Mathematic Slovaca

Ivan Chajda; Jan Kühr

A note on interval $M V$-algebras

Mathematica Slovaca, Vol. 56 (2006), No. 1, 47--52

Persistent URL: http://dml.cz/dmlcz/130876

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE ON INTERVAL $M V$-ALGEBRAS

Ivan Chajda - Jan KÜHR

(Communicated by Sylvia Pulmannová)

Abstract

We show that every interval of an $M V$-algebra M is an $M V$-algebra again; the operations on the interval are defined by means of certain polynomial functions over M.

It is well known that every complemented modular lattice $\mathbf{L}=(L, \vee, \wedge, 0,1)$ is relative complemented, i.e., if $y \in L$ is a complement of $x \in[a, b]$ in \mathbf{L}, then $z=(y \wedge b) \vee a$ is its relative complement in the interval $[a, b]$. Since any $M V$-algebra is a bounded distributive lattice with respect to its natural order, the question arises whether every interval can be endowed with an $M V$-structure.

Recall from [1] that an $M V$-algebra is an algebra $\mathbf{M}=(M, \oplus, \neg, 0)$ of type $\langle 2,1,0\rangle$ satisfying the identities
(MV1) $(x \oplus y) \oplus z=x \oplus(y \oplus z)$,
(MV2) $x \oplus y=y \oplus x$,
(MV3) $x \oplus 0=x$,
(MV4) $\neg \neg x=x$,
(MV5) $x \oplus \neg 0=\neg 0$,
(MV6) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.
$M V$-algebras were introduced by C. C. Chang in [2] as an algebraic counterpart of the Lukasiewicz many valued propositional calculus. Due to D. Mundici's result [5], MV-algebras are intervals in abelian lattice-ordered groups:

[^0]Given an abelian lattice-ordered group $\mathbf{G}=(G,+,-, 0, \vee, \wedge)$ and $0 \leq u \in G$, the structure $\Gamma(\mathbf{G}, u)=([0, u], \oplus, \neg, 0)$ is an $M V$-algebra, where

$$
x \oplus y:=(x+y) \wedge u \quad \text { and } \quad \neg x:=u-x \quad \text { for all } \quad x, y \in[0, u]
$$

and also conversely, every $M V$-algebra is isomorphic to $\Gamma(\mathbf{G}, u)$ for some abelian lattice-ordered group \mathbf{G} and $0 \leq u \in G$.

For basic properties of $M V$-algebras we refer to [1].
Let \mathbf{M} be an $M V$-algebra. If we put

$$
x \leq y \quad \text { if and only if } \quad \neg x \oplus y=1
$$

then \leq is a partial order on M, the natural order of \mathbf{M}, and $\mathbf{L}(\mathbf{M})=(M, \leq)$ is a bounded distributive lattice in which

$$
x \vee y=\neg(\neg x \oplus y) \oplus y \quad \text { and } \quad x \wedge y=\neg(\neg x \vee \neg y)
$$

An element $x \in M$ is called boolean if there is the complement x^{\prime} of x in the lattice $\mathbf{L}(\mathbf{M})$; we use $B(\mathbf{M})$ to denote the set of all boolean elements of \mathbf{M}. As a matter of fact, $\mathbf{B}(\mathbf{M})=(B(\mathbf{M}), \vee, \wedge, 0,1)$ is a boolean sublattice of $\mathbf{L}(\mathbf{M})$ in which $x^{\prime}=\neg x$. Moreover, $x \in \mathbf{B}(\mathbf{M})$ if and only if $x \oplus x=x$. It is worth adding that if $x \in B(\mathbf{M})$, then $x \oplus y=x \vee y$ for each $y \in M$.

We proved in [3] that $M V$-algebras are polynomially equivalent with the class of algebras $\mathbf{A}=(A, \circ, 0,1)$ of type $\langle 2,0,0\rangle$ satisfying the identities
(A1) $x \circ 1=1,1 \circ x=x$,
(A2) $(x \circ y) \circ y=(y \circ x) \circ x$,
(A3) $x \circ(y \circ z)=y \circ(x \circ z)$.
If \mathbf{M} is an $M V$-algebra, then upon defining $x \circ y:=\neg x \oplus y$, the algebra $\mathbf{A}(\mathbf{M})=(M, \circ, 0,1)$ fulfils (A1), (A2) and (A3). Conversely, let A be an algebra satisfying the axioms (A1), (A2) and (A3), and define $\mathbf{M}(\mathbf{A})=(A, \oplus, \neg, 0)$ by $x \oplus y:=(x \circ 0) \circ y$ and $\neg x:=x \circ 0$; then $\mathbf{M}(\mathbf{A})$ is an $M V$-algebra. More generally, letting $x \leq y$ if and only if $x \circ y=1$ we define the induced order of A which makes every interval $[a, 1]$ into a lattice with $x \vee y=(x \circ y) \circ y$ and $x \wedge y=((x \circ y) \circ(x \circ a)) \circ a$. Hence for any $a \in A, \mathbf{M}(a, 1)=\left([a, 1], \oplus_{a}, \neg_{a}, a\right)$ is an $M V$-algebra, where $x \oplus_{a} y:=(x \circ a) \circ y$ and $\neg_{a} x:=x \circ a$. As an immediate consequence we obtain:
Proposition 1. ([3]) Let \mathbf{M} be an $M V$-algebra, $a \in M$. Define

