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ON RADICALS OF THE SEMIGROUP
OF TRIANGULAR MATRICES

FRANTISEK KMET

Let S be the multiplicative semigroup of all m X m upper triangular matrices
over a ring T, i, e. matrices of the form

a G2 ... Gim
A= 0 Az ... Qam
0 ... 0 awn

where aweT, i, k=1,2, ..., m and ax =0 for i>k.

Let U be a semigroup and J be a two-sided ideal of U. Denote by R;(U),
M;(U), L;(U), R3(U), C;(U) and N;(U) respectively the radical of Schwarz,
McCoy, Sevrin, Clifford, Luh and the set of all nilpotent elements of U with
respect to J.

R. Sulka [5, Theorem 7] proved that in a commutative semigroup U we have:
R,;(U) = M;(U) = R¥(U) = N;(U) = G(U). The same results were obtained
by J. Kuczkowski [2] for C,-semigroups and by H. Lal [3] for quasi-commutative
semigroups.

J. Bosdk [1, Theorem 2] proved that for the radicals of an arbitrary semigroup
U we have:

R/(U)c My(U) < L,(U)< R$(U)< N»(U) < Cs(U).

The purpose of this paper is to prove that in the semigroup S of all m X m upper
triangular matrices over a commutative ring T we have: R(S) = M(S) = L(S)
= R*(S) = N(S).

We introduce some definitions. Let U be a semigroup with a zero O and all
ideals considered in the following two-sided. ‘

An element x € U is called nilpotent (nilpotent with respect to J) if for some
positive integer n: x" = O0(x" € J).

An ideal (subsemigroup) I of U is called nilpotent (nilpotent with respect to J) if
for some positive integer n: I"=0 (I"cJ).
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An ideal P of U 1s called prime if for any two ideals A and B of U, ABcP
implies AcP or BcP.

Anideal of U, each element of which is nilpotent (nilpotent with respect to J), is
called a nilideal (nilideal with respect to J).

Anideal I of U, each finitely generated subsemigroup of which is nilpotent (with
respect to J), is called locally nilpotent.

The set of all nilpotent elements of U (with respect to J) will be denoted by
N(U) (N:(U)). '

The union R(U) (R,(U)) of all nilpotent ideals of U (with respect to J) is called
the Schwarz radical of U (with respect to J).

The union L(U) (L;(U)) of all locally nilpotent ideals of U (with respect to J) is
called the Sevrin radical of U (with respect to J).

The intersection M(U) (M;(U)) of all prime ideals of U (which contain J) is
called the McCoy radical of U (with respect to J).

The union R*(U) (R%(U)) of all nilideals of U (with respect to J) is called the
Clifford radical of U (with respect to J).

Denote by N, the set of all matrices of S with a zero diagonal.

Lemma 1. Let S be the semigroup of all m X m upper triangular matrices over
a ring T. Then N, is a nilpotent ideal of S and NG = O.

Proof. Let A € No, B, C e S be arbitrary matrices. Then BA, AC are matrices
with the zero diagonal, i. e. BA € Ny, AC € No and hence N, is an ideal of S. The
set N is evidently an ideal of S. If A, B € N, are two arbitrary matrices, then in the
nthrow (n=1,2, ..., m — 1) of the matrix AB the first possible non-zero element is
equal to ai n+2 = @n, n+1ba+1,n+2. Therefore the ideal Nj is contained in the set of
matrices of the form:

0 0 0 Am-2,m
0 0 0 O
0 o 0 0

Similarly, the ideal N¢ for s =3, ..., m — 1 is contained in the set of matrices of the
form:

0 0 0 A1,s+1 Aim

0 O 0 am-sm
0 0 0 O

0 0 0 O

and so Ng =0.
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Lemma 2. Let S be the semigroup of al upper triangular m X m matrices over
a commutative ring T and let A be a matrix of S. Then A is a nilpotent matrix if and
only if all its diagonal elements a,, ..., a.. are nilpotent elements of T.

