Mathematica Slovaca

Mario Petrich
The translational hull of a normal cryptogroup

Mathematica Slovaca, Vol. 44 (1994), No. 2, 245--262

Persistent URL: http://dml.cz/dmlcz/130721

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/130721
http://project.dml.cz

Mathematica
Slovaca

©1994
Mathematical Institute

Math. Slovaca, 44 (1994), No. 2, 245-262 Slovak Academy of Scicnces

Dedicated to Academician Stefan Schwarz
on the occasion of his 80th birthday

THE TRANSLATIONAL HULL OF
A NORMAL CRYPTOGROUP

MARIO PETRICH

(Communicated by Tibor Katrindk )

ABSTRACT. Given a normal cryptogroup S, we write it as [Y; Sa, X, 3], that
is as a strong semilattice of completely simple semigroups. We construct the
translational hull €(S) of S when S is given in this form and specialize this
construction when all x5 are injective, that is when S is a subdirect product
of a semilattice and a completely simple semigroup. We consider threads in S
which, under the multiplication of complexes, provide an isomorphic copy of a
remarkable ideal €2;(S) of Q(S). We also consider some other ideals of €(5).
These results are then used to establish several properties of the semigroup €, (.5)
including its position within Q(S).

1. Introduction and summary

For any semigroup S, the translational hull (S) of S consists of all bitrans-
lations w = (A, p), where A is a left translation of S, p is a right translation
of S. and they are linked in the sense that (ap)b = a(Ab) for all a,b e 5. We
writc A on the left and p on the right. The product of two bitranslations is
by components, where left (respectively right) translations are composed as left
(respectively right) operators. The semigroup €Q(S) plays an essential role in
the study of ideal extensions. For an extensive discussion, see [1].

[ we restrict the above semigroup S to belong to a class of semigroups for
which there is a sufficiently explicit structure theorem, we may be able to use
the ingredients in that theorem for constructing €(.S) in a relatively transpar-
ent way. Let S be a completely regular semigroup in which H is a congruence
and S/H is a normal band; in short we refer to S as to a normal cryptogroup
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(or normal band of groups). These are precisely semigroups which can be ex-
pressed as strong semilattices of completely simple semigroups, and we may set
S =1Y;Sa, Xa.5) - This is a special case of a semilattice of weakly reductive semi-
groups whose translational hull was studied in [2]. When each S, is a group. a
construction of () can be found in [1; Section V.6].

We concentrate here on the translational hull of a normal cryptogroup written
in the form S = [Y; 5, Xxa,3], that is as a strong semilattice of completely
simple semigroups. The main novelty here is the introduction of certain ideals
of Q(S) which exhibit remarkable properties. For we may ask for that part of
the translational hull of S which plays the same role for ideal extensions of &
which are normal cryptogroups as (S) for arbitrary ideal extensions of 5.
We succeed in finding such an object, Q;(9), and for it provide an alternative
construction.

Section 2 contains a brief compendium of concepts and notation used through-
out the paper. In Section 3, we extract a construction of the translational hull
of a strong semilattice of weakly reductive semigroups from two results in [2].
[n addition, we specialize that construction to regular semigroups which form a
subdirect product of a semilattice and a completely simple semigroup. Threads
in a strong semilattice of (arbitrary) semigroups are introduced in Section -} and
are applied to our situation giving some new insights into the nature of the ideal
£2;(S) of Q(9). Some of these results are used in Section 5 to establish sev-
eral interesting properties of Q;(9) including statements concerning its position
within Q(S5).

2. Terminology and notation

For any set X, tx denotes the identity map on X .

Let Y be a semilattice. For every o € Y let S, be a semigroup and as-
sume that S, NSz = 0 if a # f. For any «,3 € Y such that a > 3. let
Xa.3: So — Sp be a homomorphism satisfying

Xa,a = LS, Xa,fXB~ry = Xanxy if o> ,3 >0,

On the set S = |J S,, define a product by
@€Y

a*xb=(axa.0op)(bXs,a3) if a€S,, besSy.
Then S is a semigroup called a strong semilattice 'Y of semigroups S, with
structure homomorphisms x.. 5. We denote S by [Y;S,, xa.3] and its product

by juxtaposition.
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If « €Y, («) denotes the principal ideal of Y generated by «. An ideal [
of Y is a retract ideal if (o) N1 is a principal ideal of Y for every aw € Y. We
shall use the notation:

Iy ideals of Y, Ry — retract ideals of Y, Py — principal ideals of Y

under the operation of set theoretical intersection.

