i (i
into 13- H(A/ D€ 1) and let £ be an ideal of P(I). We write

We denote by p; the i th projection function of B If f(.1) is a subdirect prod-
uct of the algebras A;, @ € I, then the mapping [; = p;o [ is a homomorphism
of A onto A;. This mapping f; will be referred to as the ith f-projection.
We shall now correlate L-restricted factorizations of an algebra -1 with con-
gruence relations on A. Let Con(A) denote the set of all congruences on A
Then Con(A) forms a complete lattice with 0y and 1. the smallest and the
largest congruence relation. respectively. Let 0;, 7 € [, be congruences on 1.
and let £ be an ideal of P’(I). For any set M € £ we deline a congruence

relation 6(A) of A by

O(M) = N0« j ¢ M)

46
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For i € I we set 0, = A0, : jel—{i}). For some o € Con(A) we write

o= HL((% el

if and only if the following conditions hold:

(a) a=A0;: 1€l),

(h) 1a=V(0(A): MeL),

(¢) forall iel, 14y =20;,00, (i.e. congruences 6; and 0; permute and

their join is 14 ).

THEOREM 1. Let A be an algebra and A; (i € 1) be a family of algebras. Let
L be an ideal of P(I). Then A is isomorphic to an L-restricted full subdircct
product of algebras A;, i € 1, if and only if there exists a family 0;, i € [, of
congrucnces on. A such that 0, = []:(0; : i € I) and A/0; = A; for cvery
el

Proof.

Necessity. Let f: A= T[ (A;: i € I),andlet 0; (i € I)be the kernel of the
ith f-projection f; that is the binary relation {(.?t,y> € A% fi(x) = fily)}.
By assumption, the mapping [ is one-to-one, and hence 04 = A(6;: i€ [).

To prove (b), let x,y € A. Clearly,

M={iel: filz) # fiy)} = 1(f(z). f(y)) € L
and (r.y) € O(M). Then (z,y) € \/(6(M): M € L), and hence (b) holds.
Condition (¢) immediately follows from (iii).

Finally, it is obvious that A/0; = A; for each i € [.

Sufficiency. We define the mapping f from A to [[(A/6; : i € I) by setting
f(r) = (x/0; : i €I) Y. The fact that f is an embedding is easy to check. Of
course, the mapping f; = p; o f is onto for each i € I. Now, from (¢) we obtain
(iil). Therefore, f(A) is a full subdirect product of algebras A/6;, i € I.

Now, let x,y € A. By (b). (z,y) € /(6(M): M € L). Then there exists
a linite number of sets My, M, ..., M, € L such that (z,y) € O(M;)V ...
---V O(M,) . Observe that

liel: filx)# fily)} S MU UM,. (1)
Indeed, let fi(x) # fi(y) for some ¢ € I, and suppose on the contrary that
i ¢ MU---UAM,, . Then O(M,)V---VO(M,) <0,, and hence (x,y) € 0,, i.e.
Ji(x) = fi(y), which is a contradiction.
From (1), by the definition of ideal, we conclude that {i: f;(z) # fily)yecl,
which was to be proved. Therefore the proof of Theorem 1 is complete.

1 4/6, is the congruence class containing
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LEMMA 1. Let I, J be two sets of indices and L1, Lo ideals of the Boolean
algebras P(I), P(J), respectively. Let A be an algebra with Con(A) distribu-
tive. If

04 = Hﬂl(ai ciel) = Hﬁz(g_,. L jed) (2)

for congruences a;, 3; on A, then there exist congruences é;; (i€ 1. j€.J)
such that, for all i and j,

a,»:Hﬁz((sij: jeJ) and @:Hcl(ai‘,‘; iel).

