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GMV-ALGEBRAS AND MEET-SEMILATTICES 
W I T H SECTIONALLY A N T I T O N E PERMUTATIONS 

IVAN CHAJDA — JAN KÍJHR 

(Communicated by Anatolij Dvurečenskij 

ABSTRACT. GMV-algebras (pseudo MV-algebras) are a non-commutative ex
tension of known MV-algebras. We show that any GMV-algebra is a (meet-
semi)lattice with sectionally antitone permutations, an SAP-(semi)lattice, and 
hence SAP-semilattices can be viewed as a generalization of GMV-algebras. 

1. Semilattices with antitone permutations 

Let (5; A, 0) be a meet-semilattice with the least element 0. For any a G S, 
the principal ideal (a\ = {x G S : x < a} is called a section in S. An antiauto-
morphism on (a\ is a one-to-one mapping / from (a\ onto (a\ such that x < y 
iff f(x) > f(y) for all x:y G (a]. Obviously, / is an antiautomorphism on (a\ 
if and only if both / and its inverse mapping / _ 1 are antitone permutations. 
We say that a semilattice (5; A, 0) has sectionally antitone permutations if there 
exists an antiautomorphism fa on each section (a\. Accordingly, a semilattice 
with sectionally antitone permutations (an SAP -semilattice for short) is a struc
ture /S; A, 0, (fa)aeS) ' w n e r e (^5 A, 0) is a meet-semilattice with a least element 
and for any a G S, fa is an antitone permutation on (a\. 

Given an SAP-semilattice (S; A, 0, (fa)aes) > w e c a n ddme two total binary 
operations on S by 

x*y := fx(x Ay) and x o y := f~1(x Ay). 

It is evident that x *0 = x = x o0, 0 * x = - 0 = 0oa: and x * x = 0 = x o a : for 
all x G 5 . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 06A12, 06D35, 03G25. 
K e y w o r d s : (semi)lattice, antitone permutation, GMV-algebra. 
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E X A M P L E 1.1. Let (G; + , 0, V, A) be a lattice-ordered group (an £-group), that 
is, a group endowed with a compatible lattice order, and let G + = {x G G : 
x > 0} be its positive cone. Then /G+; A,0, (fa)aeG+) i s a n SAP-semilattice, 
where for any a G G + , the antitone permutation fa is defined by fa(x) := a — x. 
The operations * and o are then given by x * y := x — (x A y) = (x — y) V 0 and 
xoy := — (x Ay) + x = (—H + x) V0. It is easily seen that (x *y) o z = (xo z) *y 
for all x, y, z G G + . 

More generally, let X be a convex subset of G + containing 0. Then 
(X\ A,0, (fa)aex) ls a n SAP-semilattice in which x * y = (x — y) V 0 and 
xoy = (—y + x) V 0 for all x , ? / E l . 

T H E O R E M 1.2. 

(i) Let lS\ A, 0, (fa)aes) be an SAP-semilattice. Then for any a e S, 
fa(x) = a*x and f~1(x) = aox. ana7 the structure $(S) = (5; A, 0, *, o) 
satisfies the identities 

xAy = x*(xoy)=xo(x*y), (1.1) 

x * y = (x * y) A (x * (y A z)) , x o y = (x o H) A (x o (2/ A z)) . (1.2) 

(ii) Let (S; A,0, *,o) be an algebra of type (2,0,2,2) sncb t/iat (5; A,0) i8 a 
meet-semilattice with a least element. For any a G S define the mapping 

fa : x i-» a * x , x G (a]. 

If 5 satisfies the identities (1.1) ana7 (1.2). £ben * ( 5 ) = / 5 ; A, 0, (fa)aes) 
is an SAP-semilattice and we have x*y = fx(xAy) and xoy = f~1(xAy) 
for all x,y G S. 

(iii) The above mappings $ and * are mutually inverse bisections. 

P r o o f . 
(i) It is easily seen that fa(x) = a * x and f~1(x) = a o x . We have 

x*(xoy) = fx(xAfx
l(xAy)) = fx (f~\x A y)) =xAy 

and analogously x o (x * y) = xAH , which is (1.1), and from x Ay > x Ay A z 
it follows that x * y = fx(x A y) < fx(x A y A z) = x * (y A z) and x o y = 
f~1(x Ay) < f~x(x Ay A z) = x o (y A z) proving (1.2). 

