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APPLICATION OF ROTHE'S METHOD 
TO PARABOLIC VARIATIONAL INEQUALITIES 

IGOR BOCK, JOZEF KACUR 

Introduction. We shall be concerned with the existence, uniqueness and approxi­
mation of the solution u(t) for parabolic variational inequalities of the form: 

u(t)eK for a.e. t e (0, T) and 

(1) ( ^ p , v-u(t)) + (Au(t),v-u(t))&(f(t),v-u(t)) 

holds for all veK and a. e. t e (0, T) 

where A: V—»V* is a monotone, coercive operator, T<o° and K is a closed 
convex subset in a reflexive space V. Together with (1) we assume the initial 
condition 

(2) u(0) = uo. 

The problem (1), (2) has first been studied by Brezis in [1 - 2] and by Lions in [3] 
in the case A: Lp((0, T), V) -* Lq((0, T), V*). The problem (1), (2) has been 
solved by the method of penalization and regularization. Duvaut, Lions in [4] 
considered a more general inequality than (1)' but with the linear operator A. 

Our concept of treating the problem (1), (2) is based on Rothe's method 
developed recently in [5—10]. A solution of the given problem is transformed into 
the solution of the sequence of elliptic variational inequalities. By a simple method 
we obtain the solution u(t) which is regular in t. 

Formulation of the main result 

Let V be a reflexive Banach space with the norm || • ||v, V* its dual space with 
the norm || • ||* and H a real Hilbert space with the scalar product (•, •) and the 
norm || • ||. We denote by (•, •) the duality between V* and V. We assume that the 
space VnH with the norm || • || VOH = II * II v + || • || is a dense set in V and H and K 
is a closed convex subset in VnH. Suppose A: K-»V* satisfies the following 
assumptions: 
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(3) A is demicontinuous; 

(4) (Au-Av, u-v)^0 for all u,veK; 

(5) there exists v0eK such that 
(Au, u - v0)/[u]—> oo for [u]-+ oo ; 

where [ • ] is a seminorm on V with the properties: there exist X > 0, c > 0 such that 

(6) [u] + A||u| |^c| |u| |v forall ueVnH. 

For u0, f from (1), (2) we assume 

(7) u0eK, Au0eH; 

(8) / e C « 0 , T > , H ) , V a r / < * o , 
<0,T> 

n 

where Var / = sup 2||/(ft)-/(ft-i)| | f o r a11 f i n i t e division {ft} of (0, T). 
<0, T> {U) i = l 

We apply the idea of Rothe in the following way: Successively for i = 1, ..., n let 
Ui be the solution of the elliptic inequality 

(9) y1 ™l~l, v - u^ + (AUi, v-Ui)^(fi, v - u^ 

T 
for all v eK, where h =—, n is a positive integer, ft = ih, / = /(ft) and u0 is from (2). 

The inequality (9) can be expressed in the form 

(10) (AhUi,v-Ui)^(fi+^,v-u)j 

where (Anu, v) = (Au, v) +-r (u, v). The operator A+—I: K-^>(VnH)* = 

V* + H is bounded, demicontinuous, strictly monotone and coercive. Hence and 
due to [3, Chap. 2, Theorems 8.2, 8.3] there exists a unique solution ux e K of (10) 
which implies (9). 

By means of w, (i = 1,..., n) we construct Rothe's function 

un(t) = Ui-1 + h~1(t-ti-1)(ui-Ui-1) for ft-^r^ft, 

i = 1, ..., n and we prove that un(t) converges for n—> oo to the solution u(t) of (1), 
(2). Our main result is 

Theorem 1. Let (3)—(8) be satisfied. Then there exists the unique solution 
weLo-((0, T>, VnH) of (1), (2) with the following properties: 

u(t): (0, T)^>H is Lipschitz continuous; 

^ € L o o « 0 , T>, H), A u e L ^ O , T>, H) ; 

430 



Un(t)-*u(t) inHforn—>oo uniformlyon (0, T ) ; 

dun du . T n _ _ . v . 

dF^rd7 , n M<0.T>,H); 

if/: (0, T)-*H is Lipschitz continuous then the estimate 

| | w n ( 0 - " ( 0 l | 2 ^ - is true. 

We first prove some lemmas. 

