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(Communicated by Sylvia Pulmannovd) 

ABSTRACT. We show that every interval of an MV-algebra M is an MV-al-
gebra again; the operations on the interval are defined by means of certain poly
nomial functions over M. 

It is well known that every complemented modular lattice L = (L, V, A, 0,1) 
is relative complemented, i.e., if y G L is a complement of x G [a, 6] in L, 
then z = (y A b) V a is its relative complement in the interval [a, b]. Since 
any MF-algebra is a bounded distributive lattice with respect to its natu
ral order, the question arises whether every interval can be endowed with an 
M^-structure. 

Recall from [1] that an MV-algebra is an algebra M = (M, 0 , -.,0) of type 
(2,1,0) satisfying the identities 

(MV1) (x®y)®z = x@(y®z), 
(MV2) £ 0 2/ = 2 / 0 x , 
(MV3) £ 0 0 = x, 
(MV4) ->->£ = x, 
(MV5) £ 0 ^ 0 = ^ 0 , 
(MV6) -i(-ix ® y) ® y =-i(-iy ® x) @ x. 

MF-algebras were introduced by C. C. C h a n g in [2] as an algebraic 
counterpart of the Lukasiewicz many valued propositional calculus. Due to 
D. M u n d i c i ' s result [5], MF-algebras are intervals in abelian lattice-ordered 
groups: 
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Given an abelian lattice-ordered group G = (G, +, —, 0, V, A) and 0 < u G G , 
the structure T(G,u) = ([0,iz],©,-«,0) is an MTV-algebra, where 

x © y := (x + y) A u and -<x := u — x for all x, y G [0, u], 

and also conversely, every MV-algebra is isomorphic to V(G, u) for some abelian 
lattice-ordered group G and 0 < u € G. 

For basic properties of MV-algebras we refer to [1]. 
Let M be an MV-algebra. If we put 

x < y if and only if -»x 0 y = 1, 

then < is a partial order on M , the natural order of M , and L(M) = (M, <) 
is a bounded distributive lattice in which 

x v y = -i (-ix 0 y) 0 y and x Ay = ->(-ix V -12/). 

An element x G M is called boolean if there is the complement x' of x in 
the lattice L (M) ; we use B(M) to denote the set of all boolean elements of M . 
As a matter of fact, B(M) = (B(M), V, A, 0, l ) is a boolean sublattice of L(M) 
in which x' = -<x. Moreover, x G B(M) if and only if x 0 x = x . It is worth 
adding that if x G B(M), then x 0 y = x V y for each y G M . 

We proved in [3] that MV-algebras are polynomially equivalent with the 
class of algebras A = (A, o, 0,1) of type (2,0,0) satisfying the identities 

(Al) x o l = l , l o x = x, 
(A2) (x o y) o y = (y o x) o x, 
(A3) x o (y o z) — y o (x o z). 

If M is an MV-algebra, then upon defining x o y := -.x 0 y, the algebra 
A ( M ) = (M, o, 0,1) fulfils (Al), (A2) and (A3). Conversely, let A be an algebra 
satisfying the axioms (Al), (A2) and (A3), and define M(A) = (A, 0,-.,O) by 
x 0 y := (x o 0) o y and ->x := x o 0; then M(A) is an MV-algebra. More 
generally, letting x < y if and only if x o y = 1 we define the induced order of 
A which makes every interval [a, 1] into a lattice with x\/y — (xoy)oy and 
x^y — ((xo?/)o(xoa)) oa. Hence for any a e A, M(a, 1) = ([a, 1], 0 a , ->a,a) is 
an MV-algebra, where x 0 a y := (x o a) oy and -iax := x o a. As an immediate 
consequence we obtain: 

PROPOSITION 1. ([3]) Let M be an MV-algebra, ae M. Define 

x 0 a y := -i(->x 0 a) 0 y, ^ a x := -<x 0 a. 

Then M(a, 1) = ([a, 1], 0 a , ->a, a) is an MV-algebra. 

MV-algebras in the sense of the above definition are right-MV-algebras since 
they are representable in the positive cones (the "right-hand side") of abelian 
lattice-ordered groups. But we can define a new binary operation 0 via 

x ©2/ := -i(->x0 -iy), 
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which leads to the concept of left-MV-algebras that are obtained from the neg
ative cones (the "left-hand side") of abelian lattice-ordered groups: 

A left-MV-algebra is an algebra M ' = (M, 0 , -., 1) of type (2,1,0) satisfying 
the axioms 

(MV17) (x 0 y) 0 z = x 0 (y 0 z), 
(MV2') x 0 y = y 0 x, 
(MV3') s © l = a ; , 
(MV4') -rnx = x, 
(MV5') z O - i l = - . l , 
(MV6') ->(->x Q y) O y =->(-iy O x) Q x. 

Let M ' be a left-MV-algebra and define x * y := x 0 -\y. It is easily seen 
that this binary operation has the following properties: 

(Al') x*0 = x, 0* .r = 0, 
(A2') x * (x * y) = y * (y * x), 
(A3') (x * y) * z = (x * z) *y. 