(ii) Assume that (5; A,0, *,o) satisfies the equations (1.1) and (1.2). Then 
a*x ^ (a\ for any x G (a\ since a A (a * x) = a * (a o (a * x)) =a*(aAx) = a*x 
by (1.1). Analogously, a o x G (a]. If a*x = a*y for x,H G (a], then x = a Ax = 
a o ( a * x ) = ao(a*y) = aAy = y again by (1.1), and in addition, every y G (a\ 
can be written in the form y = a * x, where x = aoy e (a\. Thus the mapping 
fa is a permutation on (a\. Because of (1.1), f~1(x) = a o x for all x G (a]. 
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Let #,H G (a] and x <y. Then by (1.2), 

(a * H) A (a * .r) = (a * y) A (a * (x A y)) = a* y , 

so a * H < a * x . Similarly, aoy < aox whenever x < y, and hence a * y < a*x 

implies x = a o (a * x) < a o (a * y) = y. Therefore, /*?; A,0, (fa)aeS) is an 

SAP-semilattice. 

For the last claim, fx(x Ay) = x * (x Ay) = x * (x o (x * y)) = x A (x * y) 

by (1.1) and 

x * y = (x * y) A (x * (x A y)) 

= (x * y) A (x * (x o (x * y))) 

= (x * y) A x A (x * y) 

= x A (x * y) 

by (1.2), so that fx(x Ay) = x * y. The dual assertion follows by symmetry. • 

Remark 1.3. In view of (1.1) we obtain 

x * (x o y) = x o (x * y) = y * (y o x) = y o (y * x), 

and (1.2) can be rewritten in the language {*, o} as follows: 

x * y = (x * y) * ((x *y) o (x* (ij * (y o z)))) , 

x o y = (x o y) o ((x o y) * (x o (y o (y * z)))) . 

(1.Ґ) 

(1.2') 

However, if (S; A, 0, *, o) satisfies (1.1') and (1.2 ;), then x * (x o y) need not be 
equal to x A y and the mapping fa: x i-> a * x is not necessarily an antitone 
involution on [0, a]: 

E X A M P L E 1.4. Let (S;A,0) be the semilattice from Figure 1 and let the oper
ation * be given as follows: 

* 0 a b c d 

0 0 0 0 0 0 

a a 0 a a 0 

b b b 0 Ъ 0 

c c c c 0 c 

d d Ъ o d 0 

Then (5;A,0, *,*) fulfils the equations ( l . l 7 ) and (1.2'), but, for instance, 
a * (a * c) = 0 while a A c = a, and fc: x i-> c * x is not an antitone invo
lution on [0, c]. 
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FIGURE 1. 

Let us recall e.g. from [1] that a variety V with a miliary fundamental oper
ation 0 is said to be 

(a) weakly regular if every congruence 0 on any algebra A in V is deter
mined by its kernel [O]0, and regular if 0 is determined by any single 
class [a ] 0 ; 

(b) distributive at 0 if [O] ( 0 v$ ) n^ = [0] (en^)v($n^) for a11 © , * , * £ Con(A) 
and A G V, and distributive if the congruence lattice Con(A) of every 
A G V is distributive; 

(c) permutable at 0 if [O]0O$ = [O]$o0, permutable if 6 o $ = $ o 8 and 
n-permutable if 0 o $ o 0 o • • • = $ o 0 o $ o • • • (n-times) for all 
0 , $ G Con(A) and for each A G V; 

(d) arithmetical at 0 if it is both distributive and permutable at 0, and 
arithmetical if V is both distributive and permutable. 

THEOREM 1.5. The variety of all SAP-semilattices is weakly regular, 3-per
mutable, arithmetical at 0 and distributive. 

P r o o f . Let V be the variety of all SAP-semilattices. It is known (see 
e.g. [1]) that V is weakly regular if and only if there exist binary terms px,... ,p 
for some n G N such that px(x, y) = • • • = Pn(%, y) — 0 iff x = y. We can take 
n = 2 and p±(x,y) := x * H, p2(x,y) := y * x. Clearly, px(x,x) = p2(x,x) = 0, 
and conversely, if p1(x,H) = p2(x,y) = 0, then xAy = xo(x*y) = x and 
xAy = yo(y*x) = y,so x = y. 