Lemma 1. There exists a constant C depending only on T, u0, f such that 

(ii) hTHl^c 
II h || 

(12) ||u,||vnH^C, for all n,i = l,...,n. 
Proof. Putting i = j,v = ut-x and i = j —I, v = Uj in (9) we obtain, after adding, 

^- ||Uf — «!f-»ll a ^( i f i l == a -=^-= s , •* - ^r-») — 

— <>%-Mf — -A.î —1, U j - M [ - i ) + (/i-/j-i, Wj-ty-i ) . 

Using the monotonicity of A we obtain the recurrent inequality 

H M » ~ " M J - l | | ^ l l ^ - l ~ M J - 2 | | 
(13) и_^eş___^+||/|_/|.1||, /_!,...,„. 

Putting i = l, v = Mo in (9) we arrive at 

(14) Ml M°M|/i| | + ||Aм„||. 
h 

We obtain successively from (13), (14) 

l - ^ M I ^ Var /+ ||/0|| + ||Audl^C, 
II " II <0, T) 

which is Conclusion (11). Directly from (11) we obtain 

(15) INI^C, i = l,...,n 

and from (9) we have (Aut, ut - v0) ̂  C. The coercivity of A implies [w,]^ C and 
the estimate (12) is then the result of (6) and (15), which concludes the proof. 

We now construct the functions 

un(t) = uh tj-t^t^tj, M - ( 0 ) = WO, J = 1, . . . ,« . 

Similarly we construct fn(t) and fn(t) by means of fi=f(U), i = 1,..., n. 
Lemma 1 implies 
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(16) | | u„ (0-u(Ol l^ f , for all t e ( 0 , T ) 

(17) | | u„ (0-«™(OINC| t -r | forall t,t'e(0,T). 

Lemma 2. There exists a function ueL„((0, 'f), VnH) with the following 
properties: 

i) u (OeKfora / / f e (0 , T ) ; 

ii) ^ € L . ( ( 0 , T ) , H ) ; 

Hi) un-*u in the norm of the space C((0, T), £f); 
i v ) f ^ f ,nL-(<0'r)'H)-
Proof. We can rewrite (9) in the form 

(18) ( ^ ^ , v - U„(T)) + (AU„(T), v - un(x))>(/„(T), v - U„(T)) 

for all veK and for a.e. Te(0, T). Putting n = r, V = US(T) and then n = s, 
v = ur(T) in (18) and adding up we obtain 

/d(u r(r)-us(T)) . . A 
I dr .^)-«4.(T)j + 

+ (AuT(x)- Au,(x), Ur(T)-Us(T))^(/r(T)-/3(T), Ur(T)-Us(T)). 

Integrating in (0, 0 and using the monotonicity of A we have 

| | u r ( 0 - U l ( 0 | | ^ 2 / o ' ( | ^ i l ) | + | ^ l ) [ ) (||Ur(T)-Ur(T)|| + 

+ ||uJ(T)-Us(T)||)dT + c|j|/r(T)-/J(T)||dT). 

The estimates (11) and (16) imply 

||ur(0-«J(0H2^c(7; + j+r||/r(T)-/J(T)||dT). 

Then we obtain / is uniformly continuous in (0, T) and hence there exists 
u e C((0, T), H) such that un-+u in the norm of the space C((0, T), H). The 
inequality (17) implies 

\\u(t)-u(t')\\^C\t-tr\ forall t,t'e(0,T). 

Then we obtain from the result of Komura [11] (see also [9, Lemma 1]) that there 

exists the strong (in the norm of H) derivative -T-GLOO((0, T),H). Moreover 
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ueL<*,((0, T), VnH), which is a consequence of (12) and reflexivity of VnH. 
Since K is weakly closed in VnH, we conclude u(t) e K for all t e (0, T). We can 
rewrite (11) in the form 

(19) | f ^ C for a.e. t є (0, T). 

Using (19) we have 

f = ^ £ in L2«0,T>,H) 

(see [9, Lemma 5]) and moreover 

(20) ^ T - ^ 3 7 i n M<0,T>,H) 

which concludes the proof. 
Proof of the Theorem. Let u(t) be the function from Lemma 2. Setting 

v(t) = u(t) in (18) we obtain with the help of (16), Hi), (19) that 

lim (AU„(T), U„(T) - U ( T ) ) ^ 0 . 

