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(Communicated by Tibor K a t r i ň á k ) 

ABSTRACT. Given a norma l cryptogroup S , we write it as [Y; Sa, x<*,p] •> t n a t 

is as a strong semi lattice of completely simple semigroups. We construct the 
translational hull il(S) of S when S is given in this form and specialize this 
construction when all x<x,/3 a r e injective, t h a t is when S is a subdirect product 
of a semilattice and a completely simple semigroup. We consider threads in S 
which, under the multiplication of complexes, provide an isomorphic copy of a 
remarkable ideal Q-i(S) of Q(S) . We also consider some other ideals of il(S) . 
These results are then used to establish several properties of the semigroup Qt (S) 
including its position within Q(S) . 

1. Introduction and summary 

For any semigroup 5 , the translational hull Q(S) of S consists of all bitrans-
lations uo = (A, p) , where A is a left translation of S, p is a right translation 
of S. and they are linked in the sense that (ap)b = a(Xb) for all a, b G S. We 
write A on the left and p on the right. The product of two bitranslations is 
by components, where left (resp)ectively right) translations are composed as left 
(respectively right) operators. The semigroup Q(S) plays an essential role in 
the study of ideal extensions. For an extensive discussion, see [1]. 

If we restrict the above semigroup S to belong to a class of semigroups for 
which there is a sufficiently explicit structure theorem, we may be able to use 
the ingredients in that theorem for constructing i}(S) in a relatively transpar­
ent, way. Let S be a completely regular semigroup in which T~i is a congruence 
and S/7i is a normal band; in short we refer to S as to a normal cryptogroup 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 20M10. 
K e y w o r d s : Cryptogroup, Translation. 
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(or normal band of groups). These are precisely semigroups which can be ex­
pressed as strong semilattices of completely simple semigroups, and we may set 
S = [Y; S(Jn Xa.fi] • This is a special case of a semilattice of weakly reductive semi­
groups whose translational hull wras studied in [2j. When each Sa is a group, a 
construction of il(S) can be found in [1; Section V.6]. 

We concentrate here on the translational hull of a normal cryptogroup written 
m the form S = [Y; Sai Xa,fi] •> that is as a strong semilattice of completely 
simple semigroups. The main novelty here is the introduction of certain ideals 
of il(S) which exhibit remarkable properties. For wre may ask for that part of 
the translational hull of S which plays the same role for ideal extensions of S 
which are normal cryptogroups as Q(S) for arbitrary ideal extensions of S . 
We succeed in finding such an object, Q{(S), and for it provide an alternative 
construction. 

Section 2 contains a brief compendium of concepts and notation used through­
out the paper. In Section 3, we extract a construction of the translational hull 
of a strong semilattice of weakly reductive semigroups from two results in [2j. 
In addition, we specialize that construction to regular semigroups which form a 
subdirect product of a semilattice and a completely simple semigroup. Threads 
in a strong semilattice of (arbitrary) semigroups are introduced in Section 1 and 
are applied to our situation giving some new insights into the nature of the ideal 
ilt(S) of i}(S). Some of these results are used in Section 5 to establish sev­
eral interesting properties of Qi(S) including statements concerning its position 
within i}(S). 

2. Terminology and notat ion 

For any set X, ix denotes the identity map on X . 

Let Y be a semilattice. For every a £ Y let Sa be a semigroup and as­
sume that Sa n Sp = 0 if a 7-= /3. For any a. (3 G Y such that a > 3. let 
Xa.6: S(* ~* Sp be a homomorphism satisfying 

Xa,a = iSa , Xa,i3Xl3,7 = X<*,7 l f ^ > P > 1 • 

On the set S = (J Sa , define a product by 
a e Y 

a*b= (ax<x,ap)(bXp,ap) if a e Sa , b e Sp . 

Then S is a semigroup called a strong semilattice Y of semigroups Sa with 
structure homomorphisms Xa,p • We denote S by [Y; Sa, Xa.fi] and its product 
by juxtaposition. 
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If a £ Y , (a) denotes the principal ideal of Y generated by a. An ideal I 
of Y is a retract ideal if (a) n 7 is a principal ideal of Y for every a £ V . We 
shall use the notation: 

2y ideals of Y , 7£y - retract ideals of Y , FV principal ideals of Y 

under the operation of set theoretical intersection. 

Now let S be an arbitrary semigroup. A mapping A (respectively p) written 
on the left (respectively right) is a left (respectively right) translation of S if 
X(xy) = (Xx)y (respectively (xy)p = x(yp)) for all x,y £ S . If also A and p 
are linked in the sense that (xp)y = x(Xy) for all x,y £ S , then a; = (A, p) is 
a In translation of S . We shall consider uo as a bioperator on S with CJX = Xx 
and ./-a; = xp for all x £ S . The set fi(S) of all bitranslations of S with 
componentwise composition is the translational hull of S (evidently il(S) is a 
semigroup). 