To show that V is 3-permutable, we have to find ternary terms t1, t2 such 
that t1(x,y,y) = x, t1(x,x,y) = t2(x,y,y) and t2(x,x,y) = y. It is obvious 
that the terms rx (x, T/, z) := x * (y o z) and t2(x, y,z) := z * (y o x) have this 
property. 

V is arithmetical at 0 if and only if there exists a binary term t with t(x, x) = 
t(0, x) = 0 and t(x, 0) = x. Obviously, one may take t(x, y) := x * y. 

Finally, V is congruence distributive since it is both weakly regular and dis
tributive at 0. • 
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An SAP-lattice is an algebra (F; V, A, 0, *, o), where (F; V, A) is a lattice and 
(L; A,0, *,o) is an SAP-semilattice. For instance, if X is a lattice ideal of the 
positive cone G+ of any ^-group G, then (X; V, A, 0, *, o) is an SAP-lattice. 

THEOREM 1.6. The variety of all SAP-lattices is regular and arithmetical. 

P r o o f . Let now V be the variety of SAP-lattices. It is known that V is 
regular if and only if there exist ternary terms px,... ,pn with px(x, y,z) = ... 
= Pn(x,y>z) = z iff x = y. 

Let 

px(x,y,z) := (x*y)V (y * x) V z, 

p2(x, y, z) := (z * (x * y)) A (z * (y * x)) . 

One immediately sees that px(x,x,z) = p2(x,x, z) = z. If px(x,y,z) = p2(x,y,z) 
= z, then z > x * y, y * x and z = z * (x * y) = z * (y * x) since z = 
(z * (x * y)) f\[z*(y* x)) and z > z * (x * y), z * (y * x), whence it follows that 
0 = zo z = zo (z*(x*y)) =zA(x*y) = x*y and 0 = zoz = zo(z*(y* x)) = 
z/\(y*x) = y*x, and therefore x = y. 

Further, V is arithmetical if and only if there exists a ternary term m such 
that m(x, y, y) = m(x, y, x) = m(y, y, x) = x. It can be easily seen that the term 

m(x, y, z) := (x A z) V (x * (y o z)) V (z * (y o x)) 

satisfies these conditions. • 

2. GMV-algebras 

In 1958, C. C. Chang introduced the notion of an MV-algebra as an alge
braic counterpart of the Lukasiewicz propositional calculus. The research on 
MV-algebras has burgeoned in the last two decades. Starting from intervals 
of (not necessarily commutative) lattice-ordered groups, J. R a c h u n e k es
tablished in [9] the concept of a GMV-algebra (generalized MV-algebra). Non-
commutative MV-algebras, named pseudo MV-algebras were independently de
fined by G. G e o r g e s c u and A. I o r g u l e s c u in [7]. 

A GMV-aZOebra is an algebra (A; 0 , -., ~ , 0,1) of type (2 ,1 ,1 , 0, 0) satisfying 
the following axioms: 

(Al) (x®y)@z = x&(y@z), 
(A2) xe0 = 0®x = x, 
(A3) j ? e i = l 0 x = l , 
(A4) i l = ~ l = 0, 
(A5) -«(~x®~2/) = ~( - -x® -ny), 
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(A6) x © (y 0 ~x) = y © (x 0 ~y) = (~*x 0 y) 0 a; = (->y 0 x) 0 y, 
(A7) (-ix © y) 0 x = y 0 (a © ~y), 
(A8) ~->x = x, 

where the additional operation 0 is defined via 

x 0 y := ~(-*x © -«y). 

If © is commutative, then ~ coincides with -> and (A;©,-i ,0,1) becomes an 
MV-algebra. For basic properties of MV- and GMV-algebras we refer to [4] 
and [7], respectively. 

The prototypical example of a GMV-algebra arises from lattice-ordered 
groups. Let G be any ^-group and u G G + \ {0}. Define T(G,u) := 
([OjU]; ©, - i , ~ , 0,u) by x © y := (x + y) A w, ~^x := u — x and ~ x := — x + w. 
It is straightforward to verify that the structure T(G, u) is a GMV-algebra. 
A. D v u r e c e n s k i j generalized D. M u n d i c i ' s fundamental result on cat
egorical equivalence of MV-algebras and Abelian £ -groups with strong order 
unit1 (see [8]) and proved that every GMV-algebra is isomorphic with T(G,u) 
for an appropriate £ -group G with a strong order unit u G G+ (see [5]). 

