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Math. Slovaca 31,1981, No. 4, 365-368 

ON RADICALS OF THE SEMIGROUP 
OF TRIANGULAR MATRICES 

FRANTlSEK KMEf 

Let S be the multiplicative semigroup of all mxm upper triangular matrices 
over a ring T, i. e. matrices of the form 

A = 

a\ a.2 ... a\m 

0 a22 ... a2m 

0 ... 0 amm 

where aik e T, i, k = l, 2, ..., m and aik = 0 for i>k. 
Let U be a semigroup and J be a two-sided ideal of U. Denote by RJ(U), 

Mj(U), Lj(U), R1(U), Cj(U) and Nj(U) respectively the radical of Schwarz, 
McCoy , Sevrin, Clifford, Luh and the set of all nilpotent elements of U with 
respect to J. 

R. Sulka [5, Theorem 7] proved that in a commutative semigroup U we have: 
Rj(U) = MJ(U) = R1(U) = Nj(U) = Cj(U). The same results were obtained 
by J. Kuczkowski [2] for C2-semigroups and by H. Lai [3] for quasi-commutative 
semigroups. 

J. Bos ak [1, Theorem 2] proved that for the radicals of an arbitrary semigroup 
U we have: 

RJ(U)CZMJ(U)C=LJ(U)CZR1(U)<=NJ(U)CICJ(U). 

The purpose of this paper is to prove that in the semigroup S of all m x m upper 
triangular matrices over a commutative ring T we have: R(S) = M(S) = L(S) 
= R*(S) = N(S). 

We introduce some definitions. Let U be a semigroup with a zero O and all 
ideals considered in the following two-sided. 

An element x e U is called nilpotent (nilpotent with respect to J) if for some 
positive integer n:xn = 0(xn eJ). 

An ideal (subsemigroup) I of U is called nilpotent (nilpotent with respect to J) if 
for some positive integer n: F = 0 (F^J). 
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An ideal P of U is called prime if for any two ideals A and B of U, AB cz P 
implies A czP or B czP. 

An ideal of U, each element of which is nilpotent (nilpotent with respect to J), is 
called a nilideal (nilideal with respect to J). 

An ideal I of 17, each finitely generated subsemigroup of which is nilpotent (with 
respect to J), is called locally nilpotent. 

The set of all nilpotent elements of U (with respect to /) will be denoted by 
N(L7) (Nj(U)). 

The union R(U) (Rj(U)) of all nilpotent ideals of U (with respect to J) is called 
the Schwarz radical of U (with respect to J). 

The union L(L7) (Lj(U)) of all locally nilpotent ideals of U (with respect to /) is 
called the Sevrin radical of U (with respect to J). 

The intersection M(U) (Mj(U)) of all prime ideals of U (which contain J) is 
called the McCoy radical of U (with respect to J). 

The union R*(U) (R1(U)) of all nilideals of U (with respect to J) is called the 
Clifford radical of U (with respect to J). 

Denote by No the set of all matrices of S with a zero diagonal. 

Lemma 1. Let S be the semigroup of a\\ m x m upper triangular matrices over 
a ring T Then No is a nilpotent ideal of S and No = O. 

Proof. Let AeN0,B,CeSbe arbitrary matrices. Then BA, AC are matrices 
with the zero diagonal, i. e. BA e N0, AC e N0 and hence N0 is an ideal of S. The 
set Nl is evidently an ideal of S. If A, B e No are two arbitrary matrices, then in the 
nth row (n -= 1, 2,..., m — 1) of the matrix AB the first possible non-zero element is 
equal to a'n,n+2 = an,n+xbn+\,n+2. Therefore the ideal Nl is contained in the set of 
matrices of the form: 

r o 0 a i з a\n 

0 0 .. 0 Mm-2, m 

0 0 .. 0 0 
1. 0 0 .. 0 0 

Similarly, the ideal No for s = 3, ..., m - 1 is contained in the set of matrices of the 
form: 

r 0 0 

0 0 
0 0 

0 0 

0 fli.5+1 . . . ai 

0 ӣm-s,t 

0 0 

0 0 
and so No = 0 . 
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Lemma 2. Let S be the semigroup of al upper triangular mxm matrices over 
a commutative ring T and let A be a matrix of S. Then A is a nilpotent matrix if and 
only if all its diagonal elements an, ..., amm are nilpotent elements of T 