For every a, £ S , define Aa , p a and na by 

Aa.x = ax , x'pa = xa (x £ S ) , 

~~a = (Aa,Pa) • 
rrhen 7ra is an inner bitranslation of S and the set II(S) of all 7ra with a £ S 
is the inner part of 12(S). 

We shall be concerned with the translational hull il(S) of a semigroup S 
which is a strong semilattice Y of semigroups Sa . These semigroups Sa will 
sometimes satisfy certain familiar conditions: weak reductivity, weak cancellation 
or complete simplicity. In order to simplify the notation, we shall write Q and 
II instead of Q(S) and II(S) , but for all other semigroups T , Sa. e t c we shall 
write the full notation ft(T), ft(Sa), U(T), I I (S a ) , e t c 

For any subsemigroup T of a semigroup S , 

isCT) = {s e S I st, ts £ T for all t £ T} 

is the idealizer of T in S (the greatest subsemigroup of S having T as an 
ideal). We denote by S° the semigroup S with a zero adjoined. 

Let S be a completely regular semigroup, that is a semigroup which is the 
union of its (maximal) subgroups. For a £ S denote by a" 1 the inverse of a 
in the 7i-class of O, and let O° = OO_1 . Completely regular semigroups under 
multiplication and this inversion form a variety denoted by C7Z . The lattice of all 
subvarieties of C1Z is denoted by £(C1Z) ; (S) is the variety generated by S . The 
member of £(C1Z) consisting of all semilattices is denoted by S. A completely 
regular semigroup S in which 7i is a congruence and S/Ti is a normal band 
(that is satisfies the identity axya = ayxa) is a normal cryptogroup; the variety 
of all such is denoted by J\fBQ . 

All the undefined concepts and notation can be found in [1]. 
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3. The translational hull of two special semigroups 

We are generally interested in a construction of the translational hull of a 
normal cryptogroup S in terms of the translational hull of the underlying semi-
lattice Y and the translational hulls of the completely simple components Sa 

of S. To this end, we represent S as [Y; Sa, Xa,p] ~ the strong semilattice of 
completely simple semigroups, and note that the translational hull of Y can 
be represented by retract ideals of Y (see [1; Lemma V.6.1]). Moreover, we 
have considered in [2] the more general situation of the translational hull of a 
semilattice of weakly reductive semigroups. From the results of that paper we 
extract an explicit construction of the translational hull of a strong semilattice 
of weakly reductive semigroups in the first result of this section. We then spe­
cialize sharply to an even more explicit construction of the translational hull of a 
regular semigroup which is a subdirect product of a semilattice and a completely 
simple semigroup. 

CONSTRUCTION 3.1. Let S = [F; Sa, Xajl] , where Sa is an arbitrary semi­
group for every a E Y. Let F be the set of all (I;uja)

 XI , where I G Xy and 
uja G Q(Sa) for each a G I, satisfying the following condition: for every a G Y . 
write uja = (Aa, pa), and for any a > j3 in Y and 6 G {A, p} , the diagram 

^a. ~ v ^a 

Xa,ß Xcy,ß 

Sp — • — > Sp 

commutes. Define a product in F by 

(I;oja)(I';uj'a) = (mr;ujaLu'a). 

Simple verification shows that F is a semigroup. 

We now single out the following subsets of F : 

rn = {(/;w„)er| ienY}, 
rp= {(];Lua)GF\ I&VY), 

Ti = {(/;u;„) G T | I € 1ZY , wa e n(5„) for all a £ /} . 

rn = rp n r,;. 

x ) W e shall use the simplify notation (J;u>«) instead of (/; (a.v,)„ey) . which is moie 
precise. 
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Since IZY is a subsemigroup of Xy , we have t h a t YQ is a subsemigroup of 
F . Also, since VY is an ideal of IZY , we get t h a t Yp is an ideal of YQ . Finally , 
since II(.S^) is an ideal of ft(Sa) for every a G I, Yi is an ideal of YQ . T h e 
relat ionship between Fn a n d YQ is t he content of the next lemma. 

L E M M A 3 .2 . r ^ = ir(Yn). 

P r o o f . We remarked above t h a t b o t h Yp and Yi are ideals of Y^ , and 

hence Y\\ is an ideal of YQ . Let (I;uja) G i r ( r r i ) • Let j3 G Y and a G Sp . 

Then (( /3);7r a x ,1 a) G Tn and by hypothesis (I H ((3),uja7raXfl ck) G TI I . Hence 

/ H (/?) G FV , and since /? G 7 is arbi t rary , we ob ta in t h a t / G 7£y . But then 

(I\uj(y) G Tc> , as required. 

Wi th the no ta t ion in Cons t ruc t ion 3.1, we now ext rac t from [2; Theorems 1 

and 2, and their proofs] t he following result . 

Recall t h a t a semigroup S is weakly cancellative if ax = bx, ya = yb in S 

implies a = b. We have used in the proof of Theorem 3.5 t h a t completely simple 

semigroups are weakly cancellative. 