GMV-algebras are another source of SAP-(semi)lattices: If we define x < y 
iff -ix © y = 1, the natural order on A, then by [7; Corollary 1.19], (A; <) is a 
bounded distributive lattice with 

x V y = x © ~(->y © x) = -i(x © ~y) © x 

and 

x A y = x 0 ~(->y 0 x) = ->(x 0 ~y) 0 x . 

Moreover, © as well as 0 distributes over both V and A (which implies that © 
and 0 respect < ) , and we have x < y iff -iy < -»x iff ~H < ~ x . Consequently, 
for any a G A, the mapping fa: x i-r -<x 0 a is an antitone permutation on 
[0, a]; the inverse mapping is given by f~l : x 4 a 0 ~ x . 

THEOREM 2.1. Fe£ (.A;©,-.,~,0,1) &e a GMV-a?Oe&ra. Tften upon defining 
x A y := (-ix © y) 0 x . x * y := ->y 0 x and x o y := x 0 ~ y . tte structure 
(A; A, 0, *, o) is an SAP-semilattice satisfying the equation 

(x * y) o ^ = (x o z) * y. (2.1) 

P r o o f . In view of the previous remarks, it is obvious that (A; A, 0, *, o) is 
an SAP-semilattice. For the identity (2.1) calculate (x*y) oz = (->y 0 x ) Q~z = 
-iy 0 (x 0 ~z) = (x o z) * y. • 

In what follows, we concentrate on SAP-semilattices satisfying the 
identity (2.1). 

1 We call u G C+ a strong order unit if for every x G G there exists n G N such tha t 
x < nit . 
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THEOREM 2.2. Let (5;A,0, *,o) be an SAP-semilattice satisfying (2.1). Let 
a € S\ {0} and define x@ay := a* ((a o x) o y) , -^ax := a * x and ^ax := a o x . 
Then ( [ 0 , a ] ; © a , - i a , ~ a , 0 , a ) is a GMV-algebra. 

Before proving the theorem we need two lemmata. 

LEMMA 2.3. Let (S; A, 0, *, o) be an SAP -semilattice satisfying (2.1). Then for 
any a G S \ {0}. the section [0, a] is a lattice in which 

xWay = a* ((a o x) o (y o x)) = a o ((a * y) * (x * y)) . 

P r o o f . Since the mappings fa: x i-> a * x and f~x: x i-> a o x are antitone 
permutations on [0, a], it should be obvious that x Va y := a * ((a o x) A (a o y)) 
is the supremum of {#, y} and we have 

x Va y = a * ((a o x) A (a o y)) 

= a * ((a o x) o ((a o x) * (a o y))) 

= a * ((a o x) o ((a * (a o y)) o x)) 

= a * ((a o x) o (y o x)) . 

The other equality follows for symmetric reasons. • 

LEMMA 2.4. Let (S; A, 0, *, o) be an SAP -semilattice with (2.1), a G S \ {0} . 
Then for all x, y, z G [0, a], 

(i) a * ((a o x) o y) = a o ((a * y) * x) . 
(ii) a * (((a o x) o y) o z) = a o (((a * z) * y) * x) . 

P r o o f . 
(i) Put a = a * ((a o x) o y) and (5 = a o ((a * y) * x). Then clearly a,f3e [0, a] 

and we have aoa = ao (a* ((aox) oy)) = a A ((a ox) oy) = (aox)oy, whence 
(aox)oy = ( ( a * ( a o a ) ) ox) oy = ((aox)*(aoa)) oy = ((aox)oy) * ( aoa ) = 0, 
so aox < y. But a o x < y is equivalent to a*y < x since (aox)*y = (a*y)ox. 
Hence we obtain (a * y) o (a * a) = (ao (a* a)) *y = a*y<x, which yields 
(a * y) * x < a * a , and therefore (3 = a o ((a * y) * x) > a o (a * a) = a. The 
proof of the converse inequality can be achieved analogously. 