Now let S be an arbitrary semigroup. A mapping A (respectively p) written
on the left (respectively right) is a left (respectively right) translation of S if
Ary) = (Ax)y (respectively (zy)p = x(yp)) for all z,y € S. If also A and p
are linked in the sense that (zp)y = x(\y) for all z,y € S, then w = (A, p) is
a bitranslation of S. We shall consider w as a bioperator on S with war = A\x
and rw = xp for all z € S. The set (S) of all bitranslations of S with
componentwise composition is the translational hull of S (evidently Q(S) is a
semigroup).

For every a € S, define A\,, p, and 7w, by

AT =axr, xp,=ra (z€8),
g = (/\(upa) .
Then 7, is an inner bitranslation of S and the set II(S) of all m, with a € S
is the inner part of Q(S5).

We shall be concerned with the translational hull €2(S) of a semigroup S
which is a strong semilattice Y of semigroups S, . These semigroups S, will
sometimes satisfy certain familiar conditions: weak reductivity, weak cancellation
or complete simplicity. In order to simplify the notation, we shall write 2 and
11 instead of Q(S) and TI(S), but for all other semigroups 1", S, etc. we shall
write the full notation Q(T), Q(S,), I(T), T(S,), etc.

For any subsemigroup T of a semigroup S,

is(I)={s€eS| st,tseT forall te T}

is the idealizer of T in S (the greatest subsemigroup of S having T as an
ideal). We denote by S° the semigroup S with a zero adjoined.

Let S be a completely regular semigroup, that is a semigroup which is the
union of its (maximal) subgroups. For a € S denote by a ! the inverse of «
in the H-class of a, and let ' = aa~!. Completely regular semigroups under
multiplication and this inversion form a variety denoted by CR . The lattice of all
subvarieties of CR is denoted by L(CR); (S) is the variety generated by 5. The
member of £(CR) consisting of all semilattices is denoted by S. A completely
regular semigroup S in which H is a congruence and S/H is a normal band
(that is satisfies the identity axya = ayza) is a normal cryptogroup; the variety
of all such is denoted by NBG .

All the undefined concepts and notation can be found in [1].
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3. The translational hull of two special semigroups

We are generally interested in a construction of the translational hull of a
normal cryptogroup S in terms of the translational hull of the underlyving semi-
lattice Y and the translational hulls of the completely simple components S,
of S. To this end, we represent S as [Y;S,, xa,3] — the strong semilattice of
completely simple semigroups, and note that the translational hull of Y can
be represented by retract ideals of Y (see [1; Lemma V.6.1]). Noreover. we
have considered in [2] the more general situation of the translational hull of a
semilattice of weakly reductive semigroups. From the results of that paper we
extract an explicit construction of the translational hull of a strong semilattice
of weakly reductive semigroups in the first result of this section. We then spe-
cialize sharply to an even more explicit construction of the translational hull of a
regular semigroup which is a subdirect product of a semilattice and a completely
simple semigroup.

CONSTRUCTION 3.1. Let S =[Y;5,,Xap3), where S, is an arbitrary semi-

group for every o € Y. Let T be the set of all (I;w,) Y, where I € Ty and
wa € Q(S,) for each a € I, satisfying the following condition: for every « € Y.
write wy = (g, pa), and for any a > 3 in Y and 0 € {A, p}, the diagram

0 ,
S, —e S,

X | e
Sp L. Sp
commutes. Define a producﬁ in T' by
(Lwa)(I'swg) = (IN T waw,) -

Simple verification shows that I' is a semigroup.

We now single out the following subsets of T':
To={(liw,) €| T€Ry},
Iy ={(liws) €l| I €Py},
r; = {(I;wn) el | I €Ry, wq €II(S,) forall ac [} .
I'n = Fp nr;.

1) We shall use the simplify notation (/;wa) instead of (I;(u.'w)ue]). which is mote

precise.
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Since Ry is a subsemigroup of Zy , we have that T'q is a subsemigroup of
I'. Also, since Py is an ideal of Ry , we get that I',, is an ideal of I'q;. Finally,
since TI(S,) is an ideal of Q(Sy) for every o € I, T; is an ideal of I'q. The
relationship between I'p and I'g is the content of the next lemma.

LEMMA 3.2. T'g = ’iI‘(FH) .

