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ON THE a-COMPLETENESS 
OF PSEUDO MV-ALGEBRAS 

JÁN JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. Let a be an infinite cardinal. In this paper we prove that if A is 
a pseudo MV -algebra such that the corresponding lattice 1(A) is a -complete, 
then A is an MV-algebra. The collection of all a-complete pseudo MV-algebras 
is a radical class. 

1. Introduction 

The investigation of pseudo MV-algebras was begun in [5], [6], [10] (in [10], 
the term "generalized MV-algebra" has been applied). 

According to the result of [4], each pseudo MV-algebra A can be constructed 
from a lattice ordered group G with a strong unit u; in this situation we write 
A = T(G,u). Then the underlying set A of A is the interval [0,tz] of G. The 
pseudo MV-algebra A is an MV-algebra if the lattice ordered group G is 
abelian. 

The mentioned result from [4] is a generalization of the well-known theorem 
(cf. [9], [1]) concerning the relation between MF-algebras and abelian lattice 
ordered groups. 

The partial order ^ on G induces a partial order on A] we obtain a dis­
tributive lattice {A] ^ ) which will be denoted by £(A). 

Let a be an infinite cardinal and let A, G be as above. We say that A is 
a-complete if the lattice £(A) is a-complete. 

We prove that A is a-complete if and only if G is conditionally a-complete . 
It is well-known that each a -complete lattice ordered group is abelian. We infer 
that if A is a-complete, then it is an MV-algebra. Hence we obtain a general­
ization of [3; Theorem 3.3]. 
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Radical classes of MV-algebras have been investigated in [8]. We prove that 
the collection of all a-complete MV-algebras is a radical class. 

2. Preliminaries 

We recall the definition of a pseudo MV-algebra. 

Let A = (A] 0 , - , ~ , 0,1) be an algebra of type (2,1 ,1 , 0, 0). For x, y G A 
we put 

x 0 y = ~ ( - i x 0 - ly ) . 

A is called a pseudo MV-algebra if the axioms (A1)-(A8) from [3] are sat­
isfied. (Cf. also the references given in Section 1 above.) 

Let G be a lattice ordered group with a strong unit u. Put A = [0,tz]; for 
each x,y G A we set 

x@y = (x + y)/\u, -<x = u — x , ~x = — x + u , 1 = u . 

Denote T(G,u) = (A; 0 , - i , ~ , 0 , i 0 - Then T(G,u) is a pseudo MV-algebra; 
moreover, according to [4], for each pseudo MV-algebra A there exists a lattice 
ordered group G with a strong unit u such that A = T(G,u). The meaning of 
1(A) has been defined in Section 1 above. 

An element a G A is an atom, of A if a > 0 and the interval [0, a] of £(A) 
is a two-element set. A is atomic if for each 0 ^ x G A there exists an atom a 
of A such that a _ x. 

Let a be an infinite cardinal and let L be a lattice. If for each nonempty 
(bounded) subset X of L with card X _ a there exist sup X and inf X in L, 
then L is said to be (conditionally) a-complete. In the case a = K0 wre speak 
about a -completeness or conditional a-completeness. 

The lattice L is (conditionally) complete if it is (conditionally) a-complete 
for each infinite cardinal a. Recall that in the literature on lattice ordered groups 
a somewhat modified terminology is applied. Namely, a lattice ordered group is 
called complete if it is (in our terminology) conditionally complete. 

3. Conditional a -completeness of a lattice ordered group; 
radical classes 

Again, let a be an infinite cardinal; let G be a lattice ordered group. 

LEMMA 3.1 . Let a,b,c G G. a < b < c. Assume that both the intervals [a, b] 
and [b,c] are a-complete. Then the interval [a,c] is a-complete as well. 
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P r o o f . Let X = {x{}ieI be a nonempty subset of [a,c] such that 
card I = a. For each i G I we put 

x1 - x . A t , x 2 - x . V b . 

Then we have 

-xj+a;.i = -& + x?. 
Since the lattice [a, b] is a-complete, there exists the element 

^ = \Jx\ 
iei 

in [a, 6]. Analogously, there exists the element 

*2 = V* 2 

i<EI 

in [6, c]. For each i G I the relation 

xt = x,1 + (-x\ + xt) = x\ + (-b + x\) 

is valid. We denote 
x - xl + (-b + x2). 

Thus we have x = x{ for each i G I. Hence x ^ a. Also, since x1 ^ 6 and 
x2 - c, we get x ^ b + (—b + c) — c; thus x G [a, b]. 

Assume that z is an element of G such that z ^ x{ for each z G I. Put 
y — z l\c. Then, clearly, y G [a, c] and y~x{ for each z G I. We set 

y1 =2/ A 6, y2 =y\/b. 

We have 
y1 ^ x1 , y2 ^ x2 for each z G I. 

