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APPLICATION OF ROTHE’S METHOD
TO PARABOLIC VARIATIONAL INEQUALITIES

IGOR BOCK, JOZEF KACUR

Introduction. We shall be concerned with the existence, uniqueness and approxi-
mation of the solution u(t) for parabolic variational inequalities of the form:
u(tyeK fora.e. te(0,T) and

(1) (dL;Et) , U— u(t)) + (Au(t), V- u(t)) > (f(t), v - u(t))

holdsforall veK anda.e. te(0,T)

where A: V— V* is a monotone, coercive operator, T<o and K is a closed
convex subset in a reflexive space V. Together with (1) we assume the initial
condition

(2) u(0) = uo.

The problem (1), (2) has first been studied by Brezis in [1 — 2] and by Lions in [3]
in the case A: L,({0, T), V) — L,({0, T), V*). The problem (1), (2) has been
solved by the method of penalization and regularization. Duvaut, Lions in [4]
considered a more general inequality than (1) but with the linear operator A.

Our concept of treating the problem (1), (2) is based on Rothe’s method
developed recently in [5—10]. A solution of the given problem is transformed into
the solution of the sequence of elliptic variational inequalities. By a simple method
we obtain the solution u(t) which is regular in t.

Formulation of the main result

Let V be a reflexive Banach space with the norm || ||v, V* its dual space with
the norm ||- ||« and H a real Hilbert space with the scalar product (-,-) and the
norm || -||. We denote by (-, - ) the duality between V* and V. We assume that the
space VAH with the norm || ||ve = ||-|lv+ |- || is a dense setin V and H and K
is a closed convex subset in VNH. Suppose A: K— V* satisfies the following
assumptions :
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3) A is demicontinuous ;
“) (Au—Av,u—v)=0 forall u,vek;

(5 there exists vo€ K such that
(Au, u—vo)/[u]> for [u]->wx;

where [ -] is a seminorm on V with the properties : there exist A >0, ¢ >0 such that

(6) [ul+Allull=cllu]lv forall ue VAH.
For u,, f from (1), (2) we assume

@) uoeK, AuceH;

(8) feC(0, T), H), Var f<e,

where -Var f=sup > ||f() — f(t-,)|| for all finite division {#} of (0, T).
(0, T) 4} i=1

{6} i=
We apply the idea of Rothe in the following way : Successively fori=1, ..., n let
u; be the solution of the elliptic inequality

(9) (u.-—hu.--l , v—u.->+(Au,-,v—u,-)a(f,.,v_u__)

for all v e K, where h =§, n is a positive integer, ¢, = ih, f; = f(t) and u, is from (2).

The inequality (9) can be expressed in the form

(10) (A;.u;, v-— ui) ?(f, + u;;i, v— u,-)
where (Ahu,v)=(Au,v)+-’1;(u, v). The operator A+%I: K—(VnH)*=

V*+ H is bounded, demicontinuous, strictly monotone and coercive. Hence and
due to [3, Chap. 2, Theorems 8.2, 8.3] there exists a unique solution u; € K of (10)
which implies (9).

By means of u; (i=1, ..., n) we construct Rothe’s function

Un(t) =i+ 7t — tim))( — wimy) for t,<t<t,

i=1, ..., n and we prove that u,(t) converges for n — o to the solution u(¢) of (1),
(2). Our main result is

Theorem 1. Let (3)—(8) be satisfied. Then there exists the unique solution
uelL.({0, T), VnH) of (1), (2) with the following properties:

u(t): (0, TY—H is Lipschitz continuous;

((ji—l:eL,((O, T), H), Aue L.({0, T), H);
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u,(t)—>u(t) inHfor n— o uniformly on (0, T);

du QU L0, T), H):;

dr - dt
if f: (0, T)— H is Lipschitz continuous then the estimate
||wa () — u(t)||ZS%j is true.
We first prove some lemmas.

Lemma 1. There exists a constant C depending only on T, u,, f such that

an Tt

(12) ||lvaa<C, forall n,i=1,...,n

<C

Proof. Puttingi=j, v=y;and i=j— 1, v =y, in (9) we obtain, after adding,
1 Uj—1— Uj—
n l|w; — u,-_lllzs( - l—h =2y~ ui-l) -
- <Au1 Aul 1, u] Uj- 1) + (f] fi-la U — ui-l)-

Using the monotonicity of A we obtain the recurrent inequality

+“fl_fi—l”’ j=1, cesy n.

Uj—1 — Uj—2
<|2==___17<
h \" 2

(13) “——“f ~ Ui

Putting i=1, v=u, in (9) we arrive at

(14) [

I+l Auoll.

We obtain successively from (13), (14)

llui — Ui-1
h

< Var f+||fol| + | Auo|| < C,
0, T)

which is Conclusion (11). Directly from (11) we obtain
(15) ' lwllscC, i=1,..,n

and from (9) we have (Au;, u; — vo) < C. The coercivity of A implies [u;]< C and
the estimate (12) is then the result of (6) and (15) which concludes the proof.
We now construct the functions

a"(t)=ui: tJ 1\t<t11 L-l,.(O):uo, j=1,-~s n.

Similarly we construct f,(t) and f,(¢) by means of f,=f(t), i=1, ..., n.
Lemma 1 implies
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(16) lu-a@lI<S, forall e (o, T)

(17) lua() = ua (IS Cle = 1'| forall ¢, ¢'e(0, T).