Proof. For i € I and j € J we put 6;; = «; V 3;. Let ¢ be a fixed but
arbitrary element of 1. First we show that

a,-:/\((sij:jEJ). (.'
By distributivity of Con(A), for any j we have
ai/\é,ij :ZiiA(ai\/ﬁj) :a,j/\/3j < ﬁ]

w
—

Hence,
aANGs:jel)=N@iné;: jel)< NGB 7€) =04
Therefore, using distributivity, we get
NG 5€)= NG GeN)A(va)=aih N\ J€JT)=ai.

ie. (3) is satisfied.
For M € L, weset 6(M) = A\(6;;: j ¢ M). Now we prove that

La=\/(6(M): MeL,). (4)

Let z,y € A. By (2), (z,y) € VV(B(M): M € L) . Hence, we can choose a fi-
nite number of sets My, M, ..., M,, € Ly such that (z,y)€ B(Mi)V---V3(M,).
Weset M ={je J: (z,y) ¢ &;}. Observe that M C M;U---UBDL, . Indeed.
let j € M and j ¢ M;U---UM,. It is obvious that 3(My) < 3; for each
k =1,2...,n. Therefore, B(M;)V ---V B(M,) < 3; < &;j. Then (z.y) € &, .
which gives us a contradiction. Consequently, M C M; U---U M, , and hence
M € L,. Thus (z,y) € §(M), and we conclude that (4) holds.

For each j € J, let us write g,;j for /\(5[,1; kel — {]}) . Clearly, &;; > 3,
and gij > Bj . Since 14 = ;0 Bj , we have

for all j € J. From (3), (4) and (5) it follows that o, = [[,,(0:;; : Jj € ..
The proof that 3; = [, (éij: 7 € I) is similar.
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THEOREM 2. Under the assumptions of Lemma 1, if
A Hﬂl(Ai ciel) and A HEZ(B]» cjeld),
then there exist algebras D;; (1 € I, j € J) such that, for all i and j,

A,izHEZ(Dij: jeJ) and ngHEI(Dij: iel).

Proof. Let f: A= ][, (A : i€l)and g: A=T[.(B;: je€J).
Let o; (i€ 1)and 3; (j € J) be the kernels of the f-projections f; and the
g-projections g; , respectively. By the proof of Theorem 1,

04 = Hﬂl(ai ciel)= Hﬁz(ﬁj cjeld).
For i€l and j € J, we set &;; = a; V 8. From Lemma 1 it follows that
a; = H@ (6;j: j€J) and B = Hcl(éij ciel).
Then «;/a; = Hﬁ2 (bij/ci g€ J) 2). Hence, by Theorem 1,

Aoy ng(A/éij e ld).
Therefore, A; =[], (Dij: j€J), where D;; = A/6;;.
Similarly, B; =[], (Dij: i€ 1).
[t is easy to prove the following:

LEMMA 2. Let L be an tdeal of the Boolean algebra P(I). If an algebra A is
directly indecomposable and if f: A= [[.(A; : i € I), then there is an index
i € I for which f;: A= A;, where f; is the 1th f-projection.

THEOREM 3. Under the assumptions of Lemma 1, if
f: A'EHEI(A,; ciel) and g: A gHﬁz(Bj cjeld),

where the algebras A; (i € I) and B (j € J) are directly indecomposable,
then there is a bijection o: I — J for which the following conditions hold:

(a1) for each i € I, there exists an isomorphism h;: A; — B,(;) such that
hio fi = gogi,
(a2) o(I(f(2),f())) = J(g(x), a(y)) for all z,yc A.

2V For ¢, € Con(A) with ¢ C ¥, /¢ = {(x/d, y/¢) : (z,y) € ¥} .
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Proof. Let «; (2 € I')and 8; (j € J) be the kernels of f, and ¢, .
respectively. For each ¢ € [ and each j € J, set

bij =a; V3 and Dy = A/é;;.

By Theorem 2, A; = [[.,(Dij : j € J) and B; = [[, (D : i€ 1). Since
A; is directly indecomposable, it follows from Lemma 2 (see also the proof of
Theorem 1) that there exists an index o(i) = j € J such that the map

fi(z) — z/6;; (xreA)
defines an isomorphism of A; with D;;. Therefore,
A/Ozi = A, = DIJ = A/O(,j V HJ .