(ii) Let a = a * (((a o x) o y) o z) and (3 = a o (((a * z) * y) * x). Then 
a o a = ((a o x) o y) o z, which yields (((a o x) o y) * (a o a)) o z = (((aox) 
o y) o z) * (a o a) = 0, i.e. ((a o x) o y) * (a o a) < z. Further, (a o x) o y = 
( (a* ( a o a ) ) ox) oy = ((aox) * (aoa)) oy = ((aox) oy) * (ao a) < z, which is 
equivalent to (a * z) o x = (a o x) * z < y, and consequently to (a * z) * y < x. 
But (a*z)*y= ((ao(a*a))*z)*y = ((a*z)o(a*a))*y = ((a*z) *y) o ( a * a ) , 
so that ((a * z) * y) o (a * a) < x, whence it follows ((a * z) * y) * x < a * a and 
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finally /? = a o (((a * z) * y) * x) > a o (a * a) = a . The same argument shows 
a > / 5 \ • 

P r o o f of T h e o r e m 2.2 . Note that by Lemma 2.4(i) we have 

x 0 a y = a * ((a o x) o y) = a o ((a * y) * x) . 

(Al) follows from Lemma 2.4(ii): 

(x 0 a y) ©a 2: = a * ((a o (a * ((a o x) o y))) o z) = a * (((a o x) oy) o z) 

= a o (((a * z) * y) * x) = a o ((a * (a o ((a * z) * y))) * x) 

= x®a(y ®a *) ' 

For (A2), x 0 a 0 = a * ((a o x) o 0) = a * (a o x) = x and similarly 0 0 a x = x. 
Analogously, x 0 a a = a o ((a * a) * x) = a o (0 * x) = a and likewise a 0 a x = a, 
which is (A3). The axiom (A4) obviously holds as -»aa = a*a = 0 = aoa = ~aa. 
To see (A5), calculate 

~~a(~aX ®a ~a?>) = f l * ( f l° ( ( f l * ( f l ° 2/)) * ( a ° X))) 

= y * (a o x) = (a o (a * y)) * (a o x) 

= (a * (a o x)) o (a * y) = x o (a * y) 

= a o (a * ((a o (a * x)) o (a * y))) 

= ~ C"i x 0 -i H). 
aV a ^ a a^ / 

For (A6), observe that y®a~ax = ~a(~~a,y ®ax) = «o(a*((ao(a*H))ox)) = yox, 
whence x 0 a (y 0 a ~ax) = a * ((a o x) o (y o x)) = x Va y by Lemma 2.3. 
Similarly ->ay 0 a x = x * y, and hence (-ifly 0 a x) 0 a y = x Va y. Furthermore, 
(->ax ®a y) 0 a x = -«a(x 0 a ~ a y ) 0 a x = x * ( x o y ) = x A y and analogously we 
obtain y 0 a (x ®a ~ a y ) = y o ( y * x ) = x A y , which verifies (A7). Finally, (A8) 
is clear: ~a~-ax = ao(a*x)=aAx = x. • 

COROLLARY 2.5. Le£ (5; A, 0, *, o) be an SAP-semilattice with the greatest 
element 1^-0 , satisfying (2.1). Le£ x 0 y := 1 * ((1 o x) o y ) , -ix := 1 * x and 
~x \= 1 o x . Fben (5; 0 , -i, ~ , 0,1) is a GMV-algebra. 

COROLLARY 2.6. / / (5; A, 0, *, o) is an SAP-semilattice satisfying (2.1), £ben 
e?;ery section [0, a] zs a distributive lattice. 

P r o o f . Since ([0, a]; 0 a , -<a, ~ a , 0, a) is a GMV-algebra, it follows that 
([0, a]; Va, A) is a distributive lattice. • 

Combining Theorem 2.1 and Theorem 2.2, we get: 
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COROLLARY 2.7. Let (A; 0 , -., ~ , 0,1) fte a GMV-algebra, a G A\{0} . Define 
x®ay := (x©2/) A a, -iax := ->x0a ana7 ~ a x := a 0 ~x for x,y G [0, a ] . Tften 
([0, a]; 0 a , ->a, ~ a , 0, a) is a GMV-a/geftra. 

P r o o f . Calculate 

x 0 a y = (x 0 y) A a = -n(a 0 ~ (x 0 y)) 0 a 

= -i(a 0 ~ x 0 ~H) 0 a = a * ((a o x) o y) . 

D 

COROLLARY 2.8. Fe£ (S; A, 0, *, o) be an SAP-semilattice satisfying the iden
tity (2.1). If every section [0, a] is finite, then S is commutative, i.e., x*y = xoy 
for all x,y G S. 

