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A NOTE ON OSCILLATION AND NONOSCILLATION 
CRITERIA FOR FOURTH 

ORDER LINEAR DIFFERENTIAL EQUATIONS 

JAN REGENDA 

1. Introduction 

The present paper is a study of the oscillation and nonoscillation of the 
differential equation 

(L) L[y] = y(4) + P(t)y" + Q(t)y = 0, 

where P(t), Q(t) are continuous functions on the interval 1= (a, oo), -oo<a<oo. 
We shall assume throughout that 

(A) P(f) = 0, Q(f) ^ 0 and Q(t) not identically zero in any subinterval of I. 

This note is the continuation of [3] and [4]. So we shall use the notations and 
results obtained earlier, without explaining them again here. Oscillation and 
nonoscillation criteria for equation (L) will be obtained by an application of the 
theory developed in [3] and [4]. 

It will be proved that (L) is nonoscillatory if 

(1) u(4) + [P(t) + Q(t)]u = 0 
0 

is nonoscillatory. If equation (1) is known to be nonoscillatory, the problem is to 
find condition on the coefficients in (L) to ensure that (L) also is nonoscillatory. 
Leigh ton and Nehari [2], Howard [1] have obtained comparison theorems for 
the class of self-adjoint linear differential equations of the fourth order. They have 
based their study of comparison theorems of Sturm's type upon eigenvalue 
problems of the type 

[a(t)u"]"-kc(t)u = 0 
u(a) = u'(a) = u(P) = u'(p) = 0, 

where a and c are positive functions of class C2 and C, respectively. 
The results of the above authors will be used in the present. 
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2. Preliminary results 

The following Lemma and Theorems 1, 2, 3 and 4 will be basic in our 
investigation. 

Lemma [4]. Letf(t)eC2(c, oo) andf(t)>0, f'(t)>0, f"(t)<0 in (c, oo), c^a. 
Then 

f(t)-(t~c)f'(t)>0 

for te(c, oo). 

Corollary. Let there be a function w(t)eC3(c, oo) and let w(t)>0, w'(t)>0, 
w"(t)>0 and w"'(t)<0 in (c, oo), c^a. It follows from the Lemma that 

w(t)>^Y^~ w"(t) for r e (c ,oo) . 

Theorem 1 [3]. Suppose that (A) holds. Then (L) is nonoscillatory on I if and 
only if there exists a number t0el and a solution y(t) of (L) such that either 

y(t)>0, y'(t)>0, y"(t)<0 
or 

y(t)>0, y'(t)>0, y"(t)>0, y"'(t)<0 

for all t^t0. 

Theorem 2 [3]. Suppose that (A) holds. Then equation (L) is nonoscillatory on 
I if and only if there exists a function w(t)e C4(t0, oo), t0el, such that either 

w(t)>0, w'(t)>0, w"(t)<0, L[w]^0 
or 

w(t)>0, w'(t)>0, w"(t)>0, w"'(t)<0, L[w]^0. 

Theorem 3 [4]. Suppose that (A) holds and let -2t~2^P(t) for f>f0 = 
max {a, 0}. Then there does not exist a solution y(t) of (L) such that y(t)>0, 
y'(t)>0, y"(t)<0 for t>h^t0. 

Theorem 4 [4]. Suppose that (A) holds and let 

J sP(s)ds>-oo, r0>max{fl,0}. 
Jt0 

Then there does not exist a solution y(t) of (L) with the properties y(t)>0, 
y'(t)>0, y"(t)<0 for t^t0. 
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3. Oscillation and nonoscillation theorems 

We assume that the coefficients of (L) satisfy (A). If, in addition, 

-p-SP(0 ' CD 

OГ 

ř P ( ř ) d ř > - o o (2) 
/ ; 

for t='T>max{a, 0}, then by Theorem 3 and 4, respectively, the equation (L) has 
no solution y (t) with the properties y(t) >0,y'(t)> 0, y"(t) < 0 in (t0, oo), t0 =• T. 

Using this fact, we can prove the following modification of the oscillation 
Theorem 2.3 [4]. 

Theorem 5. Let [i(t) be a positive and continuous function in (T, °°), T> 
max {a, 0} such that 

lim inf — T T =" 2 
jU(0 

for arbitrary r0 = a. Suppose that (A) and (1) or (2) hold. If the differential 
equation of the third order 

x"' + Qn(t)Q(t)x = 0 

for some 0 e (0, 1) is oscillatory, then equation (L) also is oscillatory. 
The proof is very similar to that of Theorem 2.3 [4] and is omitted. 
By combining Theorem 5 with the known oscillation criteria for the third-order 

equation x'" + r(t)x = 0 we obtain oscillation criteria for (L). 
The next theorem gives sufficient conditions for equation (L) to be nonoscil-

latory. 

