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THE DECIMAL EXPANSIONS OF e AND TT 
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0 0 

ABSTRACT. Let a G {e,7r}, a = [a] + £ aK((3) • p~K (where / 3 G N \ { 1 } and 
K = l 

<*>,(&) € { 0 , l , . . . , / 3 - l } ) a n d C € { 0 , 1 , . . . , / 5 - l } . We describe short Diophantine 
representations for the predicate aK (p) = £. The proofs use methods which were 
developed for the solution of Hilbert 's Tenth Problem. 

Hilbert's Tenth Problem was solved in 1970 by Yu. V. M a t ij a s e v i e [12] 
relying heavily on results by M. D a v i s , H. P u t n a m and J. R o b i n s o n [5]. 
Already in 1960 H. P u t n a m [15] had pointed out a surprising consequence 
of this result: Any recursively enumerable set of positive integers equals the 
set of positive values of a certain polynomial whose variables range over the 
nonnegative integers. Yu. V. M a t i j a s e v i c [13] described such a polyno
mial for the primes. A very short polynomial for the primes was constructed 
by J . P. J o n e s , D . S a t o , H. W a d a and D. W i e n s [10]. Subsets of the 
primes which have been treated are the Fermat-, Mersenne- and twin-primes 
([6], [2]). Further examples of predicates from number theory which have been 
tackled — including the Riemann hypothesis — can be found in [4] and [14; 
Section 6.4]. In the present note we apply these techniques to describe such a 
representation for the digits in the decimal expansion of the constants e and TT . 
Although TT especially has received a lot of attention and surprising new facts 
about its digits have been found recently ([1]), these seem to be the first results 
of this kind. A reader who wants to learn more about Hilbert's Tenth Problem 
is referred to [3], [4], [9], [11; Chapter 6], [14] and [16]. Unless stated otherwise 
all occurring quantities are integers. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11A63, 11U05; Secondary 03B25, 
11D99. 
K e y w o r d s : Hilbert 's Tenth Problem, Diophantine representation, decimal expansion, e, TT. 
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DEFINITION. Let a e R \ Q. A sequence of intervals {\pn,qn])n>1 will be 
called a rational nest of intervals for a if: 

(1) Pn,qn € Q f o r a l l n > l , 
(2) lim pn= lim qn = a, 

n—)-oo n—foo 

(3) (Pn)n>i is monotonically increasing and (qn)n>i is monotonically 
decreasing. 

L E M M A 1. 

(1) ( (l + n-)n , (l + n-)n ) is a rational nest of intervals for e. 

(2) ( [ ^ ( n
n ) ~ 2 2 4 n + \ ^ ( n

n ) ~ 2 2 4 n ] ) i5 a rational nest of intervals 

for 7T. 

P r o o f . These are basic facts from calculus. Part (2) is a reformulation of 
the Wallis product formula. • 

oo 

LEMMA 2. Let j3 e N \ {1}. a e R \ Q and a = [a] + ~~ aK(/3)(3~K, where 
K=l 

0 < &K(P) < P for K > 1. Furthermore, let ([Pn>qn])n>1 be a rational nest of 
intervals for a, 0 < C < P and k > 1. Then the following are equivalent: 

(1) CLk{P) = C-
(2) There exists n G N such that [Pkpn] = [Pkqn] = C (mod /?). 

P r o o f . 
(1 = > 2) Let /:=min{AvGN| K> k, aK(P)^p-\). Then 

k i 

M + E "« W ~ " < Pn < « < 9n < W + E <*« W " + ?'' 
Av = l « = 1 

for sufficiently large n and thus 

0*P„] = W\] = Wk<*) = W" + E aMPk~K = «*(/?) = C (mod /?). 
K=l 

(2 --=-> 1) As pn < a < qn we can deduce 

k 

C = [/^>J = [Pkqn] = [Pk«] = /?*[a] + ~T a j / i ) / ^ = a* (/J) (mod /?) 
«=i 

and therefore ak (P) = C • -~ 
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Remarks. 
(1) The existence of one n which satisfies condition (2) implies that there 

are infinitely many and we may assume n > k. 
(2) If a > 0 condition (2) can be replaced by: 

(3n > l)(3t > 0)([/3kpn] = [Pkqn] = S + tfi). 