Then o; = a; V f;, and hence «; > 3;. Since Bj is directly indecomposable.
we conclude that there is an index 7(j) =’ € I such that the map

g;(@) = x/bir; (red)

defines an isomorphism from B; onto D;/; . Now we infer similarly that .3; > o,
Consequently, «; > (; > a; . Observe that i = i’. Indeed, if i # i’ then
@; < «y < «;, and hence a; = 14, contrary to the fact that A; is directly
indecomposable. Therefore, 7o(i) = i for all ¢ € I, and similarly o7(j) = j
for all j € J. Then 7 is a two-sided inverse of o, and this proves that o is a
bijection.

If o(i) = j, then we have A; = D;; = Bj, and it is easy to see that the
mapping h; defined on A; by

hi(fi(z)) = g;(z)

is an isomorphism of A; with B;.

To prove (ag), let z,y € A. We have
P 1(f(), F) — file) £ [ily) > hio file) £ o fily)
> go(i)(1) # 9o (y) < ali) € J(g(x). g(y)).
Therefore, (ay) is satisfied.

A congruence o € Con(A) is called a decomposition congruence if and only
if there is 8 € Con(A) such that aA3 =04 and cvod = 1. DCon(-1) denotes
the set of all decomposition congruences of A.

From [2; Theorem 6.2] it follows:
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LEMMA 3. Let A be an algebra with Con(A) distributive. Then DCon(A) is
a Boolcan sublattice of Con(A) and every element of DCon(A) is permutable
with any congruence on A .

LEMMA 4. Let A be an algebra whose congruence lattice 1s distributive. If 0
is a coatom of DCon(A), then A/0 is directly indecomposable.

Proof. Suppose on the contrary that there exist two congruences «v, ;3
such that 0 <o, 3 <14, o3 =14 and a A3 = 0. Let 0 be a congruence
satisfving 04 =0 A0 and 14 = 000" . Obviously

anN(BAO)=0yu. (6)
Observe that
O’O(/f/\ﬁl)il/‘. (7)

Indeed. ao(3A0") D a, and by Lemma 3, and using distributivity we get
ao(BAO)Y D00 (BAO)Y=0V(BAO)Y=(OVB)AOVE)=7.

Therefore, ao(3A0") D aoff = 1,4, and hence we obtain (7). From (6) and (7)
it follows that @ € DCon(A), contradicting that 6 is a coatom of DCon(A).
Then A/6 is directly indecomposable.

We call a sublattice of a complete lattice V-closed whenever it is closed under
arbitrary joins.
THEOREM 4. Let A be an algebra with Con(A) distributive. If DCon(A) is
V-closed in Con(A), then there exists a family A; (i € I) of directly indecom-
posable algebras such that A = [[.(A; : i € I), where L is an ideal of P(I)
containing all finite subsets of I.

Proof. By Lemma 3, DCon(A) is a Boolean sublattice of Con(A) and
from the proof of [2; Lemma 4.3] it follows that DCon(A) is atomic. Let
{a; + 1€ I} be the set of all atoms of Dcon(A).

By [1; Lemma 4.83], we conclude that 14 = \/(a; : 1 € 1).

For ¢ € I, we set
0;=\/(aj: jel—{i}) and 8= N\(0;: jel—{i}).
Now we prove that for each i € T

0,4 ;’0;/\5,'. (8)
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It is a well-known fact that distributivity of Con(A) implies infinite distributiv-
ity. Then we have

0; N0; =0; A\[(aj: jeT—{i})=\/(0:ina;: jel—{i})=0,.

“because a; A 6; =04 for all j # i. Therefore, (8) holds.

To prove (c), first we observe that a; < 6; for each ¢ € I. Hence 1, =
a; V0; < 0;V0;. Moreover, 0; and 0; are permutable (because #; € DCon(A4) ).
and then 14 =6, 080;.