A tedious but straightforward calculation yields the analogue of Proposi
tion 1: 

PROPOSITION 2. Let A = (A, *, 0) be an algebra of type (2, 0) satisfying the 
identities (AV), (A27) and (A3'). Let a e A. Define 

x 0 a y := x * (a * y) and ->ax := a * x for x, y G [0, a] } 

Then M'(0, a) = ([0, a], 0 a , ~^a, a) is a left-MV-algebra. 

P r o o f . First observe that 

x * (a*y) = (a* (a* x)) * (a*y) = (a* (a * y)) * (a * x) = y * (a* x), 

which verifies (MV2 ;). 

(MV17): 

(x Ga y) 0 a z = (x * (a * y)) * (a* z) 

= (y * (a * x)) * (a* z) 

= (y * (a * z)) * (a * x) 

= x * (a * (y * (a* z))) 

= xOa(y Ga z). 

(MV37): By (AV) and (A2;) we have a * a = 0, and hence 

x 0 a a = x * (a * a) = x * 0 = x. 

1 The induced order of A is defined by x < y if and only if x * y = 0. 
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(MV4'): 

-ia-iax = a * (a * x) = x . 

(MV5'): 

- ,aa 0 a x = (a * a) * (a * x) = 0 = - . a a . 

(MV6'): We have 

->a(-iax 0 a 2/) 0 a y = y * (a * (a * (y * (a * (a * x ) ) ) ) ) = y * (y * x) 

and similarly -ia(-iay 0 a x) ©a x = x * (x * y) . D 

COROLLARY 3. If M' = (M, 0 , -., 1) 25 a left-MV-algebra and a G M . £be 
upon defining x Qa y := x 0 -.(a 0 ->y) and -»ax := a 0 -ix. £be structure 
M'(0, a) = ([0, a], 0 a , ^ a , a) is a left-MV-algebra. 

P r o o f . If M ' is a left- MV-algebra, then the algebra A(M' ) = (M, *,0) 
fulfils the above axioms, and so, by the proposition, M'(0, a) is a left- MV-al
gebra, where xQay = x*(a*y)=xQ ->(a 0 -.y) and ->°x = a*x = aQ-^x. 

D 

COROLLARY 4. Let M be an MV-algebra, a e M. Define M(0, a) = 
([O,a],0a ,-ia ,O) via x ©a y := (x 0 y) A a ana7 -nax := -i(x ©->a). Then 
M(0, a) is an MV-algebra. 

P r o o f . For any x, y G [0, a] we have 

x 0 a y = V * ( ^ a x 0 a - a y ) 

= a 0 --(a 0 -nx 0 ->(a 0 -.(a 0 ->y))) 

= a A -i(-ix 0 ->(a A y)) 

= a A -i(-ix 0 ->y) 

= a A (x © y) 

and -iax = a 0 -ix = -i(->a © x) . D 

Combining Proposition 1 and Corollary 4, we get the promised description 
of interval MF-algebras: 

THEOREM 5. Let M be an MV-algebra and let a,b e M with a < b, where 
< is the natural order of M . Define M(a, b) = ([a, b], ©£, -.*, a) by 

x ©^ y := (->(->x © a) © y) A b and -£x := ->(x © -•&) © a . 

Tben M(a, b) is an MV-algebra. 
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P r o o f . Let x, y G [a, b]. Then 

x ®a y = (x ®a y) A 6 = (-i(->x ® a) ffi y) A b 

and 

= -i(-i(-ix © a) ® -16 ffi a) ffi a 

= n((xVfl) ffi -16) ffi a 

= -i(rcffi-i6) ffi a . 

• 
COROLLARY 6. Let M be an MV-algebra and let a,b e M such that a < b. 
where < is the natural order of M . If a,b G F?(M), tten in £be MV-algebra 
M(a, b) ufe fta^e x ffia 2/ = # © y and -<ax = (^x A b) V a. 

P r o o f . For any x, 2/ G [a, b], 

x ffia y = ("•(-»:£ ffi a) ffi y) A b 

= (-.(-ix V a) ffi 2/) A b 

= ((x A -ia) ffi y) A 6 

= {x@y) A (->affiy) Ab 

= x ffi H 

since -<affi2/>- ,affia = l and x f f i 2 / < b © b = b. • 

COROLLARY 7. Le£ A = (A, o , l ) be an algebra satisfying (Al) , (A2) and 
(A3). Le£ a , 6 G . 4 s?/cb that a < b, where < is the induced order of A . Define 

x ®a 2/ := ((& ° ((# o a) o 2/)) o (b o a)) o a and ->ax := (b o x) o a . 

Tben M(a,b) = ([a, b], ®a ,->a ,a) is an MV-algebra. 

P r o o f . The structure ([a, 1], ®a , - i a , a) is an MT^-algebra, where x ®a y = 
(x o a) oy and -iax = x o a, and therefore, M(a, b) is an MF-algebra, where 

x ffia y = (x ffia 2/) A 6 

= ((x o a) oy) Ab 

= ((b o ((x o a) o 2/)) o (b o a)) o a 

as [a, 1] is a lattice with x A y = ((2/ o x) o (y o a)) o a for any x, 2/ G [a, 1], and 

- a x = - . a (x f f i a - a b ) 

= ((x o a) o (bo a)) o a 

= (b o ((x o a) o a) j o a 

= (b o x) o a. 

• 
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