THEOREM 3 . 3 . Let S = [Y; Sa,Xa,p] ? where Sa is a weakly reductive semi­

group for every a G Y . For any w G l l , let 1^ = {a G Y \ LJS n Sa ^ 0} , and 

define a mapping ip by 

cp: UJ —> ( i ^ ; UJ\S ) (COG il(S)) . 

Let (F;LJ(V) G YQ . and for any a G i " ivrile ( a ) D / = ( a ) . Define a bioperator 
uj by 

UJO = U)a (aXa,a) • a ^ = ( « X a , a ) w a ( a G S Q , a G Y ) . 

With this notation define a mapping i\) by 

ip : (I; uja) -> UJ ( (I; uja) ETQ). 

Then the mappings ip and ib are mutually inverse isomorphisms between Q and 

Y^i . In this association, YI corresponds to Tri . 

P r o o f . The derivation from the reference cited above is left to the inter­
ested reader. 

Theorem 3.3 makes it possible to single out two remarkable ideals of {}: 

tip = Ypip , Qi = Y{ip . 
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The last assertion of Theorem 3.3 yields i1p Pi fî  = 11. Note that Qp consists 
of those bitranslations which induce a principal ideal on Y , whereas 11, con­
sists of the bitranslations which restricted to Sa for each a G l^ is an inner 
bitranslation of Sa . 

We shall now consider a special case which will help illustrate the gen­
eral situation as treated above. It is the case of a sturdy composition of com­
pletely simple semigroups, that is S = [Y] Sa,Xa,fi] a s above with Sa a com­
pletely simple semigroup for every c i G F , and Xc*,/3 1S injective for all choices 
a > f3 . According to [1; Theorem IV.51], sturdy compositions of completely sim­
ple semigroups coincide with regular semigroups which are subdirect products 
of a semilattice and a completely simple semigroup. The latter, by [1; Corol­
lary IV.5.3], are precisely those given by the following device. 

CONSTRUCTION 3.4. Let Y be a semilattice, T be a completely simple 
semigroup, 1Z(T) be the partially ordered set of all regular subsemigroups of T 
ordered by inclusion, r]\Y-+ 1Z(T) be an order inverting function for which 
|J arj = T , and set 

aeY 

S = {(a, a) G Y x T \ a G arj} . 

Denote S by (Y,r/,T). 

Let A be the set of all (1,9), where I G IZy . and 8 G i1(T) satisfying the 
following condition: for every a G Y, let (a) fl I = (a), then / G ar\ implies 
Ot, tO G arj. Define a product in A by the formula 

(I,LJ)(I',U') = (lnl',u'J). 

It follows easily that A is a semigroup. Also let 

Ac, = {(/ ,#) G A I IeUy}, 

A p = {(/ ,£) G A | / G P r } , 

A7 = {(TO) G A | I e1ZY , 0\arj € n < > / ) for all a G Y} . 

An = A p n Ai. 

Analogous statements to those after Construction 3.1 are valid for the sets 
Aq for q G {il,p, z , n } . Below blank spaces indicate that the omitted entry is 
of no importance for our purposes. 
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T H E O R E M 3 . 5 . Let S = (Y,rj,T) be as above. For LO £ ft define 

I = {a £ Y | u(j3,t) = (a, ) for some (f3,t) £ 5 } 

and. a bioperator 6 on T by the formulae 

u(a,t) = ( ,6t), (a,t)uo = ( ,t6) 

for some (a, t) £ S . With this notation define a, mapping ip by 

ip:u-+(I,0) (a; Eft). 

For (TO) £ Ao. and a £ Y ; let (a) H I = (a) , and define a bioperator uo by 

uo(a, t) = (a, 6t), (a, t)uo = (a, tff) ((a,t) £ S). 

With this notation define a mapping IJJ by 

I/J:(I79)^LO {(1,0) e A n ) . 

Then ip and JJJ are mutually inverse isomorphisms between Q and A Q . In this 

association, we have the correspondence 

Qp <—-> Ap , Qi <—> Ai, II <—> An • 

P r o o f . 

1. p is single valued. In order to make use of Theorem 3.3, we now convert 
t he given nota t ion to t h a t of the cited theorem by in t roducing the following 
symbolism. For every a £ Y let 

Sa = {(a,t) | t £ arj} , 

and for rv > [3 in Y 

Xajr- (a,t) - • (P,t) (tear,). 

Simple verification shows t h a t these define a s t rong semilat t ice and [Y; Sa, x<y,fi\ 
= S. 