Proof. If A is a nilpotent matrix of S and A" = O for a positive integer r, then
we have aly = a3 = ... = amm = 0. Conversely, if aly = a% = ... = alz. = 0, then
A" with r=max (ri, rs, ..., r=) is a matrix with a zero diagonal, so A" € N, and
hence by Lemma 1 we have A™ = O.

Lemma 3. Let S be the semigroup of all upper triangular m X m matrices over
a commutative ring T. Then the set N(S) is a nilideal of S and R*(S)= N(S).

Proof. We shall show that the set N(S) of all nilpotent matrices of S is an ideal
of S.

Let A e N(S), B, Ce S be arbitrary matrices and let als = a2 = ... = amm = 0.
Then the diagonal elements (b11a11)’, ..., (Bmm@ms)" of the matrix (BA)" are equal
to zero and so (BA)" € No. But (BA)" € N, implies by Lemma 1 that (BA)™ = O
and hence BA € N(S). Analogously (AC)" € N, implies AC e N(S).

Then from the definition of the Clifford radical we obtain N(S)c R*(S).
Conversely R*(S)c N(S) is true for any semigroup with zero and therefore
N(S)=R*(S) holds. :

Remark. In the semigroup S of all upper triangular m X m matrices over
a non-commutative ring the set'N(S) in general does not form an ideal and only
R*(S) = N(S) is true.

For example, let K be the ring of all 2 X 2 matrices over a commutative ring K
and let U be the multiplicative semigroup of all m X m triangular matrices over K.
Consider the matrices '

C1=<0 C)EK:, Cz=<0 0>EK2,

00 cO0
with ¢>=c#0, c € K. Then the product AB of two nilpotent matrices
¢ 0 ... 0 C: 0 ... 0
A= 0 C ... 0 , B= 0 C ... 0 . (0eKy)
00 .. G ' 0 .. 0 G
of U is equal to the matrix
cC 0 ... 0 O
AB = O Cc .. 0 0 . 0eks, C=<(c) (())),
0o o .. 0 C

and AB ¢ N(U). The set N(U) of all nilpotent matrices of the semigroup U cannot
be an ideal of U and therefore by [1] we have only R*(U)c N(U).
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Lemma 4. Let S be the semigroup of all upper triangular m X m matrices over
a commutative ring T. Then R(S)= R*(S).

Proof. In an arbitrary semigroup with zero we have R(S)c R*(S). We shall
prove that R*(S)c R(S).

It is sufficient to show that for each A € R*(S) the principal ideal (A) is
a nilpotent ideal of S. If A e R*(S) and A" =0 for a positive integer r, then there
exists a least positive integer s =r such that A® is a matrix with a zero diagonal.
Then an arbitrary matrix C= B,AB:A ... B,/AB,. of the ideal (A)° (where some
of B: can be empty) is a matrix with a zero diagonal and hence (A )’ = No. Since by
Lemma 1 we have (A)™ =0, this implies (A)< R(S) and hence A € R(S).

From the inclusions between radicals in an arbitrary semigroup: R(S) < M(S)
c L(S) ¢ R*(S) c N(S), from Lemma 3 and Lemma 4 we obtain

Theorem. Let S be the semigroup of all upper triangular m X m matrices over
a commutative ring T. Then

R(S)=M(S)=L(S)=R*(S)=N(S).
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PAJIVUKAIJIBI NTOJYTPYIIIBI TPEYTOJIBHBIX MATPULL
®panrnmex KmeTs

Pe3iome

B MyJIbLTUNZIMKATHBHOM MONYTPYIE TPEYTONAbHBIX MATPHL] HaJi KOMMYTAaTHBHBIM KOJIBLOM PajuKa-
npt lIBapna, Makkoita, lllespuna, Knudbopna u JIyra paBHbl MHOXECTBY BCEX HHIBNOTEHTHBIX

3JIEMEHTOB MOJIYTPYNIIbI.
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