Proof. We remarked above that both I', and I'; are ideals of I',, and
hence Ty is an ideal of I'g. Let ([;w,) € ir(T'p). Let 8 € Y and a € S4.
Then ((‘13);71',,,,(;,.“) € I'i1 and by hypothesis (I n (B),waw,,x;,,,{!) € I';;. Hence
I N (3) € Py, and since 8 € Y is arbitrary, we obtain that I € Ry . But then
(I:wy) € I'q, as required.

With the notation in Construction 3.1, we now extract from [2; Theorems 1
and 2, and their proofs] the following result.

Recall that a semigroup S is weakly cancellative if ar = bx, ya =yb in S
implies a = b. We have used in the proof of Theorem 3.5 that completely simple
semigroups are weakly cancellative.

THEOREM 3.3. Let S = [Y;5,,Xa.3], where S, is a weakly reductive semi-
group for every a € Y. For any w € Q, let I, ={a €Y | wSNS, #0}, and
define a mapping ¢ by

0w — (Iw;w‘sa) (wes)).

Let (Liwy) € T, and for any o € Y write (o) NI = (@) . Define a bioperator
w by

wa =wz (AXaa), aw = (aXaa)Wa (a €8y, a€Y).
With this notation define a mapping ¥ by
¥ (Lwy) — w ((Iiwy) €Tq).

Then the mappings ¢ and ¥ are mutually inverse isomorphisms between €0 and
I'y. In this association, 11 corresponds to I'ry.

Proof. The derivation from the reference cited above is left to the inter-
ested reader.

Theorem 3.3 makes it possible to single out two remarkable ideals of €):
Q, =T, Q=T

249



MARIO PETRICH

The last assertion of Theorem 3.3 yields ©, N Q; = II. Note that 2, consists
of those bitranslations which induce a principal ideal on Y, whereas €; con-

sists of the bitranslations which restricted to S, for each o« € [, is an inner
bitranslation of S, .

We shall now consider a special case which will help illustrate the gen-
eral situation as treated above. It is the case of a sturdy composition of com-
pletely simple semigroups, that is S = [Y;S,, xa.g] as above with S, a com-
pletely simple semigroup for every a € Y, and x5 is injective for all choices
« > 3. According to [1; Theorem IV.51], sturdy compositions of completely sim-
ple semigroups coincide with regular semigroups which are subdirect products
of a semilattice and a completely simple semigroup. The latter, by [1; Corol-
lary 1V.5.3], are precisely those given by the following device.

CONSTRUCTION 3.4. Let Y be a semilattice, T" be a completely simple
semigroup, R(T") be the partially ordered set of all regular subsemigroups of T

ordered by inclusion, n: Y — R(T) be an order inverting function for which

U an =T, and set
aeY

S={(c,a)eY XT | a€an}.

Denote S by (Y,n,T).

Let A be the set of all (I,60), where I € Ry . and 6 € Q(T) satisfving the
following condition: for every o € Y, let (a) N1 = (@), then t € an implies
0t,t0 € an . Define a product in A by the formula

(Lw)(I' ")y =(INT wo'y.
Tt follows easily that A is a semigroup. Also let

AQ:{(I,Q)GAi IERy},
A, ={(I,0) e A| T€Py},

A ={(I,0) e A| I €Ry, 0lan € l(an) forall a €Y},
A = AP nA;.

Analogous statements to those after Construction 3.1 are valid for the sets

A, for g € {Q,p,i,11}. Below blank spaces indicate that the omitted entry is
of no importance for our purposes.
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THEOREM 3.5. Let S = (Y,n,T) be as above. For w € Q define
I={aecY | w(pt)=(a,) for some (B,t) € S}
and a bioperator 8 on T by the formulae
wla,t) = (,0t), (a,t)w = ( ,10)
Jor some (a,t) € S. With this notation define a mapping ¢ by
w:w — (1,0) (we).

For (1,0) € Ag and « € Y, let (o) NI = (@), and define a bioperator w by

wla,t) = (@,0t), (o, t)w=(@,t0) ((a,t) € S).
With this notation define a mapping ¥ by

v (1,0) s w ((1,0) € Aq).

Then o and +p are mutually inverse isomorphisms between 0 and Agq . In this
associalion, we have the correspondence

Q) — Ay, Q — Ay, IT «—— Ay .

Proof.

1. ¢ is single valued. In order to make use of Theorem 3.3, we now convert
the given notation to that of the cited theorem by introducing the following
svmbolism. For every o € Y let

So ={(a,t) | t €an},
and for @« > 3 in Y
Xa,: (1) = (B,1)  (tean).