P r o o f . 
If [0, a] is a finite set, then by [6; Theorem 3.2], ([0, a]; 0 a , ->a, ~ a , 0 , a) is 

an MV-algebra, that is, ->ax = ~ a x for all x G [0, a] . Hence fa: x i-> -ia.r is 
an antitone involution on [0, a]. Consequently, we have x * y = fx(x A y) = 
f~x (x A y) = x o y for all x, y G 5 . D 

F I G U R E 2. 

Remark 2.9. Due to Corollary 2.6, every bounded SAP-lattice satisfying 
the equation (2.1) is distributive. In addition, by Corollary 2.8, every finite 
SAP-lattice with (2.1) is commutative in the sense that the operations * and 
o coincide. We now give an example of a finite non-commutative distributive 
SAP-lattice in which (2.1) fails to be true: 

E X A M P L E 2.10. Let (L; V, A) denote the lattice whose Hasse diagram is shown 
in Figure 2. Let the antitone permutation fx on L = [0,1] be defined by 0 i-> 1, 
a »-> 2/, 2/ •-> c, C r - > £ , z i -> f t , fti->.T, x i-> a and 1 i-> 0; the antitone 
permutations on the other sections assign to an element its relative complement 
in the section. The SAP-lattice is not commutative since e.g. 1 * a = fx(a) = 
y ^i x = fil(a) = 1 o a. Moreover, it is straightforward to verify that e.g. 
(l*a)ob = yob = y while (lo b)*a = z*a = z. 
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THEOREM 2.11. Let (5;A,0) be a meet-semilattice with 0 such that every 
section [0, a], a G 5'\{0} ; is a carrier of a GMV-algebra ([0, a]; 0 a , ->a, ~ a , 0, a) 
whose natural order coincides with that induced by A . Assume that the following 
compatibility condition is satisfied: 

If x < a <b. then -iax = ->6x Qb a and ~ax = a © 6 ~bx. 

Define 

(xAy) if x / 0 , 

- { 
and 

x * y . 
1 0 ifx = Q, 

JxЛy) ifxфO, 
xoy - ' Ч 0 if x = 0. 

Then (S; A, 0, *, o) is an SAP-semilattice satisfying the identity (2.1). 

P r o o f . If x = 0, then all the identities (1.1), (1.2) and (2.1) obviously hold, 
so let x / 0 . Thus x * (x o y) = - ^ ( x A ~x(x A y)) = ~"x~x(x Ay) = x Ay and 
similarly xo(x*y) = xAH, which verifies (1.1). The identities (1.2) are also almost 
evident since xAy > xAyAz implies x*y = ~^x(xAy) < ~^x(xAyAz) = x*(yAz) 
and x oy = ~x(x Ay) < ~x(x A y A z) = x o (y A z). 

In proving (2.1) we make use of the following claim: 

CLAIM. In any GMV-algebra we have the identity ^x 0 ~(-\x A y) = 
->(~y A x) 0 ~y. 

Calculate 

->x 0 ~(-*x A y) = ->x 0 ~(-i(-ix 0 ~y) 0 ->x) 

= ->x A (-ix 0 ~y) 

= -ix 0 ~y 

= ~y A (-ix 0 ~H) 

= ~*(~y 0 ~(-«x 0 ~y)) 0 ~y 

= -I(~J/ Ax) 0 ~H. 

Assume that x * y ^ 0 ^L x o z. We have 

= "•*(* A tf) ©* ~ * K ( ^ A H) A x A 2r) 
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by the compatibility condition for ~^x(xAy)AxAz< ~^x(xAy) < x and similarly 

(x o z) * y = ^^x(xAz) (~x(x Az)Ay) 

= -"~x(xAz)(~x(
x^z)AxAy) 

= "•*(~x(x /\z)AxAy)Qx ~x(x A z) 

by the compatibility condition for ~x(x A z) Ax Ay < ~x(x A z) < x. Now by 
the claim, for x A y, x A z G [0, x] we obtain (x * y) o z = (x o z) * y. 