Further, similarly as for the element x , we obtain 

y = yl + (-b + y2). 

Therefore in view of the definition of x1 and x2 we get y^x. Thus z ^ x . This 
yields that the set X possesses the supremum in G and that this supremum 
belongs to the interval [a, c]. Analogously we obtain the dual result concerning 
the infimum of the set X. Hence the lattice [a^c] is a-complete. • 

PROPOSITION 3.2. Let G be a lattice ordered group with a strong unit u. Let 
a be an infinite cardinal. Suppose that the interval [0,u] is a-complete. Then 
G is conditionally a-complete. 

P r o o f . For u = 0, the assertion is trivial. Assume that u ^ 0 and that 
x,i> G G, x — v. We have to verify that the interval [x,i>] is a-complete. 
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Since u is a strong unit of C7, there exist integers n 1 , n2 such that nx < n2 

and 
[x,v] C [rijU, r ^ ] . 

Put m = n2 — nx. Then the interval [nxu,n2u] is isomorphic to the interval 
[0, mu]. 

By applying 3.1 and by using the obvious induction we obtain that the interval 
[0,m?L] is a-complete. Therefore the interval [x}v] is a-complete as well. D 

COROLLARY 3.3. Let a be an infinite cardinal. Let A be apseudo MV-algebra, 
A = T(G,u). Then the following conditions are equivalent: 

(i) G is conditionally a-complete; 
(ii) 1(A) is a-complete. 

P r o o f . The implication (i) => (ii) is obvious. The converse implication 
is a consequence of 3.2. D 

Since each conditionally a-complete lattice ordered group is abelian, wre ob­
tain: 

COROLLARY 3.4. Let A be a pseudo MV-algebra. If the lattice 1(A) is 
a-complete, then A is an MV-algebra. 

COROLLARY 3.5. ([3; Theorem 3.3]) Let A be a pseudo MV-algebra. As­
sume that A is atomic and that the lattice £(A) is complete. Then A is an 
MV-algebra. 

The notion of radical class of MV-algebras has been defined and investigated 
in [8]; it has been shown that there exists a one-to-one correspondence between 
radical classes of MF-algebras and radical classes of abelian lattice ordered 
groups (these have been dealt with in several papers; cf. e.g., [7], [2]). 

We apply the terminology and notation from [8]. We recall the definition of 
the radical class of MV-algebras. 

DEFINITION 3.6. A nonempty class Y of MF-algebras which is closed with 
respect to isomorphisms is called a radical class if the following conditions are 
satisfied: 

1) Whenever Ax € Y and A2 is a substructure of A1, then A2 £ Y. 

2) If B is an MV-algebra and Al,A2,..., An are substructures of B such 
n 

that Ai G Y for i = 1,2, . . . , n, then V A{ belongs to Y. 
i=l 

Let a be an infinite cardinal. We denote by Ca the class of all MF-algebras 
which are a-complete. 
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PROPOSITION 3.7. For each infinite cardinal a, Ca is a radical class of 
MV-algebras. 

P r o o f . It is obvious that Ca is closed with respect to isomorphisms. There 
exists an MV-algebra A which is complete; thus AeCa, whence Ca / 0. 

Let Ax G Ca and let A2 be a substructure of Ax. Then the lattice £(A2) is an 
interval of the lattice £(AX). Therefore £(A2) is a-complete and thus A2 G Ca. 

Let B be an MV-algebra and suppose that A1} A2,..., An are substructures 
of B such that all A{ (i = 1, 2 , . . . , n ) belong to Ca. Let B be the underlying 
set of B. For each i G {1, 2 , . . . ,n} there exists b{ G J5 such that the underlying 
set of A{ is the interval [0, 6J of the lattice ^(#) . Since A{ € Ca, the interval 
[0,6-] is a-complete. 

There exists an abelian lattice ordered group Gx with a strong unit ux such 
that B = T(G1,u1). By applying 3.1 and by using induction on n we obtain that 
the interval [0, bx + b2 H h bn] of Gx is a-complete. Put 6 = bx V b2 V • • • V bn . 
Then [0, b] ̂  [0, bx + b2 H hbn], whence the interval [0, b] of Gx is a-complete 
as well. 

n 
Denote V .4i = A0. We have b G # and in view of the definition of A0 we 

i = i 
conclude that the interval [0, b] of ^(5) is the underlying set of A0. Hence A0 

is a-complete. D 

COROLLARY 3 .7 .1 . The collection of all complete MV-algebras is a radical 
class. 

Let a be as above. We denote by C~ the class of all MV-algebras which are 
(3-complete for each infinite cardinal /? with (3 < a. 

By analogous argument as in 3.7 we obtain: 

PROPOSITION 3.8. For each infinite cardinal a . C~ is a radical class of 
MV-algebras. 
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