Simple verification shows that these define a strong semilattice and [Y; S, X0 3]
- 5.

Let w € Q. It is easy to see that [ defined in the statement of the theorem
coincides with I, . Let ¢t € T'. By the condition on 7, there exists o € Y such
that («a,t) € S. In order to prove that ¢ is single valued, we suppose that also
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(3,t) € S. Letting (y)N1I = (7) for all v € Y, by Theorem 3.3, we have that
w(a,t) = (@,a) and w(B,t) = (/_3, b) for some a,b € T. Then

[w(a, t)] (B,t) = (@,a)(B,t) = (@B, at),
[w(,@,t)](a,t) = (B, b)(a,t) = (L_?a,bt) ,
(a, )(8,1) = (aB,t%) = (B, t)(ev, t)

so that at = bt. We also have (o, t)w = (@,a’) and (8,t)w = (3.b') for some
a’,b € T. By an argument similar to the one above, we obtain ta’ = tb.
Further,

[, )] (8,6) = (@ a') (8, 1) = (@B, a't).
(a,t){w([)’,t)] = (a,t)(ﬁ, b) = (af, th)

and thus a't = tb. We analogously get &'t = ta. Hence
t?a = t(ta) = t(b't) = (tV')t = (ta/)t = t(a't) = t(tb) = t?b,

which together with at = bt in the completely simple semigroup 7T implies that
a = b. Therefore p is single valued.

2. ¢ maps §) into Ag. We have noted above that I = [, . and hence. by
Theorem 3.3, we have [ € Ry . Simple verification shows that 6 € Q(T). Let
a €Y and t € an. Then (o, t) € S and w(a,t) = (@,0t) € S, so that 6t € an:
analogously t6 € an. Therefore (I,60) € Agq.

3. ¢ maps Aq into 2. For («,t) € S, we have w(a,t) = (@,0t) € S
and (a,t)w = (@,td) € S by the hypothesis that ([,0) € Ag. Now for
(a,8),(B8,t) € S, we obtain

[w(a, s)](3,1) = (@,0s)(8,t) = (@B, (0s)t) = (a3, 0(st))

=w(af, st) = w[(a,s)(,()’,t)] ,

similarly (o, s)[(8,t)w] = [(a,s)(8,t)]w, and

[(a, s)w] (B.1) = (@, s0)(B,t) = (ap, (s0)t) = (ozB, s(6t))
= (a, s)(ﬁ, Gt) = (a, s)[w(ﬁ,t)] .

Therefore w € ().
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1. ¢ is a homomorphism. Let (I,0),(I',0') € Aq and (I,0)¢ =w, (I',0")y
=w . Torany a €Y let (a)NI = (@) and (a)NI’' = (@). Hence (a)N(INT") =
(@) with @ = a. Now, for any (a,t) € S we obtain

w(w'((y,t)) =w(a,d't) = (5, 90't) = (ww')(a, 1),
(o, hw)w' = (@, 1)’ = (ﬁ, t00") = (o, t)(ww'),

which implies that ¢ is a homomorphism.

5. ¢y = 1. Indeed, for w € Q we have wpyp = (I,0)y) = W', where, with
()N I = (@), for (a,t) € S we get w'(a,t) = (@,0t) = w(a,t), and similarly
(v, t)w’ = (e, t)w. Therefore w = ', and thus ey = 1.

6. Y = ta, - Indeed, for (1,0) € Ag we have (I,0)pp = wp = (I',0),
whence we easily obtain that I = I’ and 6 = 6. Therefore ¢ = 1, .

7. We now deduce that ¢ and i are mutually inverse isomorphisms between
7 and Agq.

8. The claim concerning the correspondence of the three sets follows without
difficulty.

COROLLARY 3.6. Let S be a reqular semigroup which is a subdirect product of
a semilattice Y and a completely simple semigroup T . Then Q(S) is isomorphic
to a subsemigroup of Ry X Q(T) whose projection into Ry is surjective.

Proof. In view of Theorem 3.5, it remains to prove only the last assertion
of the corollary. Indeed, for any I € Ry the pair (I,:7) satisfies the condition
for membership in Ag .

4. Threads

For a semigroup S = [Y; S,, Xa,ﬂ] given as a strong semilattice we shall con-
struct a semigroup, based on this decomposition of S, which has some remark-
able properties. Then we shall establish its relationship with the translational
hull of S.

DEFINITION 4.1. Let S =[Y;S,, Xa.], where S, is an arbitrary semigroup
Jor cvery a €Y . A thread T in S is a nonempty subset of S satisfying

(i) aeSenT, a>p = axap €T,

(il) |TNSy| <1 for every a €Y .