Let UJ £ ft. It is easy to see t h a t I defined in t he s t a t emen t of the theorem 
coincides with Iu . Let t £ T. By the condit ion on rj, there exists a £ Y such 
that (aj) £ S. In order to prove t h a t (p is single valued, we suppose t h a t also 
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((3,t) G S. Letting (7) n / = (7) for all 7 G Y, by Theorem 3.3, we have that 
Lo(a,t) = (a, a) and uo(j3,t) = ((3,b) for some a,b £ T . Then 

[uo(a, t)] (13, t) = (a, a)(f3, t) = (a/3, at), 

[Lo(f3,t)](a,t)=(p,b)(a,t)= (0a,bt), 

(a,t)((3,t) = (a0,t2) = (/3,t)(a,t), 

so that at = 6t. We also have (a,t)u; = (57, a') and (/3, t)uj = (/3, 6') for some 
tt',6' G T . By an argument similar to the one above, we obtain to! = tbf. 
Further, 

[(a, t)uo] (13, t) = (a, a')([3, t) = (ad, a't), 

(a,t)[uo((3,t)] =(a,t)(]3,b) = (a'B,tb), 

and thus a't = t6. We analogously get 6't = ta. Hence 

t2a = t(ta) = t(b't) = (tb')t = (ta')t = t(a't) = t(tb) = t 26, 

which together with at = 6t in the completely simple semigroup T implies that 
a = 6. Therefore 99 is single valued. 

2. (/? maps Q, into AQ . We have noted above that I = Iu , and hence, by 
Theorem 3.3, we have / G 1Zy • Simple verification shows that 0 G £2(T). Let 
OJ G Y and t G CY77. Then (a, t) £ 5 and a;(a, t) = (5, 0t) G S, so that r?i £ arj: 
analogously tr9 G 57r/. Therefore (J, 0) G Ac^. 

3. i\) maps AQ into Q. For (cr,t) G 5 , we have u;(a,t) = (57,01) G 5 
and (rr,1)u; = (57, tO) G 5 by the hypothesis that (1,0) G A^ • Now for 
(a, .s), (/?, t) G 5 , we obtain 

[*(<*,*)] (jM) = (a,9s)(M = (^AOs)t) = (aT3,0(st)) 

= Lo(ap,st)=Lo[(a,s)((3,t)], 

:>1IT11 ilarly (a,s)[(/3,t)u;] = [(a, s)(/3, t)]uu , and 

[(a, s)w] (ß, t) = (ã,s )(ß,t) = (ãß,(s )t) = (aß,s( t)) 

= (a,s)(ß, t) = (a,s)[uo(ß,t)]. 

Therefore u G fi . 
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4. x/) is a homomorphism. Let (J, 0), (J', 0') G A^ and (J, 0 )^ = cO , ( J ' , 0 ' ) ^ 
= u/ . For any a G F let (a)fl J = (a) and ( a ) n J ' = (a) . Hence ( a ) n ( J n J') = 
(a) with a = a. Now, for any (a, I) G *S we obtain 

cj(u/(a,£)) =uu(a,0't) = (a,69't) = (uouo')(a,t), 

( ( a , f > ) u / = (a,£0)u/ = (S, t00 /) = (a,J)(c«V), 

which implies that tp is a homomorphism. 

5. cpT/'; = /,̂  • Indeed, for w G l l we have cOcp̂  = (J, 0)0 = a;', where, with 
(a) n J = ( a ) , for (a,£) G S we get a/(a,£) = (a, 0i) = a;(a,7;), and similarly 
(a, /)LI/ = (a, t)uo . Therefore uo = uof, and thus <£?0 = LQ . 

6. 0(̂ > — LAi2 • Indeed, for (J, 0) G A^ we have (J, 0)^(/? = cOcp = ( J ' , 0 ' ) , 
whence we easily obtain that 1 = 1' and 6 = 9'. Therefore 0<^ = /^r2 . 

7. We now deduce that cO and -0 are mutually inverse isomorphisms between 
1 and An . 

8. The claim concerning the correspondence of the three sets follows without 
difficulty. 

COROLLARY 3.6. Je l S be a regular semigroup which is a subdirect product of 
a semilattice Y and a completely simple semigroup T . Then Q(S) is isomorphic 
to a subsemigroup of IZY X f2(T) whose projection into 1ZY is surjective. 

P r o o f . In view of Theorem 3.5, it remains to prove only the last assertion 
of the corollary. Indeed, for any J G 1ZY the pair (J, tT) satisfies the condition 
for membership in An . 

4. Threads 

For a semigroup S = [Y; Sa, Xa,/3] given as a strong semilattice we shall con­
struct a semigroup, based on this decomposition of S, which has some remark­
able properties. Then we shall establish its relationship with the translational 
hull of S. 

DEFINITION 4.1. Let S = [Y; Sa,Xaji] , where Sa is an arbitrary semigroup 
for every a G Y . A thread T in S is a nonempty subset of S satisfying 

(i) a G Sa n T , a > (3 => axa,p G T , 
(ii) \T n Sa\ < 1 for every a G Y . 

Denote by T the set of all threads in S with the multiplication of complexes. 
For each T G T, let 

T={aeY\ Tf)Sa^$}, 

Tn = {T eT\ T eTlY}, Tv = {T e T | T GVY}-
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Note t h a t for T G T, T is an ideal of Y in view of condit ion (i) in its 
definition. T h a t T is closed under its mult ipl icat ion will follow from the next 
result. 