Finally, we have to show that (b) is satisfied. Since 6; = \/(a; : j # () <
V(0;: j#1i), weobtain 14 =0;v0; <\/(0;: iel)=\(O}): i€l
< V(O(M): M € L). Hence, 14 = \/(6(M) : M € £). Thus the family
0; (i € I) of congruences on A satisfies the conditions (8), (b). and (c).
Therefore, 04 = [[.(#; : i € I), and hence by Theorem 1 we conclude that
A=T[ (Ai: i€l), where A; = A/0;.

From Lemma 4, it follows that every A; is directly indecomposable. because
6; is a coatom of DCon(A). This ends the proof of Theorem 4.

Now we obtain:

THEOREM 5. Let A be an algebra whose congruence lattice is distributive
and let DCon(A) be a V-closed sublattice in Con(A). Then any full subdirect
decomposition of A into directly indecomposable factors is a weak direct product
decomposition of A.

Proof. Let A be a full subdirect product of directly indecomposable alge-
bras A; (i € 1), ie.
A= HW)(Ai ciel).

By Theorem 4, A is isomorphic to a weak direct product of directly indecom-
posable algebras B;, j € J. Let

f: A%Hf(l)(Bj: jeld).

Using Theorem 3, we obtain that there exists a bijection o: I — J such
that o(I(z,y)) = J(f(x), f(y)) for all z,y € A. From the fact that the set
J(f(z), f(y)) is finite, we deduce that I(x,y) is finite. Therefore. -4 is a weak
cirect product of algebras A;, i € I.

The following lemma can be deduced from the proof of [1: Lemma 1.4].
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LEMMA 5. If A is an algebra whose congruence lattice is completely distribu-
tive. then DCon(A) is a V-closed sublattice of Con(A).

Remark 1. By this lemma, Theorem 4 implies [1; Theorems 1.6 and 1.7].
Remark 2. By Lemma 5 and Theorem 5 we obtain [1; Theorem 1.8].

Let L be a lattice. We say that L satisfies the restricted chain condition
if every interval of L satisfies the ascending or the descending chain condition
(cf. [2]).

The lattice L is called discrete if all bounded chains in L are finite
(cf. [3]) and L is weakly discrete if there exists a maximal finite chain between
any comparable elements (cf. [1]).

Each discrete lattice is weakly discrete and it satisfies the restricted chain
condition. If a lattice L satisfies the restricted chain condition, then we conclude
from the proof of Theorem 6.3 (see [2; p. 106]) that DCon(L) is V-closed in
Con(L). If L is a weakly discrete lattice, then by [1; Lemma 1.9] we get that
Con(L) is completely distributive, and hence DCon(L) is a V-closed sublattice
of Con(L).

From this and Theorem 4 we obtain:

THEOREM 6. (see Hashimoto [2; Theorem 6.3] and Draskovicova
[1; Corollary 1.12]). If a lattice L is weakly discrete or if L satisfies the restricted
chain condition, then L is isomorphic to a weak direct product of directly inde-

composable lattices.

COROLLARY. (cf. [3; Theorem 2.16]). Any discrete lattice is isomorphic to a
weak direct product of directly indecomposable lattices.

REFERENCES

[1] DRASKOVICOVA, H.: Weak direct product decomposition of algebras. In: Contributions
to General Algebra 5. Proc. of the Salzburg Conference, May 29— June 1, 1986, Wien, 1987,

pp. 105-121.

[2] HASHINOTO, J.: Direct, subdirect decompositions and congruence relations, Osaka J.
NMath. 9 (1957), 87 -112.

(3] JARKUBIK. J.0 Weak product decompositions of discrete lattices, Czechoslovak Nath. J.

21(96) (1971). 399 -412.

ot
N



ANDRZEJ WALENDZIAK

[4] McKENZIE, R.—McNULTY, G-—TAYLOR, W.: Algebras, Lattices. Varieties. Vol. |[.
Wadsworth & Brooks, Monterey, 1987.

Received August 20, 1991 Department of Mathcmatics
Agricultural and Pedagogical University
ul. 3-go Maja 5/
PL-08-110 Siedlce
Poland



		webmaster@dml.cz
	2012-08-01T08:56:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