Denote by T the set of all threads in S with the multiplication of complezes.
For cach T € T, let

T:{aeY| TﬁSa#w},
TR:{TE:T|TER)'}, T’[J:{TGT|TEP)/}



MARIO PETRICH

Note that for 7' € 7, T is an ideal of Y in view of condition (i) in its
definition. That 7 is closed under its multiplication will follow from the next
result.

LEMMA 4.2. For T = (ta),e; and K = (kg)
(tyky) ciny - For every I € Iy let

sed i T we have TH =

[={TeT|T=1}, Iy={lely| I#0}.

If Ie fy , then I isa subsemigroup of [] Sa. For 1,.J € fy such that 1 2 .J.
a€el
define a function Wy ; by

\OWE (t(Y)(yel - (tﬂ)are,] ((tw)oe] € IA)

We can construct a strong semilattice of semigroups Q = [fy; I. \Ifl_,l} . Then
T is a semigroup which coincides with Q .

Proof. Let T and K be as in the statement of the lemma. Trivially.
(t4ky) e1ny © TK. Conversely, let t, € T NS, and ky € KNSy Then
1(ykﬂ = (tX(x‘a[i)(kﬂXﬁ,aﬁ)v where tXu.m’i eTn Sa/‘l and kﬂX’,i.m*I e KNS, s
with a8 € I N J. Therefore tokg € (tyk,) This establishes the first
assertion of the lemma.

It now follows that if I € Iy, then I C [[ S., and that Zy is a sub-

ael .
semilattice of Zy . Obviously, 7 and @ coincide as sets, and with the above

~eInJ *

notation,
TEK = (tyky)yerns = () erns (k) epny = (T80 ) (KW e y) .
so that their multiplications agree.
LEMMA 4.3. The mapping
Tia— (’LX”-/’7)/3§a (a €8y, a€Y)
is an isomorphism of S onto Tp .

Proof. If a € S,, then clearly ar is a thread in S and a7 = (a). Hence
7 maps S into Tp. Now let a € S, and b € Si. Then

(”’T)(bT) = ({]X”W)ygu(bxﬂ.fv)M;ﬂ
= {((I’X(,Y,’y)(bxﬂxy) ‘ Y S (,Y’;/'}}
= ((ab)Xap) <y = (ab)T

and 7 is a homomorphism. If a7 = b7, then o = 3, and hence a = b. so 7 is
injective. If (aﬁ)ﬁ«x € Tp , then an7 = (ag) 4., » so that 7 is also surjective.
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LEMMA 4.4. Tp =it (Tp).

Proof. The argument here is almost identical to that in the proof of
Lemima 3.2 and is omitted.

LEMMA 4.5. Let S = [Y;Sa, pag], where S, is an arbitrary semigroup for
coery « € Y. Then S is a subdirect product of semigroups S, with a zero
possibly adjoined.

Proof. Define a mapping x by
X:a— (ay) (a€S),

where for a € S,
Wpay i a =7,
ay = )
0 otherwise .
Then v maps S into [[ To, where T, = S, if a is the zero of Y, and
acY
T, = S otherwise. For a € S, and b € Sz we have (ax)(bx) = (ay)(by),

where
AP,y if a >y b@/i.'y if 3>~
a~b, =
i 0 otherwise 0 otherwise

_ {(a%w)(biﬂﬁ,y) if af >+,

0 otherwise,
(ab)(puﬁ,'y if aﬁ Z 7
1o otherwise ,

so that (ax)(bx) = (ab)x. Therefore x is a homomorphism, and it is easy to
sce that it is injective and that the image of S under x is a subdirect product
of semigroups Ty .

LEMMA 4.6. Let V € L(CR) and S € V. Let T be the semigroup S with a
zero adjoined. Then T € YV S.

Proof. Let Yo = {0,1} be a two-element semilattice. Then
T(S x Y-z)/{(s,()) | s€e S}

and hence T €V VS.
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PROPOSITION 4.7. Let S be a normal cryptogroup. Then T.,Tr € (S).