Theorem 6. Suppose that (A) holds. Then equation (L) is nonoscillatory if 

(2) uw + [P(t)+Q(t)]u = 0 

is nonoscillatory. 
Proof. Suppose that (£) is nonoscillatory. Since the coefficient of u" in (££) has 

vanished, it follows from Theorem 3 that (if) has no solution u(t) such that 
u(t)>0, u'(t)>0 and u"(t)<0 for t^tu Uel. By Theorem 1 there exists 
a number t2 e I and a solution u(t) of (5£) such that u(t)>0, u'(t)>0, u"(t)>0 and 
u"'(t)<0 for all t^t2. Applying Lemma and Corollary to the solution u(t) we 
obtain 
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»(0>(±Y^u"(t) (3) 

for t^t2. It foJIows from (3) and the assumption P(t)^0 that P(t)u(t)^P(t)u"(t) 

for t^t2 + V.2 = t0. From the Jast inequaJity and from (!£) we obtain that for aJJ 
t-^to-

u(4) + P(t)u"+Q(t)u^0. 

Since u(t)>0, u'(t)>0, u"(t)>0, u"'(t)<0 and L[u]^0, it foJJows from 
Theorem 2 that equation 

y(4) + P(t)y"+Q(t)y = 0 

is nonoscilJatory on I. Theorem 6 is proved. 

4. Nonoscillation criteria 

The folJowing nonosciJJation criteria for equation (L) wiJJ now be obtained by 
combining Theorem 6 with the known nonosciJJation theorems for equation (5£). 

Theorem 7' (Le igh ton and Nehar i ) . The equation u(4)+ c(t)u =0, c(t)<0 is 
nonoscillatory if 

9 
Jim sup t4\c(t)\<— . 
t-* °° 1 6 

Theorem 7. Suppose that the coefficients of (L) satisfy the assumptions (A) and 
letP(t)+Q(t)<0 in I. If 

limsupt4\P(t) + Q(t)\<^, 
t—> °° l o 

then (L) is nonoscillatory. 

Theorem 8' (Le igh ton and Nehar i ) . If the equation 

u" + [4t2c(t)-2r2]u = 0 

(c(t)>0) is nonoscillatory in (a, °°), the same is true of u(4)= c(t)u(a>0). 

Theorem 8. Suppose that the coefficients of (L) satisfy the assumptions (A) and 
let P(t)+Q(t)<0 in I. If the equation 

u"-[4t2(P(t) + Q(t)) + 2r2]u = 0 

is nonoscillatory in (a , °°), the same is true of (L) (a > max {a, 0}). 
The next theorem wiJJ be based on the resuJts of H o w a r d H. [1]. 
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Theorem 9'. Let f be a positive nonincreasing function of class C1 in (a , °°) 
a^O) such that 

ÍVяod, 
Jа 

<°°. (4) 

The sufficient conditions for the equation u(4) = c(t)u (c(t)>0) to be nonoscillat-
ory is 

Jim sup ( J T C ( S ) / ( J ) ds) (j~s-4f(s) ^ ) _ 1 < j | . 

Theorem 9. Let f be a positive nonincreasing function of class C1 in (a, °o) 
(aiSmax{a, 0}) with the property (4). Suppose that (A) holds and let P(t) + 
Q(t)<0 in L The sufficient condition for equation (L) to be nonoscillatory is 

Iim sup (f~\P(s) + Q(s)\f(s) d*) ( p " 4 ' ( s ) d*) _ , < ^ • (5) 

The condition (5) can be replaced by condition 

Iim sup (j (s-aY\P(s) + Q(s)\ ds) (I s~4(s-a)p d s ) " ' ^ , 

where p is a number satisfying p S2, according to Howard's Theorem 3.86 [5]. 
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ЗАМЕЧАНИЕ ОБ ОСЦИЛЛЯЦИОННЫХ И НЕОСЦИЛЛЯЦИОННЫХ ПРИЗНАКАХ 
ДЛЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИИ ЧЕТВЕРТОГО ПОРЯДКА 

1ап Ке^епс1а 

Резюме 

В работе даны некоторые признаки осцилляции и неосциляции дифференциальною уравнения 
четвертого порядка 

(Ь) У(4) + Р ( О У " + 0 ( О У - О 

с непрерывными коеффиц нтами в интер ле 7= (а, °°) 
Главным результатом этой работы я ляет я Теор ма 6 
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