Proof. If A is a nilpotent matrix of S and Ar = 0 for a positive integer r, then 
we have an = a22 = ... = amm = 0. Conversely, if a\\ = ar£ = ... = a^m = 0, then 
A r with r = max (n, r2, ..., rm) is a matrix with a zero diagonal, so Ar eN0 and 
hence by Lemma 1 we have A™ = 0. 

Lemma 3. Let S be the semigroup of all upper triangular mxm matrices over 
a commutative ring T. Then the set N(S) is a nilideal of S and R*(S) = N(S). 

Proof. We shall show that the set N(S) of all nilpotent matrices of S is an ideal 
of S. 

Let A e N(S)y B, C e S be arbitrary matrices and let an = a22 = ... = amm = 0. 
Then the diagonal elements (bnan)r, ..., (bmmamm)r of the matrix (BA)r are equal 
to zero and so (BA)r e No. But (BA)r e N0 implies by Lemma 1 that (BA)™ = O 
and hence BAeN(S). Analogously (AC)reN0 implies ACeN(S). 

Then from the definition of the Clifford radical we obtain N(S)czR*(S). 
Conversely R*(S)czN(S) is true for any semigroup with zero and therefore 
N(S) = R*(S) holds. 

Remark. In the semigroup S of all upper triangular mxm matrices over 
a non-commutative ring the set N(S) in general does not form an ideal and only 
R*(S)czN(S) is true. 

For example, let K2 be the ring of all 2 x 2 matrices over a commutative ring K 
and let U be the multiplicative semigroup of all m x m triangular matrices over K2. 
Consider the matrices 

*-(S s к <=•< s к 
with c2 = c£0 , ceK. Then the product AB of two nilpotent matrices 

, (0eK2) A = 

C, 0 
0 C, 

0 
0 

Lo o ... c, 
of U is equal to the matrix 

B = 

Cг 0 
0 Cг 

0 
0 

lo 0 

Aß = 

C 0 
0 c 

0 0 

0 0 
0 0 

0 c J 

OЄK; 2 , '=(c °ì 
Vo 0 / ' 

and AB £N(U). The set N(U) of all nilpotent matrices of the semigroup U cannot 
be an ideal of U and therefore by [1] we have only R*(U)czN(U). 
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Lemma 4. Let S be the semigroup of a\\ upper trianguiar mxm matrices over 
a commutative ring T. Then R(S) = R*(S). 

Proof. In an arbitrary semigroup with zero we have R(S)czR*(S). We shall 
prove that R*(S)czR(S). 

It is sufficient to show that for each A G R * ( S ) the principal ideal (A) is 
a nilpotent ideal of S. If A e R*(S) and A r = 0 for a positive integer r, then there 
exists a least positive integer s^r such that A s is a matrix with a zero diagonal. 
Then an arbitrary matrix C = BXAB2A ... BsABs+i of the ideal (A)5 (where some 
of Bi can be empty) is a matrix with a zero diagonal and hence (A) s cz No. Since by 
Lemma 1 we have (A) sm = 0, this implies (A)cz R(S) and hence A e R(S). 

From the inclusions between radicals in an arbitrary semigroup: R(S) cz M(S) 
cz L(S) cz R*(S) cz N(S), from Lemma 3 and Lemma 4 we obtain 

Theorem. Let S be the semigroup of a\\ upper trianguiar mxm matrices over 
a commutative ring T. Then 

R(S) = M(S) = L(S) = R*(S) = N(S). 
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РАДИКАЛЫ ПОЛУГРУППЫ ТРЕУГОЛЬНЫХ МАТРИЦ 

Франтишек Кметь 

Резюме 

В мультипликативной полугруппе треугольных матриц над коммутативным кольцом радика­
лы Шварца, Маккойа, Шеврина, Клиффорда и Луга равны множеству всех нильпотентных 
элементов полугруппы. 
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