Proof. We may let S = [Y;5,,xa,3]. where S, is a completely simple
semigroup for every o« € Y. If Y is trivial, then obviously 7 = §. Assume
that Y has at least two elements. Let 7€ 7 and I = T. In the notation of
Lemma 4.2, we have I C JI Sa- But for any a € Y, S, is a subsemigroup

a€cl
of S, so that S, € (S). Hence [[ S, € (5), and since I is a regular sub-
a€el
semigroup of the completely simple semigroup [] S . it is itself completely

ael
simple and thus completely regular. Therefore Ie (S). By Lemma 1.2, 7 is
a strong semilattice fy of completely simple semigroups I. Thus. according
to Lemma 4.6, 7 is a subdirect product of semigroups I with a zero possibly
adjoined. Now Lemma 4.6 gives that [° € (I) v . It follows that [V € (S
since (I}, & C (S) for Y is assumed to be nontrivial. Therefore 1.1V € (5.
and hence T € (S). Since Tx is closed under taking of inverses. it follows that

Tr € <S> .
COROLLARY 4.8. If S is a normal cryptogroup, so are T and Tr .

Proof. Let S be a normal cryptogroup. Then (S) is a variety of normal
cryptogroups. By Proposition 4.7, 7 is a normal cryptogroup. Clearly. 7r is
closed under taking of inverses which makes it a completely regular semigroup.
Since 7 is a normal cryptogroup, so must be 7 .

THEOREM 4.9. Let S = [Y:S,, xa.], where S, is a weakly cancellative sem-
group for every a € Y . For w € Q; let 1, be as in Theorem 3.3, and for o € 1.
let w

g = Ta, . With this notation define a mapping ¢ by
So

prw = (an)ner, (weQ(S)).

For (aa),e; € Tr , define a bioperator w by

wr=agr, Iw=2Iag (ze€S,, aeY, ()Nl =(a)).
With this notation define a mapping b by
'l/): (”’(v)(ygl - W ( (()’(")u'?[ € T\' ) :

Then the mappings ¢ and Y are mutually inverse isomorphisms between
Q, and Tr . In this association, 11 corresponds to Tp . Morecover, with v in
Lemma 4.3 and ©: S — Q the canonical homomorphism, we have o = 7.
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Proof.

1. » maps € into Tg . First note that, by Theorem 3.3, we have [, € Ry .
For a € 1, since w € Q;, we have w S, € I1(S,,) . By hypothesis, S, is weakly
C
S = Ta, within S, for a

(03

cancellative and thus weakly reductive, so that w
unique a, . Therefore ¢ is single valued.

Now let w Sy = May and o > B. In view of Theorem 3.3,
i

S, = Tag, W
for any o € S, we have (wr)xa.ps = w(®Xa,z), which implies (M0, X)Xy =
Ta,(\a.g), whence (an2)xaps = ag(xxa,p), and finally (adaXa,p)(@Xap) =
a4('\a.9). One proves similarly that (zxa,3)(@aXa.p) = (rXa.8)ag, which, by
weak cancellation in S, yields aqXa,3 = ag. Therefore (aa),ep, € 7r -

2. v maps Tr into Q;. Let (an)pe; € TR, £ € Sa, Y € Sy . Then aff = a3
since I € Ry, and thus

(wa)y = (ag )y = aw (vy) = (a5 Xaap)ry = ag5 vy = w(zy)

since (aq),e; € Tr - Similarly, z(yw) = (zy)w, and

(rw)y = (zvag)y = z(azy) = z(az Xz,apy) = r(aapy)
= z(a,5y) = v(agxg.59) = zlagy) = z(wy),

which proves that w € Q. It follows easily that I, = I, and thus [ € Ry
implies that I, € Ry , and therefore w € ;.

3. ¢ is a homomorphism. Let (aq)ye s (03)4e, € Tr, and let ()01 = (7),
(y)N.J =(5) for all v €Y. Hence

(MnUIn))=@nhnJ=@nJ=(7),
and similarly ()N (INJ) = (7), so that 5 = 7. For every z € S, we obtain
w(w'r) = wlbar) = azbsr = az (baxz 3)r = azbzr = (ww')x,
and similarly (zw)w’ = z(ww') . It follows that

((‘Lw)ue;ﬂ/’) ((bx'i);;e,llff’) =ww' = ((a'yb')’)'yelﬁ./)q/)’

and therefore ¢ is a homomorphism.
1wy = 1q,(S5) . Indeed, let w € Q;, wp = (aa),e;, and wpP = w’. Further
let €S, and ()N I, = (a). Then

!
WT=agk = Mg, T = WT,
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and similarly zw’ = zw, so that w = w'.