The operator A is pseudomonotone (see [3]), which implies that 

(21) (AU(T), U ( T ) - v)=^liminf (AU„(T), U-,(T)-v) 
n—K» 

for all veK. Using the monotonicity of A and the boudedness of un in £<*>(( 0, T), 
vnH) we obtain 

(AUT),UT)-V)*-C(\\V\\). 

By means of Fatou lemma we obtain from (21) that 

(22) I (AU(T), U(T)-V) dT^liminf I (AU„(T), un(T)-v)dT 
Jt2 "-°° Jt2 

for arbitrary tu t2e(0, T) and veK. Integrating (18) we can see, taking into 
account (22), that 

J ' ' (AU(T) , U(T)-V) dT^ltainfJ"'' ( / „ ( T ) - ^ - , un(T)-vj 6T. 

Using Lemma 2 we obtain after limiting 

1' [(^T' V " U(t)) + (AM(0' V " U(t)) "(/(0' v " M ( 0 )] d '^° ' 
for arbitrary f., f2e (0, T) and ueK, which implies 
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(23) ( ^ , v - u(t)) + (Au(0, v - u(t))> (/(O, v - u(t)) 

for all v e K and a.e. t e (0, T) and hence u is a solution of the problem (1), (2). 
There remains to verify the unicity of the solution. Let uu u2 be two solutions of 
(1), (2). From (23), for u = uu v = u2 and u = u2, v = uu after adding and taking 
into account the mono tonicity of A, we obtain the estimate 

( d ( U l ( f )
d ; M 0 ) , u l ( 0 - » 2 ( 0 ) = ^ 11^(0-^(011^0. 

As | |ui(0)- u2(0)|| = 0 we have Ui(r) = u2(0 a.e. on (0, T), which concludes the 
proof. 

Using the results of Kacur [8], an analogous result as Theorem 1 can be proved 
for the nonstationary parabolical inequalities 

( r ) t^du(0^ v _ u(t)) + ( A ( 0 u ( 0 , v - u(t))^(f(t), v - ii(0), 

(2') u(0)=uo. 

We formulate now the result. 

Let A(t) (te (0, T)) be a system of operators A(t): K—> V* satisfying 

(24) A (0 is bounded and continuous for all t e (0, T); 

(25) (A(t)u-A(t)v,u-v)^0 forall U , I ; E K 

and t e (0, T); 
(26) (A(OM,ii-vo)^| |u | | vr( | |M| |v) forall ueK, fe(0,T), 

where the function r(s) is nondecreasing for s ̂  s0 bounded in (0, s0) and r(s)-+ oo 
for 5—>oo, UoeK; 

(27) A(O" = gradu0(r, u) for ueK, te(0,T) 

where 0(r, u) for fixed t is a functional on V, i.e., A (0 are potential operators. We 
H H 2 

assume that for each ueK there exist derivatives — A(t)u, -T-J A(t)u in V* and 
the estimate 

(28) ď7 A ( í ) M | l * + ď? A ( t ) u l ^ C . + CzГdИv) 

takes place for all f e(0, T) and ueK. For u0, / we assume 

(29) l l/(0-/(OII«C|f-f ' | forall t,?e(0,T); 

(30) A(0)u o eH. 
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In this case we solve successively the elliptic inequalities 

(Ui~^i-\v-u)j + (A(ti)ui,v-ui)^(f(U\v-ui) 

for all veK where uteK. By means of ut (i = l, ..., n) we construct Rothe's 
function un(t). The following theorem can be proved. 

Theorem 2. Let (24)—(30) be satisfied. Then there exists the unique solution 
ueLoo«0, T), VnH) of (V), (2') with the properties 

IM0-"n(f)ll2=s?; 

W^IŠ ín M<0,T>,H); 

^eL4(0,T),H), AueL„((0,T),H). 
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ПРИЛОЖЕНИЕ МЕТОДА РОТЕ К ПАРАБОЛИЧЕСКИМ НЕРАВЕНСТВАМ 

Игор Бок, Йозеф Качур 

Резюме 

В работе исследуется решение начальной задачи для абстрактных параболических неравенств. 
С помощью метода Роте авторы свели задачу к решению последовательности эллиптических 
неравенств. 
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