L E M M A 4 . 2 . For T = (ta)neI and K = {kp)peJ in T we have TK = 

( M : 7 ) 7 e / n . / • FoT every I e Zy let 

T={T eT\ T = 1}, % = {I e IY I / T4 0} • 

/ / I G IY ; then I is a sub semigroup of \\ Sa . For 7, J G Ay such that I D J . 
aei 

define a function ^ / , j by 

*/,./: ( l „ ) r t G / - (!«)„eJ ( ( f „ ) o 6 / e f ) . 

We can construct a strong semilattice of semigroups Q = [Zy; A \&/,j J . Then 

T is a semigroup which coincides with Q . 

P r o o f . Let T and K be as in the s t a tement of the lemma. Trivially. 

( l 7 k 7 ) InJ C TK. Conversely, let ta G T D Sa and kp G K C\ Sj . Then 

takfi = (txa,ap)(k(ixp,ap), where tx<x.ap € T D Sa/3 and k^XtXa,! € K H Sn.i 

with a/3 G I n J . Therefore î /fy-, E ( I 7 k 7 ) eInJ- This establishes the first 

assert ion of the lemma. 

It now follows t h a t if I G Ay , then / C [ ] Sa , and t h a t Ay is a sub-
aei 

semilat t ice of Ay . Obviously, T and Q coincide as sets, and with the above 
nota t ion , 

TK = ( t 7 f c 7 ) 7 6 / n J = ( i 7 ) 7 G / n J ( f c 7 ) 7 6 / n J = ( T * / . / n , / ) ( A - * . / . / n J ) . 

so t h a t their mult ipl icat ions agree. 

L E M M A 4 . 3 . The mapping 

T: a-> {ax<x,p)p<a ( a G Sa , a G Y ) 

is an isomorphism of S onto Tp . 

P r o o f . If a G Sa , then clearly ar is a th read in S and oT = (a ) . Hence 

T maps S into Tp . Now let a G Sa and b G S^ . Then 

(aT)(6T) = («Xrv,7)7<a(bX/?.^)^< / j 

= {(aXa^)(bx^n) | 7 < Oifi} 

= ((ab)XaPn)1<nfj--= (ab)r, 

and T is a homomorphism. If ar = br, then a = /3, and hence a = b. so T is 

injective. If (a^)^<a G Xp , t hen aar = (ap)^<a , so t ha t T is also surjective. 
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L E M M A 4.4. Tn = irijv) • 

P r o o f. The argument here is almost identical to that in the proof of 
Lemma W.2 and is omitted. 

LEMMA 4.5. Let 5 = \Y',Sa,(pa,p\, 'where Sa is an arbitrary semigroup for 
every a £ Y . Then S is a subdirect product of semigroups Sa with a zero 
possibly adjoined. 

P r o o f . Define a mapping \ by 

X: a -> (aa) ( a E S ) , 

where for a £ Sa 

apa^ if a > 7 , 
0 otherwise. 

Then \ maps S into Yl Ta , where Ta = Sa if a is the zero of Y, and 
aeY 

Tn = Sa otherwise. For a £ Sa and b £ Sp we have (Ox)(bx) — ((h)(°j) ? 
where 

f a(^a:,7 if LT > 7 1 f 6 ^ , 7 if /? > 7 1 
7 7 | 0 otherwise J [ 0 otherwise J 

J ( a ^ a , 7 ) ( 6 ^ , 7 ) if CT/3 > 7 , 

1 0 otherwise, 

J (ab)tpapn if a/3 > 7 , 

1 0 otherwise, 

so that (0'XXbx) = (°'b)x • Therefore x is a homomorphism, and it is easy to 
see that it is injective and that the image of 5 under x ls a subdirect product 
of semigroups Ta . 

LEMMA 4.6. Let V e C(C1Z) and 5 G V . Let T be the semigroup 5 with a 
zero adjoined. Then T G V V S . 

P r o o f . Let Y>2 = {(), 1} be a two-element semilattice. Then 

r= - (Sxy 2 ) / { (s ,o ) I ses}, 

and hence T E V v 5 . 
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PROPOS IT ION 4 .7 . Let S be a normal cryptogroup. Then T , Tn G (S) . 

P r o o f . We may let S = [F ; Sai XOL,Q] •• where Sa is a completely simple 

semigroup for every « G F . If V is trivial, then obviously T = <S. Assume 

tha t Y has at least two elements. Let T G T and I = T. In the nota t ion of 

Lemma 4.2, we have I C J | S^ . Bu t for any a G Y , 5 rv is a subsemigroup 

of 5 , so t h a t Sa G ( 5 ) . Hence Yl S<* ^ (^) > a r-d since ^ i s a regular sub-

semigroup of the completely simple semigroup Yl $a ? it is itself completely 

simple and thus completely regular . Therefore 1 G (S) . By Lemma 1.2. T is 

a s t rong semilat t ice Ty of completely simple semigroups I. Thus , according 

to L e m m a 4.6, T is a subdirect product of semigroups I with a zero possibly 

adjoined. Now L e m m a 4.6 gives t h a t I0 G (I) V S . It follows t ha t I° G (S) 

since ( I ) , 5 C (S) for y is assumed to be nontrivial . Therefore I.I° G (S) . 

and hence T G ( 5 ) . Since TJZ is closed under taking of inverses , it follows that 

Tn e ( 5 ) • 

COROLLARY 4 .8 . If S is a normal cryptogroup. so are T and TR . 