5. Y = i1, - Indeed, let (aq),c; € Tr, (aa)qe ¥
(b3) e s - From Theorem 3.3, we know that I = I, and here also I, = .J.s0
that [ = J. Forany a € Y let (o) NI = (@). Then for any + € S, we have
wr =agzr and 2w = rag. If now «a € I, it follows that w"b‘“ = 7,, . On the

other hand, m,, = WIS(, by the definition of ¢, so that a, = ba - C usequently.

y — w and (an) ety —

VY = LT, -

6. We deduce that ¢ and 1 are mutually inverse isomorphisms between Q,
and 7r . We have seen above that for (aq),c;¥ = w we have I = I, . which
evidently implies that ¢ maps 7p onto II. Therefore, under both » and ¢
IT corresponds to 7p .

7. For any a € S, we have
aty = (aXa,p8)gca ¥ = W,
where for any = € S,, (v) N («) = (ya), and
WET = Ao = (Ao Xa,ay) T, = AT = T,

and similarly zw = xm,. Therefore w = m,, so that atyr = 7,. and thus

T =T,

For the sake of completeness, we introduce
' = {([;w(,) €l | wy €I(S,) forall aec [}.
For the case that S, is weakly cancellative for all « € Y, the mappings

([;7a,) — (”‘0)”@ ) ((I’”)(yel — (I;7a,)

are mutually inverse isomorphisms between 't and 7 . The proof of this as-
sertion follows along the same lines as the arguments above. Moreover. 'y N [y,
= 1";. We present the mappings and inclusions of the various semigroups in
Diagram 1.2

Let S = [Y; 54, \a.3], where S, is an arbitrary semigroup for all a e Y.
If Ry = Py, that is every retract ideal of Y is principal. then Q; = 11 for §.
The converse does not hold in general.

Example 4.10. Let Y = {1,2,...} with the operation of min. For each
neyY let S, ={nn+1,...} with left zero multiplication. and for m > n

2 . e . . . .
2) In Diagram 1, S is a strong semilattice of weakly cancentlative semigroups.
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let Yot Sp — S, be the embedding map. Then S = |J S, is a subdirect
n>1

product of the semilattice Y and the left zero semigroup S, so it is a normal
crvptogroup. There exists no thread T for which 7'=Y . Since {Y'} = Ry \ Py .
we conclude that Ry # Py, but Q; =11 for S.

FP Fl g),, Sl, D TR
I -~ T
I ~__ II P

Diagram 1.

5. Characterizations of {2; for normal cryptogroups

For S = [Y; 54, Xas), where S, is an arbitrary semigroup for every o € Y,
we have defined Q; = ;¢ after Theorem 3.3 with I'; defined in Construc-
tion 3.1. Combining all these definitions, we see that ); consists of those bi-
translations w of S for which w S, € [1(S,) for all a such that wSNS, #0.
It should be noted that ; depends on the way in which S is decomposed into
its subsemigroups S, . In the case such a decomposition may be chosen in a
natural way, we may omit the reference to the semigroups S, . This is the case
when S 1s a normal cryptogroup for, in this instance, we take the Green relation
D which coincides with the least semilattice congruence on S, and in fact, S is
a strong semilattice of completely simple semigroups.

For a normal cryptogroup S, we shall characterize §2; in two interesting
wavs. In addition, we shall see that ); plays the same role for ideal extensions
of S which are themselves normal cryptogroups as € does for arbitrary ideal
extensions. The results here also suggest a generalization of the concept of a
densely embedded ideal and of a dense embedding.
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THEOREM 5.1. Let S = [Y;S5,.Xa.g], where S, is a completely simple semi-
group for every o € Y . Then §; is the greatest normal subcryptogroup of
containing 11 .

Proof. We have observed in Corollary 4.8 that 7x is a normal cryvp-
togroup. According to Theorem 4.9, 7T and €); are isomorphic. Therefore €,
is a normal cryptogroup containing 1I.

In order to establish maximality, let T be a normal subcryptogroup of €
containing II, and let w € T'. In view of Theorem 3.3, we have wy = ({:w,).
where I € Ry . It remains to show that w, € II(S,) for all a € I.