If x * y = 0, then (x * y) o z = 0 and x < y since - ^ (x A y) = x * y = 0 
implies x Ay = ~x0 = x. This along with x o z < x yields x o z < y, whence 
(x o z) * y = - ^ o z ( (x o z) Ay) = -^xoz(x oZ) = 0iixoz^0. Analogously, if 
x o z = 0, then (x * y) o z = (x o 2;) * y = 0. • 

R e m a r k 2.12. Observe that the compatibility condition can be captured by 
the identities 

~"y/\z(x /\y /\ z) = ->z(x Ay A z) Gz (y A z), 

~yAz(X A y A Z) = (V A Z) ©z ~z(X A y A 2;) . 

3. Interval GMV-algebras 

In [3] we proved that if (A; e , ->, 0,1) is an MV-algebra and a G _4\ {1}, then 
the structure ([a, 1]; © a , ->a, a, l ) is an MV-algebra, where x e a y = -i(a©-ix)©y 
and ->ax = -ix e a. This leads to the following analogue of Corollary 2.7: 

PROPOSITION 3 .1 . Let (A; e , -1, ~ , 0,1) be a GMV-algebra and a G A \ {1} . 
Then upon defining x e a y := -«(a e ~x) © y = x e ~(->y © a ) , -iax := -»# e a 
and ~ a x := a © ~ x . ([a, 1]; © a , ->a, ~ a , a, 1) is a GMV-algebra. 

P r o o f . We first show that -i(a e ~x) e y = x © ~(-iy © a) . For calculate 

-«(a © ~x) © y = -«(a © ~x) @(aVy) 

= ->(a © ~x) © a © ~(-.y © a) 

= ( a V x ) © ~ ( ^ y © a ) 

= x © ~(-^y © a ) . 

Now we have 

(x ©a y) ©a z = (--(a © - x ) © y) ©a z 

= -i(a © ^ x ) e y e ~ ( ^ £ e a) 

= ^ ( a e ^ ) © ( y © a 2 : ) 

= * ®a ^ ®a *) > 
which is (Al) . 
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One readily sees (A2)-(A4): x 0 a a = x 0 ~(-ia 0 a ) = x 0 ~ l = x 0 O = x 
and similarly a 0 a x = x; x 0 a 1 = ->(a 0 ~x) 0 1 = 1 = 1 0 a x , and finally, 
n f t l = - - i l e a = O 0 a = a = - a l . 

Furthermore, 

^a(~ax ®a ~ a y ) = ^ ( a 0 ~ x 0 ~(- . (a 0 ~H) 0 a)) 0 a 

= ->(a 0 ~x 0 ~ (a V y)) 0 a 

= - n ( a 0 ^ © ^ ) 0 a 

= i ( a © ^ 0 t / ) ) 0 a 

= (x 0 y) V a 

and analogously ~a(->ax 0 a ->aH) = (x 0 y) V a proving the identity (A5). To 
see (A6), compute 

X ©a (V ©a ~a*) = * ©a ~ a ( " \ ^ ®a *) 

= x 0 a (a 0 ~((->y 0 a) 0 -(-nx 0 a))) 

= x 0 a (a 0 ~(- .y 0 (a V x))) 

= x 0 a (a 0 ^(-"2/0 a;)) 

= -«(a 0 ~x) 0 (a 0 ~(^H 0 x)) 

= ( a V x ) 0 ~ ( - ^ H 0 x ) 

= x 0 ~ ( - i j / 0 x ) 

= x V y . 

The parallel argument shows that (->ax 0 a y) 0 a x = x V y and by replacing x 
and y we obtain the remaining equations in (A6). 

Note that we have shown that xQay = (xQy)Wa for any x, y G [a, 1]. Hence 

("'a* ®a ?/) ©a * = (("V* ®a ?/) 0 x) V a 

= ( ( ( i x 0 a) 0 ~(-.y 0 a)) 0 x) V a 

= ( ( ^ x 0 ( a V H ) ) 0 x ) Va 

= ( ( n x e y ) Ox) Va 

= ( x A y ) V a = x A y 

and similarly y 0 a (x 0 a ~ a y ) = x A H, which verifies (A7). 