P r o o f . Let S be a normal c ryptogroup . Then (S) is a variety of normal 

cryptogroups . By Proposi t ion 4.7, T is a normal c ryptogroup. Clearly. TR is 

closed under taking of inverses which makes it a completely regular semigroup. 

Since T is a normal cryptogroup, so must be TJZ . 

THEOREM 4 .9 . Let S = [Y: Sa, Xa,p] > where Sa is a weakly cancellativc semi­

group for every a G Y . For to G Hi let Iu be as in Theorem 3.3, and for a G F. 
let UJ\U = 7Ta . With this notation define a mapping Lp by 

if: uJ -> (aa)aeluj (u; G at(S) ) . 

For (aa)ae] G TJZ , define a bioperator LU by 

LUX = aax , XLO = xaa ( x G Sa , a G Y , ( a ) H I = (a) ) . 

IVi/b /bis notation define a mapping V' by 

^: k U / ~» ^ ((fl4e/
 G T ^) • 

Then the mappings up and, rij are mutually inverse isomorphisms between 

il.x and TJZ • In this association, 14 corresponds to Tp . Moreover, with r in 

Lemma 4.3 and TC: S —•> il the canonical homomorphism, we have rv = TT . 
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P r o o f . 

1. y? maps Hi into Tn . Firs t note t h a t , by Theorem 3.3, we have L G JlY . 

For a G L . since UJ G Hi, we have UJ\ q G U(Sa). By hypothesis , Sa is weakly 
1 &a. 

cancellative and thus weakly reductive, so t h a t uj\g = ^a(y within S(y for a 

unique aa . Therefore cD is single valued. 

Now let uj\o = IT(1 , u)\q„ = ixa* and a > ft. In view of Theorem 3.3, 

\>oa
 n i^fl 

for any x G Sa we have (u>x)xa,fl = ^(xXa,fl), which implies (-n:anx)xa,fl = 

^...-.(•' 'Wri), whence (aax)xa,fl = <ifl(xXoL,fl), and finally ( a^x^O^Xr* , /* ) = 

a^( . r \a . /^)- ° n e proves similarly t h a t (xXa,/3)(aQXa,/3) = (xX<*,fl)afl i which, by 

weak cancellation in Sp , yields aaXa.,fl = a/? . Therefore ( a a ) a e i w G T R . 

2. </' maps Tn into n* . Let ( a a ) a 6 / G 7 ^ , x e S a , y £ Sp . Then a/3 = «/ i 

since I G 7£y , and thus 

(u)x)y = (aax)y = aa(xy) = (aaXa,afl)xy = a-^xy = UJ(XAJ) 

since (aa)aeI G Tn . Similarly, x(yuj) = (xy)uj, and 

(xu;)y = (xaa)y =- x(a^y) = x(aaXa,afly) = x(aapy) 

= X(aaflV) = x(aflXfl,afly) = X(afly) = X^y) ' 

which proves t h a t cO G - 1 . It follows easily t h a t 1^ = I, and thus / G 7£y 

implies t ha t 1^ G 7£y , and therefore CO G Qi . 

3. 0 is a homomorphism. Let ( a « ) a G / , (bfl)fleJ € Tn , and let (7) n / = ( 7 ) , 

(7) n J = (7) for all 7 G F . Hence 

(7) n (/ n J) = (7 n /) n J = (7) n J = (9) , 

and similarly (7) n ( / H J ) = ( 7 ) , so t h a t 9 = 7 - F o r e v e l T *x G ^ w e o b t a m 

u;(u/z) = u)(bax) = a~bax = a^(baxa^)x = a-b^x = (UJUJ')X , 

and similarly (XUJ)UJ' = x(cOcc/) . It follows t h a t 

((a^)aei^)((h)fleJ^) = ""' = ( K M 7 G y r n . / ) ^ ' 

and therefore I/J is a homomorph i sm . 

•1. ^-0 = LU^S) . Indeed, let cO G Qi, cO(/? = (aa)aEI^ and cOc /̂; = a/ • Fur ther 

let x G S„ and ( a ) n L = (a). Then 

u/;x — a-^x = n(Lax = LUX , 
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and similarly XLO' = XLO, so t ha t LO = • LO' . 

5. t/jif = iTlz . Indeed, let (aa)n€l G Tn , (an)neIil> = u and (art)nGIi'r = 

(bp)pej • From Theorem 3.3, we know t h a t 7 = I„ , and here also I^ = J . so 

t h a t I = J. For arry a G Y let ( a ) n I = ( a ) . Then for any -I' G S,> we have 

LUX = aax and XLO = xaa. If now a G / , it follows t h a t ^ | 5 n — ^ o • ®n t n ( 

other hand, nh = cv\ o by the definition of ip , so t ha t aa = ba . Consequent 1 v. 