Next we introduce some notations: Let a > 2. For n > 0 we denote by 
(xn(a),yn(a)) the solution of the Pell equation x2 — (a2 — l)y2 = 1 defined by 
the relation xn(a) + yn(a)\/a2 — 1 = (a + \Ja2 — 1 ) n . All nonnegative solutions 
(.r,2/) of this Pell equation are of this shape, see [3; Lemmata 2.1-2.4]. We use 
Z = D as a shorthand notation for (3 X > 0) (Z = X 2 ) . 

LEMMA 3. yn(a) = n (mod a — 1) /o r n > 0. 

P r o o f . See [3; Lemma 2.14] and [10; Lemma 2.2], D 

LEMMA 4. n + yn_l(a) < yn(
a) for n > 1 which implies that the sequence 

(yn(
a))n>0 is strictly monotonically increasing and that yn(a) > n for n > 0. 

P r o o f . By [3; Lemmata 2.5, 2.19] 

yn(°) = xAa)yn-i(
a) + xn-i(a)yi(a) > yn-i(

a) + aU~l > yn-i(
a) + n-

D 

LEMMA 5. Leta>2 and P , n > 0. Then xn(a) = Pn-\-yn(a)(a-P) (mod 2aP 
- P2 - 1). If 0 < Pn < a, then Pn + yn(a)(a - P) < xn(a). 

P r o o f . This is [10; Lemma 2.4]. D 

LEMMA 6. Let a > 2, n > 1 and y > 0 . Then the following are equivalent: 

(i) y = yn(
a)-

(2) There exist c, d, r, -a, a: > 0 such that 
(i) x2 = ( a 2 - l ) 2 / 2 + l , 

(ii) u2 = 1 6 ( a 2 - l ) r V + l7 

(iii) (x + cu)2 = ((a + u2(u2 - a) ) 2 - l ) (n + 4dy)2 + 1, 
(iv) n < y. 

P r o o f . This is [10; Corollary 2.6]. D 

LEMMA 7. Let e > 2. I/ e3(e + 2)(/V + l ) 2 + 1 = D for some N > 0. tten 
e — 1 + ee~2 < jY. Furthermore, for any T > 0 ttere is a N > 0 such that 
e3(e + 2)(jN + l ) 2 + 1 = D and T | TV + 1. 

P r o o f . This is [10; Lemma 2.3]. D 

R e m a r k . This e is a positive integer and not exp(l) . 
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LEMMA 8. Let (3 > 2, k,n,A,B > 1 and b,g, h > 0. The following are 
equivalent: 

(1) b = (3k A g = An A h = Bn A n > k. 
(2) There exist a, c, a7, e, z, / ,m,p , a, r, u,v,x,y>0 such that: 

(i) x2 = ( a 2 - l ) y 2 + l , 

(ii) u2 = 1 6 ( a 2 - l ) r V + l , 

(iii) (x + cu)2 = ((a + u2(u2 - a)) 2 - l)(n + Ady)2 + 1, 

(iv) m2 = ( a 2 - l ) / 2 + l . 
(v) l = k + i(a-l), 

(vi) n + l <y, 
(vii) e = n + fc + b + g + /i + /3 + A + B + 2, 

(viii) e3(e + 2 ) ( a + l ) 2 + l = D. 
(ix) x = g + y(a - A) + p(2aA - A2 - 1), 
(x) x = h + y(a-B) + q(2aB-B2-I), 

(xi) m = b + l(a - (3) + v(2a(3 - (32 - 1). 

R e m a r k . This lemma is modelled on [10; Theorem 2.12] and has a very similar 
proof. For the reader's convenience we include the proof instead of just giving a 
reference. 

P r o o f . 
(1 => 2) Define e according to (vii). Due to Lemma 7, there is a a > 2 

satisfying (viii). Put y := yn(a). By Lemma 6, there are c,d,r,u,x > 0 such 
that (i), (ii) and (iii) are fulfilled, where x = xn(a). Put m := xk(a) and 
/ := yk(a). Then (iv) is fulfilled. Because of Lemmata 3 and 4 we get k = 
/ (mod a — 1) and k < I and there is a i > 0 such that (v) holds. Lemma 4 
implies n + I < n + yn_l(a) < H, i.e. (vi) is satisfied. Lemma 5 yields x = 
g + y(a — A) (mod 2aA — A2 — 1). Conditions (vii) and (viii) and Lemma 7 
imply 

n + k + b + g + h + P + A + B + 1 

+ (n + k + b + g + h + P + A + B + 2)
n+k+b+9+h+P+A+B <a. 