Lemma 2. There exists a function ueL.({0, T), VAH) with the following
properties :
i) u(t)eK forallte(0,T);

11) eL ((0 T), H);
iii) u,— u in the norm of the space C({0, T), H);

iv) ‘L‘:" _ (31': in L.({0, T), H).
Proof. We can rewrite (9) in the form
18 (20 oo a@)+(Am), v ()= G0, v - ()

for all veK and for a.e. te(0, T). Putting n<r, v=i,(r) and then n=s,
v =1,(t) in (18) and adding up we obtain

+ (A (1) — At (1), (1) — &,()) < (fr(v) - f.(2), & () — (7).

Integrating in (0, t) and using the monotonicity-of A we have

e -wlF<2| (|2 + [24) (o) - 2@+

+u@ - w@I) de+ [ 1@ - f@)ldr)
The estimates (11) and (16) imply
he (- wOF<C (2424 [ 1.0~ Follar)
kY

Then we obtain f is uniformly continuous in (0, T) and hence there exists
ue C((0, T), H) such that u,— u in the norm of the space C({0, T), H). The
inequality (17) implies

lu(@®)—u@)||<C|t—1t'| forall t,t'e(0,T). +
Then we obtain from the result of Komura [11] (see also [9, Lemma 1]) that there

exists the strong (in the norm of H) derivative %EL“,((O, T), H). Moreover
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ueL.({0, T), VAnH), which is a consequence of (12) and reflexivity of VAH.
Since K is weakly closed in VA H, we conclude u(t) e K for all te (0, T). We can
rewrite (11) in the form

(19) N‘Z‘; <C ‘forae. te(0,T).
Using (19) we have

du, du .

T~ i L((0,T), H)

~ (see [9, Lemma 5]) and moreover

du, du .
(20) G g in L-(0,T), H)

which concludes the proof.
Proof of the Theorem. Let u(t) be the function from Lemma 2. Setting

v(t)=u(t) in (18) we obtain with the help of (16), iii), (19) that
lim (A (7), in(7) ~ u(2)) <O.

The operator A is pseudomonotone (see [3]), which implies that
(21) (Au(r), u(t)—v)slir"‘qinf (A, (1), Ua(t)—v)

for all v € K. Using the monotonicity of A and the boudedness of i, in L.({0, T),
vnH) we obtain
(At (7), ia(t) = v) = — C(||v]}).

By means of Fatou lemma we obtain from (21) that
(22) I l(Au(t'), u(r)—v) dr<lim Lnff '(Aﬁ,.(‘r), i.(t)—v)dr

for arbitrary t,, t,€ (0, T) and v e K. Integrating (18) we can see, taking into
account (22), that

f"(Au(r), u(z)—v) drsnmnff' (fn(r)—d'f‘"—f), (1)) dr.

Using Lemma 2 we obtain after limiting

f [("‘éﬁ"’ v= “(‘)) +(Au(t), v—u(®)) = (f(t), v - u(:))] dr=0,

for arbitrary t,, ;€ (0, T) and v € K, which implies
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(23) (QL%, v— u(t)) + (Au(t), v—u(t))=(f(1), v —u(t))

for all ve K and a.e. t € (0, T) and hence u is a solution of the problem (1), (2).
There remains to verify the unicity of the solution. Let u,, u, be two solutions of
(1), (2). From (23), for u=1u,, v=u, and u=u,, v =u,, after adding and taking
into account the monotonicity of A, we obtain the estimate

(AD=0D) 4, ) 10) =1 & - 0.

As ||uy(0) — u,(0)|| =0 we have u,(t)=u,(t) a.e. on (0, T), which concludes the
proof.

Using the results of Kacur [8], an analogous result as Theorem 1 can be proved
for the nonstationary parabolical inequalities

a9 (B —un) + (AOu, v - u)= (0, v - u(0),

2 u(0) = uo.
We formulate now the result.
Let A(t) (te (0, T)) be a system of operators A(t): K— V* satisfying

(24) A(t) isbounded and continuous forall te(0, T);

(25) (A u—A()v,u—-v)=0 forall u,vekK
and te(0,T);

(26) (A(Wu, u—vo)=|lul|vr(|lullv) forall uek, te(0, T),

where the function r(s) is nondecreasing for s = s, bounded in (0, s,) and r(s)— «
for s>, v€K;

27 A(u=grad,®(t,u) for uek, te(0,T)

where & (¢, u) for fixed ¢ is a functional on V, i.e., A(t) are potential operators. We
2
assume that for each u € K there exist derivatives d A(t)u 4 A(H)u in V* and

dt > de?
the estimate
(28) 4 A(ull + d—zz AWul| <Ci+Cor(llullv)
de * dt *
takes place for all 1€ (0, T) and u € K. For uo, f we assume
(29) If()—fHI<C|t—t'| forall t,t'e(0,T);
(30) A(O)uoe H.
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In this case we solve successively the elliptic inequalities
U — Ui—
(T’ V- u.-) +(A(t)w, v —w)=(f(t), v—u)

for all ve K where u;€ K. By means of u; (i=1, ..., n) we construct Rothe’s
function u,(t). The following theorem can be proved.

Theorem 2. Let (24)—(30) be satisfied. Then there exists the unique solution
ueL.({0, T), VaH) of (1’), (2’) with the properties '

IIun(t)—u..(t)llzsg;

du,  du . :

af = q i L0 ) H;
du
- L.({0, T), H), AueL.({0, T), H).
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MPUIIOXEHUWE METOJA POTE K ITAPABOJIMYECKMM HEPABEHCTBAM
HUrop Bok, Hozed Kauyp
Pesome
B paGoTe Hccnenyetcs pelreHie HauyanbHOM 3ajayuu AJ1si aGCTPaK THbIX MapaboJHYECKUX HEPABEHCTB.

C noMouibro Me€roaa Pote ABTOPbI CBECJIM 33Jia4y K PCLICHUIO NOCIEAOBATECIBHOCTH JUIMNITUYHECKHUX
HEPABCHCTB.
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