1JJLP = iTlz . 

6. We deduce t h a t p and ip are mutua l ly inverse isomorphisms between il, 

and TR . We have seen above t h a t for (a(y)aeIi> = u; we have I = L^ which 

evidently implies t ha t ^ maps 7 ^ onto I I . Therefore, under bo th ^ and r . 

II corresponds to Tp . 

7. For any a G Sa we have 

a r ^ = (aXcy.,p)fj<aV = ^ > 

where for any x G /57 , (7) D (a) = (70:) , and 

LUX = aiax = (aaXa,a-r)x 7 = ax = nax , 

and similarly XLO = xna . Therefore cO = Tfa , so t h a t a,Tip = TT(1 , and thus 

T-0 = Tr. 

For the sake of completeness, we in t roduce 

TT = {(I;ua) G F | t ^ G I I ( S a ) for all a. G / } . 

For the case t h a t Sa is weakly cancellative for all a G Y . the mappings 

(7; 7TaJ -> ( a r t ) a e / , K*)«(E/ -^ ( ^ 7Tn0 ) 

are mutual ly inverse isomorphisms between Vx and T. The proof of this as­

sertion follows along the same lines as the a rguments above. Moreover. I V 0 To 

= Tj . We present the mappings and inclusions of the various semigroups in 

Diagram 1. 2) 

Let S = [Y; Sa,X(\.;.j] , where Sa is an arbi t rary semigroup for all o G ) . 
If IZY — VY 7 t h a t is every re t ract ideal of Y is principal, then i\t = II for .S . 
The converse does not hold in general. 

E x a m p l e 4.10. Let Y = { 1 , 2 , . . . } with the operat ion of min. For each 

n G Y let Sn = {n, n-f- 1, • • • } with left zero mult ipl icat ion, and for rn > // 

2> In Diagram 1, S is a strong semilattice of weakly cancentlative semigroups. 
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1^1 \'•//..,?..: Srn —> Sn be the embedding map. Then S = 1J Sn is a subdirect 
n > l 

product of the semilattice F and the left zero semigroup S, so it is a normal 
cryptogroup. There exists no thread T for which T — Y . Since {Y} = 7Zy\Vy , 
we conclude that 7£y / FV , but Q? = II for S. 

Diagram 1. 

5. Characterizations of 0? for normal cryptogroups 

For S = [F; S^x**/?] 5 where Sa is an arbitrary semigroup for every a G F , 
we have defined Q?; = T ^ after Theorem 3.3 with T? defined in Construc­
tion 3.1. Combining all these definitions, we see that Q? consists of those bi-
translations uo of S for which uj\g £ U(Sa) for all a such that cuSnSa ^ 0. 
It should be noted that ilj depends on the way in which S is decomposed into 
its subsemigroups Sa . In the case such a decomposition may be chosen in a 
natural way, we may omit the reference to the semigroups Sa . This is the case 
when S is a normal cryptogroup for, in this instance, we take the Green relation 
D which coincides with the least semilattice congruence on S, and in fact, *SY is 
a strong semilattice of completely simple semigroups. 

For a normal cryptogroup S, we shall characterize f]?; in two interesting 
ways. In addition, we shall see that ft{ plays the same role for ideal extensions 
of S which are themselves normal cryptogroups as Q does for arbitrary ideal 
extensions. The results here also suggest a generalization of the concept of a 
densely embedded ideal and of a dense embedding. 
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T H E O R E M 5 . 1 . Let S = [Y; Sa,X(x,fi] ? where Sa is a completely simple semi­
group for every a £ Y . Then fl; is the greatest normal subcryptogroup of il 
containing U . 

P r o o f . We have observed in Corollary 4.8 t ha t 7 ^ is a normal cryp-

togroup. According to Theorem 4.9, TJZ and R,; are i somorph ic Therefore Q, 

is a normal c ryptogroup containing I I . 

In order to establish maximality , let T be a normal subcryptogroup of il 

containing I I , and let UJ £ T. In viewT of Theorem 3.3, wre have UJ^J = ( I ; o : 0 ) . 
where I £ Tly . It remains to show t h a t uja £ \\(Sa) for all a £ I. 