Let o« € I. Then “’|Sﬂ = w,. We may represent S, by a Rees matrix
semigroup and w, by a quadruple (o, p,, ) as in [I; Section V.3]. Let ¢ =
(’i,p;i] ,A) € Sa . Then

(wae) wy = (i, ((p'z')p_,l, )\)Ow = ((xi,]f(lm), /\)w = (o, p;(lm.)(/\zs‘). A3). (1)

w(,(r;w(,)( = w(i, py; L), /\,8) = w(, p(/w o d) = (m /\1:”,../\‘1).

and in view of [1; Proposition V.3.7], we get (wqe)%w, = w,(cw,)”. Now letting
a = (wae)’wq , by [1; Lemma I11.1.6i)], we obtain 7, = 7(y, c)0wa = wa T o
within €(S4). In order to obtain the same type of formula in all of S, we let
x € Sy. Then

(Tweyow)T = T(geyo(wz) = (we N (wr) = (we)'w)e = ar = m,0.

2 (T (weyow) = (T (e Jw = (ar(w(’.)o)w = z((we)’w) = wa = rm, .

and since S is weakly reductive, we deduce that m,.ow = 7,. A similar ar-
gument will yield wm(o,y0 = m,. It follows that 7, < w in the natural partial
order on T'.

By hypothesis w € T, T is a normal cryptogroup and II C T . Hence
7, € T, and in view of [1; Theorem IV.4.3], 7, is the only element of the
D-class of m, majorized by w. If we now start with any idempotent [ in S,
and form b = (wf)’w, we get that 7, D 7, and, as above, 7, < w. so that
T, = T . Since S, is weakly reductive, this yields that a = b. In particular.
(we)'w = (wf)'w. Now writing f = (j, pw i), by (1), we obtain that ai =y
and A3 = pfB. Since f is an arbitrary idempotent of S, , we conclude that
both « and B are constant. Now [1; Theorem V.3.8] gives that w, € II(S,,).
as required. Consequently w € §2;, which finally gives T" C €2, establishing the
maximality of €.
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COROLLARY 5.2. With the hypothesis of Theorem 5.1, ); is the greatest com-
pletely regular subsemigroup T of Q containing 11 for which T € (S) .

Proof. By Theorem 4.9, €; is isomorphic to 7 , and, by Proposition 4.7,
we have T € (S) . Therefore §2; € (5). Let T be a completely regular subsemi-
group of © containing IT for which 7" € (S). Since S is a normal cryptogroup,
T € (S) implies that T is also a normal cryptogroup. Now 7' fits the specifica-
tions in Theorem 5.1 and is thus contained in €;. This establishes the desired
maximality of ;.

Recall the notation 7(V : S) in [1; Theorem III.1.12].

THEOREM 5.3. Let V' be a normal cryptogroup and an ideal extension of S .
Then 7= 7(V 2 8) maps V into Q;(S). Moreover, V' is a mazximal normal
cryplogroup dense extension of S if end only if T is an isomorphism of V' onto
Q;(9).

Proof. First V7 is a normal cryptogroup and a subsemigroup of (5)
containing TI(S). Now Theorem 5.1 implies that V7 C €,(5).

Next assume that V' is a maximal cryptogroup dense extension of S. By
[1: Corollary I11.5.5], 7 is injective. If V7 is a proper subsemigroup of €2,;(5),
we can define a multiplication on V U (Q,,;(S) \ VT) in an obvious way making
it a normal cryptogroup dense extension of S which contradicts the assumed
maximality of V. Therefore 7 is an isomorphism of V' onto €;(5).

Conversely, suppose that 7 is an isomorphism of V' onto €2;(S). According
to [1: Corollary II1.5.5], V is a dense extension of S. Let U be any normal
cryptogroup dense extension of S containing V. By the above, 7 is an iso-
morphism of U into €2,;(S). Since 7
establishes the maximality of V.

v = 7, we must have that U = V. This

Recall the concept of a densely embedded ideal in [1; Definition I11.5.8].

A monomorphism ¢ of a semigroup S into a semigroup T is a densc em-
bedding it S¢ is a densely embedded ideal of its idealizer in T .

The above results suggest a natural extension of these notions involving va-
rieties of (completely regular) semigroups as follows.

DEFINITION 5.4. Let V € L(CR) and S € V. If T is a dense extension of
S with the properties: T € V, and if V € V is a dense extension of S which
contains 1", then T = V| and then S is a V-densely embedded ideal of T .
If °Q € V,and ¢: P — @ is an embedding such that Py is a V-densely
cmbedded ideal of its idealizer in @, then ¢ is a V-dense embedding of I
nto Q.
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THEOREM 5.5. Let V € L(NBG) and S € V. Then 11 is a densely embedded
ideal of Q;, and the mapping T in Lemma 4.3 is a V -dense embedding of S in

T.

Proof. This follows directly from Theorem 5.3. Lemmas 4.3 and 4.4. and

Proposition 4.7.
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