Therefore, it holds that 0 < An < a and Lemma 5 implies g + y(a — A) < x. 
This proves that there is a p > 0 such that (ix) is true. It is proved analogously 
that g, v > 0 exist such that (x) and (xi) are satisfied. 

(2 = > 1) As in the first part of the proof we see that (*) holds and 
thus a > 2. Because of (i), (ii), (iii), (vi) and Lemma 6 we get y = yn(a) and 
x = xn(a). Equation (iv) implies that m = xk,(a) and / = yk>(a) for some 
k' > 0. Due to (vi), / < y and therefore k' < n by Lemma 4. It follows from 
(*) that k < a — 1 and n < a — 1 and thus k' < a — 1. Using (v) and Lemma 3 
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we get k = l = k' (mod a — 1), thus k = k', n > k, ra = xfc(a) and Z = yk(a). 
Furthermore, (*) implies g < a < 2aA - A2 - 1 and _4n < a < 2aA - A2 - 1. 
Because of (ix) and Lemma 5, g = x — y(a — A) = An (mod 2aA — A2 — 1) and 
therefore g = A71. In the same way it is proved that b = (3k and h = Bn. • 

LEMMA 9. Let n > 1, / > 0 and g = 2 4 n . Then 

'2n> 

(3 w > 0) ((2gw + f)2(g - 2) < g(4g2)n < (2gw + f + l)2(g - 2) A / < 2g) 

P r o o f . It is proved in [8] that for U > 4 n + 1 + 4 

(2£\ = /«=-> (3w>0)([un/y/l-4/u] =wU + f A /<£/ ) . 

(This can also be found as [16; Chapter I, Lemma 10.17].) The equation 

Un 

L/ - - * 

= wU + f 

is equivalent to (HjU + / ) 2 (U - 4) < U2n+1 < (wU + f + l)2(U - 4) . Finally set 
U := 2g = 2 4 n + 1 > 4 n + 1 + 4 . D 

Now we are able to state exponential Diophantine representations for the 
predicate ak((3) = C f° r e a n d TT: 

oo 

LEMMA 10A. Le* p e N \ {1}, e = 2 + £ aK((3)P~K, where 0 < aK(0) < {3 
K = l 

/Or AC > 1 ; 0 < C < / 5 ana7 k > 1. TTie following are equivalent: 

(1) afc(/?) = C-

(2) Tftere exisJ n > 1 ana7 6, g, /i, s, £, 2 > 0 si/cb, £/m£; 

( i)-(xi) b = (3h A a = (n + l ) n A h = nn A n > k, 

(xii) ba = (C + ^/3)n + 5, 

(xiii) s < h, 

(xiv) b(n + l ) g = (C + tP)nh + z, 

(xv) z < nh. 

(Numbers (i) -(xv) are /Or /a£er reference only.) 
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P r o o f . Because of Lemmata 1 and 2 we have 

«*(/?) = c 

<^> (3n>A;)(3*>0)([/?fc(n + l ) 7 n n ] = [/? fc(n-H)n+1/nn+1] = C + tp\ 

•*-=> (3n>k)(3s,t,z>0)(pk(n + l)n = (( + t(3)nn + s A s < nn 

A pk(n + l)(n + l)n = (C + 0)nnn + z 

A z < nnnJ 
and this is equivalent to (2). • 

oo 

LEMMA 10B. Let (3 e N \ {1}, TT = 3 + £ aK(P)P~*, where 0 < cYJ/3) < /3 
/ c = l 

/or K > 1 , 0 < C < /? oftd k > 1. 27ie following are equivalent: 

(i) <-*(/?) = c 
(2) TAere ezisf n > 1 and b, f, g, h, s, t, w, z > 0 such that: 

(i)-(xi) b = (3k A g = 24n A h = (Ag2)n An>k, 
(xii) 26«7 = (C + ^ ) / 2 (2n + l) + s, 

(xiii) s < /2(2n + l ) , 
(xiv) bg = (( + t(3)f2n + z, 
(xv) z < f2n, 

(xvi) (2gw + f)2(g-2)<gh, 
(xvii) 5/1 < (2gw + f + l)2(g-2), 

(xviii) / < 2 5 . 
(ylgam the numbers are for later reference only.) 