Let a £ I. T h e n uj\q = uja . We may represent Sa by a Rees matr ix 
1 ^(X " ' 

semigroup and uja by a quadruple (a, up, ip, (3) as in [1; Section V.3]. Let e = 

\i,p~l,\) £ Sa. T h e n 

(ujaefuja = (ai,(tpi)p~l,\) UJ = (ai,p~{ai), \)UJ = (ai,p~{(H)(\il>),\3)< (1) 

cO a(e^ v)° = u)(i,plt(\ijj), \fl) = uj(i,p-^3)i, A/?) = (at, (upi)p-^j)t, \3) , 

and in view of [1; Proposi t ion V.3.7], we get (ujae)°uja = uja(euja)
{). Now letting 

a = (uuae)0uja , by [1; L e m m a III . l .Gii)] , we obta in TT(1 = 7T^^ey)UJa = uJan[r^n)n 

within Q(Sa) . In order to obta in the same type of formula in all of S, we let 

x £ S<$ . T h e n 

(K(ue)oU;)x = 7T^ey)(uJx) = (uje)°(ujx) = ((uje){)Uj)x = (IX = 7TaX . 

x(n(ojc)°v) = (x7r^e)o)u = (x(uje)°)uj = x((uje){)uj) = xa = xna , 

and sirrce S is weakly reductive, we deduce t ha t 7T(U(,y)U) = na . A similar ar­

gument will yield uJ7i(euj)o = i\a . It follows t ha t i\a < UJ in the na tu ra l part ial 

order on T. 

B y hypothesis UJ £ T, T is a normal cryptogroup and II C V Hence 

7ra £ T, and in view of [1; Theorem IV.4.3], 7va is the only element of the 

V -class of 7ra majorized by UJ . If we now s tar t wi th any idempoten t / in Sa 

and form b = (ujf)°uj, we get t h a t TT(1 V nn and, as above, TX\} < UJ . so that 

7va = Tib. Since Sa is weakly reductive, this yields t h a t a = b. In par t icular . 

(UJC)°UJ = (ujf){)uj . Now wri t ing / = (jf,p~*, /-0 , by (1 ) , we obta in t h a t at = (\j 

arrd A/3 = p/3. Sirrce / is an a rb i t ra ry idempoten t of Sa , we conclude that 

bo th a arrd /3 are cons tant . Now [1; Theorem V.3.8] gives t h a t uja £ II(,S'a). 

as required. Consequent ly UJ £ f̂  , which finally gives T C Qt establishing the 

maximali ty of fl; . 
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COROLLARY 5.2. With the hypothesis of Theorem 5.1. Q?; is the greatest com­
pletely regular subsemigroup T of ft containing II for which T £ (S) . 

P r o o f . By Theorem 4.9, ^ is isomorphic to TJZ , and, by Proposition 4.7, 
we have TJZ £ (S) . Therefore £1; £ (S) . Let T be a completely regular subsemi­
group of i} containing II for which T £ (S) . Since S is a normal cryptogroup, 
V £ (S) implies that T is also a normal cryptogroup. Now T fits the specifica­
tions in Theorem 5.1 and is thus contained in f̂  . This establishes the desired 
inaxhnality of $27; . 

Recall the notation T(V : S) in [1; Theorem III.1.12]. 

THEOREM 5.3. Let V be a normal cryptogroup and an ideal extension of S . 
Then T = T(V : S) maps V into ili(S) . Moreover, V is a maximal normal 
cryptogroup dense extension of S if and, only if r is an isomorphism of V onto 
ih(S)'. 

P r o o f . First VT is a normal cryptogroup and a subsemigroup of Q(S) 
containing 11(5) . Now Theorem 5.1 implies that VT C fl,;(5). 

Next assume that V is a maximal cryptogroup dense extension of 5 . By 
[1; Corollary III.5.5], r is injective. If VT is a proper subsemigroup of Qt(S), 
we can define a multiplication on V U (fl?(5) \ VT) in an obvious way making 
it a normal cryptogroup dense extension of 5 which contradicts the assumed 
maximality of V. Therefore r is an isomorphism of V onto ili(S). 

Conversely, suppose that r is an isomorphism of V onto Qi(S). According 
to fl; Corollary III.5.5], V is a dense extension of 5 . Let U be any normal 
cryptogroup dense extension of 5 containing V. By the above, r is an iso­
morphism of U into Qi(S). Since r\y = T, wre must have that U — V. This 
establishes the maximality of V. 

Recall the concept of a densely embedded ideal in [1; Definition III.5.8]. 

A monomorphism ip of a semigroup 5 into a semigroup T is a dense em­
bedding if S(f is a densely embedded ideal of its idealizer in T. 

The above results suggest a natural extension of these notions involving va­
rieties of (completely regular) semigroups as follows. 

DEFINITION 5.4. Let V £ C(C1Z) and 5 £ V. If T is a dense extension of 
5 with the properties: T £ V, and if V £ V is a dense extension of 5 which 
contains T, then T = V, and then 5 is a V-densely embedded ideal of T. 
If /^ Q £ V, and (/?: P —> Q is an embedding such that Pep is a V-densely 
embedded ideal of its idealizer in Q , then (/? is a V-dense embedding of P 
into Q . 
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THEOREM 5.5. Let V E C(AfBQ) and S <E V . Then II is a densely embedded 
ideal of £2?;, and the mapping r in Lemma 4.3 is a V -dense embedding of S in 
T. 

P r o o f . This follows directly from Theorem 5.3. Lemmas 4.3 and 4.4. and 
Proposition 4.7. 
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