Finally, (A8) is obvious since ~ a
- ,

a x = a 0 ~(-ix 0 a ) = a V x = x . D 
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Let (A-, ©, -i, ~, 0,1) be a GMV-algebra and let a, b G A, a < b. By the pre
vious proposition, ([a, 1]; © a , -i a, ~ a , a, l ) is a GMV-algebra again. By Corol
lary 2.7 we get that ([a, b]; © a 6 , -<a6, ~ a 6 , a, b) is a GMV-algebra, where 

x 0 a b y = (x 0 a J/) A b 

= (x 0 (y 0 ~a)) A b 

= ((--a©x)©2/) Ab , 

^abX = ^aX © a b = (("•* © «) 0 &) V a 

= ("»a 0 (-ix 0 a) 0 b) 0 a 

= ( i ( a 0 ~(-ix 0 a)) 0 b) 0 a 

= (-.(a V x) © b) 0 a 

= (-.x © b) © a 

and similarly 

We have obtained: 

JaЬX = Ь ©a ~aX = a © (Ò © ~ æ ) 

THEOREM 3.2. Let (A;©, - i ,~ ,0 ,1) &e a GMV-algebra and let a.b £ A be 
such that a < b. Define x © a 6 y := (x © (y © ~a)) A b = ((->a © x) © y) A b. 
-ia6x := (-ix © b) © a and ~ a 6 x := a © (b © ~x) /or x,y e [a, b]. Then 
( K &] ; ©ab> " 'at ' ~ab> a> &) is a GMV-algebra. 

We call an element a of a GMV-algebra A Boolean if it possesses the com
plement a' in the underlying lattice of A; the set of all Boolean elements of 
A is denoted by B(A). By [7; Propositions 4.2, 4.3] (cf. also [9; Theorem 9]), 
a G B(A) if and only if a © a = a if and only if a © a = a, and if a G B(A), 
then a ® x - = x © a - - a V x and likewise a © x = x © a = a A x for all x G A. 
Of course, a' = -*a = ~ a for any a G -B(A). 

C O R O L L A R Y 3.3. Let ([a, b];©a6,->a6, ~ a 6 , a , b\ be that from Theorem 3.2. 7/ 

a, b G -B(A). cben x ©a 6 y = x © y - -"",
ab# = ("•# A b) V a and ~ a 6 x = (~x A b) V a. 

P r o o f . We have 

x ©a 6 y = (x © (y A ~a)) A b = (x © y) A (x © ~a) A b = x © y 

since x © y < b © b = b and x © ~ a > a © ~ a = 1. The rest is evident. • 

287 



IVAN CHAJDA — JAN KUHR 

R E F E R E N C E S 

[1] CHAJDA, I.-—EIGENTHALER, G.—LANGER, H. : Congruence Classes in Universal 
Algebra, He ldermann Verlag, Lemgo, 2003. 

[2] CHAJDA, I . : Lattices and semilattices having an antitone involution in every upper 
interval, Comment . Math. Univ. Carolin. 4 4 (2003), 577-585. 

[3] CHAJDA, I.—HALAS, R.—KUHR, J . : Distributive lattices with sectionally antitone in
volutions, Acta Sci. Math. (Szeged) 71 (2005), 19-33. 

[4] CIGNOLI, R. L. O .—D'OTTAVIANO, I. M. L.—MUNDICI, D . : Algebraic Foundations 
of Many-Valued Reasoning, Kluwer Acad. Publ. , Dordrecht-Boston-London, 2000. 

[5] DVURECENSKIJ , A. : Pseudo MV-algebras are intervals in t-groups, J. Aust. Math. 
Soc. 72 (2002), 427-445. 

[6] DVURECENSKIJ , A . : On pseudo MV-algebras, Soft Comput . 5 (2001), 347-354. 
[7] GEORGESCU, G.—IORGULESCU, A. : Pseudo MV-algebras, Mult.-Valued Log. 6 

(2001), 95-135. 
[8] MUNDICI, D . : Interpretation of AF C* -algebras in Lukasiewicz sentential calculus, 

J. Funct. Anal. 65 (1986), 15-63. 
[9] RACHUNEK, J . : A non-commutative generalization of MV-algebras, Czechoslovak 

Math. J. 52 (2002), 255-273. 
[10] RACHUNEK, J . : Prime spectra of non-commutative generalizations of MV-algebras, 

Algebra Universalis 48 (2002), 151-169. 

Received September 24, 2004 

Revised December 6, 2004 

Department of Algebra and Geometry 
Faculty of Science 
Palacký University Olomouc 
Tomkova 40 
CZ-779 00 Olomouc 
CZECH REPUBLIC 

E-mail: chajda@inf.upol.cz  
kuhr@inf.upol.cz 

288 


		webmaster@dml.cz
	2012-08-01T18:55:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