P r o o f . As in the proof of Lemma 10A we sec that 

"*(£) = c 
<=> (3n>k)(3bJ,g,s,t,z>0)(b = (3k A f = (2^) A g = 24* 

A 2b^=(C + t/3)/2(2n + l) + 5 

A 8 < / 2 (2n + l) 

A bg=(C + t>P)f2n + z A z < f2n) 
and the proof is completed by using Lemma 9. • 

THEOREM 11 A. Under the assumptions of Lemma 10A the following are 
equivalent: 

(1) ak(P) = C. 
(2) There are a,b,c,d,e,g,h,ij,m,p,q,r,s,t,u,v,x,y, z > 0 and n > 1 

such that conditions (i) -(xv) are fulfilled, where (i) -(xi) are taken from 
Lemma 8 with A = n + 1 OHO7 B = n, and (xii) -(xv) Ore identical with 
those in Lemma 10A. 
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THEOREM 11B. Under the assumptions of Lemma 10B the following are 
equivalent: 

a) «*(/?) = c-
(2) There are a, 6, c, d, e, / , g, /i, i, /, m, p, g, r, 5, t, w, i>, iv, x, y, 2: > 0 and n > 1 

suc/i t/iat conditions (i)-(xviii) are fulfilled, where (i)-(xi) are taken 
from Lemma 8 with A = 16 and B = 4#2, and (xii) -(xviii) are identical 
with those in Lemma 10B. 

P r o o f . Theorems 11A and 11B follow from Lemmata 8, 10A and 10B. • 
0 0 

COROLLARY 12A. Let (5 e N \ {1}, e = 2 + £ aK((J)p~K, where 0 < 
/ c = l 

aK(0) < (3 for K > 1 and 0 < C < /?• Then {r, G N | aK(/3) = C} = P(N2 6)nN, 
where 

P(a,...,z) = 

= (fc + 1) ( l - ((a2 - \)y2 + 1 - x2)2 - (I6(a2 - 1)TV + 1 - u2)2 

- (((a + u2(u2 - a))2 - l)(n + 1 + Ady)2 + 1 - (x + cu)2)2 

- ((a2 - l)/2 + 1 - m2)2 -(k+l + i(a-l)- if 

-(n + 1 + l + j-y)2 

-(3n + k + b + g + h + (3 + 7-e)2- (e3(e + 2)(a + l)2 + 1 - o2)2 

-(g + y(a-n-2) + p(2a(n + 2) - (n + 2)2 - l) - x)2 

- (h + y(a - n - 1) + q(2a(n + 1) - (n + l)2 - l) - xf 

-(b + l(a - (3) + v(2af3 - /32 - 1) - mf 

- ((C + t(3)h + s - bg)2 -(s + f + l-h)2 

~ ((C + t/3)(n + l)h + z- b(n + 2)g)2 -(z + w + l-(n + l)/i)2) . 

P r o o f . This follows from Theorem 11A by the usual construction. Note 
that k and n have been replaced by k + 1 and n + 1 to allow k and n to range 
over the nonnegative integers. • 

Remarks. 
(1) In a similar way Theorem 11B implies the existence of a like polynomial 

for 7r. Counting the additions and multiplications occurring in it one finds that 
the relation ak((3) = C can be proved by less than 200 additions and multipli
cations regardless of the values of /?, C a n d k. However, a universal bound of 
100 operations has been established by J. P. J o n e s [7]. 
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(2) If a and p are positive irrationals with rational nests of intervals 
(fe„(«).?„(«)])„>! and (tp„()9),?„(/?)])„>! (and P l ( a ) l P l ( 0 ) > 0), then 
( [ P . » + ?..(/?),?„(«) + ?„(/?)])„>!, (b„(«)Pn(/3).9„(«)9„(/8)])n>1 and 
([r/ n (a)~ 1 ,p n (a) - 1 ]) n > 1 are rational nests of intervals for a + /?, a/3 and a - 1 

respectively. This means that the results above could be used to construct 
Diophantine representations, e.g. for the digits of e+7r or e-7r. Furthermore, 
if a e N, then f [(l + (crn) _ 1) n, (l + (an)'1)71 ] J is a rational nest of 

intervals for ^/e. 
(3) There are only countably many irrationals for which Lemma 2 can be 

used to construct such Diophantine representations as there are only countably 
many Diophantine representations. 
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