$$
x \oplus_{a} y:=\neg(\neg x \oplus a) \oplus y, \quad \neg_{a} x:=\neg x \oplus a
$$

Then $\mathbf{M}(a, 1)=\left([a, 1], \oplus_{a}, \neg_{a}, a\right)$ is an $M V$-algebra.
$M V$-algebras in the sense of the above definition are right- $M V$-algebras since they are representable in the positive cones (the "right-hand side") of abelian lattice-ordered groups. But we can define a new binary operation \odot via

$$
x \odot y:=\neg(\neg x \oplus \neg y),
$$

which leads to the concept of left-MV-algebras that are obtained from the negative cones (the "left-hand side") of abelian lattice-ordered groups:

A left- $M V$-algebra is an algebra $\mathbf{M}^{\prime}=(M, \odot, \neg, 1)$ of type $\langle 2,1,0\rangle$ satisfying the axioms

```
\(\left(\mathrm{MV1}^{\prime}\right) \quad(x \odot y) \odot z=x \odot(y \odot z)\),
(MV2') \(x \odot y=y \odot x\),
\(\left(\mathrm{MV3}^{\prime}\right) \quad x \odot 1=x\),
(MV4') \(\neg \neg x=x\),
(MV5') \(x \odot \neg 1=\neg 1\),
\(\left(\mathrm{MV}^{\prime}\right) ~ \neg(\neg x \odot y) \odot y=\neg(\neg y \odot x) \odot x\).
```

Let \mathbf{M}^{\prime} be a left- $M V$-algebra and define $x * y:=x \odot \neg y$. It is easily seen that this binary operation has the following properties:

$$
\begin{aligned}
& \left(\mathrm{A} 1^{\prime}\right) x * 0=x, 0 * x=0 \\
& \left(\mathrm{~A}^{\prime}\right) \quad x *(x * y)=y *(y * x) \\
& \left(\mathrm{A}^{\prime}\right) \quad(x * y) * z=(x * z) * y
\end{aligned}
$$

A tedious but straightforward calculation yields the analogue of Proposition 1:

Proposition 2. Let $\mathbf{A}=(A, *, 0)$ be an algebra of type $\langle 2,0\rangle$ satisfying the identities ($\mathrm{A} 1^{\prime}$), ($\mathrm{A} 2^{\prime}$) and ($\left.\mathrm{A} 3^{\prime}\right)$. Let $a \in A$. Define

$$
x \odot^{a} y:=x *(a * y) \quad \text { and } \quad \neg^{a} x:=a * x \quad \text { for } \quad x, y \in[0, a] .{ }^{1}
$$

Then $\mathbf{M}^{\prime}(0, a)=\left([0, a], \odot^{a}, \neg^{a}, a\right)$ is a left-MV-algebra.
Proof. First observe that

$$
x *(a * y)=(a *(a * x)) *(a * y)=(a *(a * y)) *(a * x)=y *(a * x)
$$

which verifies (MV2').
(MV1'):

$$
\begin{aligned}
\left(x \odot^{a} y\right) \odot^{a} z & =(x *(a * y)) *(a * z) \\
& =(y *(a * x)) *(a * z) \\
& =(y *(a * z)) *(a * x) \\
& =x *(a *(y *(a * z))) \\
& =x \odot^{a}\left(y \odot^{a} z\right) .
\end{aligned}
$$

$\left(\mathrm{MV}^{\prime}\right): \mathrm{By}\left(\mathrm{A}^{\prime}\right)$ and $\left(\mathrm{A}^{\prime}\right)$ we have $a * a=0$, and hence

$$
x \odot^{a} a=x *(a * a)=x * 0=x .
$$

[^1](MV4'):
$$
\neg^{a} \neg^{a} x=a *(a * x)=x .
$$
(MV5'):
$$
\neg^{a} a \odot^{a} x=(a * a) *(a * x)=0=\neg^{a} a .
$$
(MV6'): We have
$$
\neg^{a}\left(\neg^{a} x \odot^{a} y\right) \odot^{a} y=y *(a *(a *(y *(a *(a * x)))))=y *(y * x)
$$
and similarly $\neg^{a}\left(\neg^{a} y \odot^{a} x\right) \odot^{a} x=x *(x * y)$.
Corollary 3. If $\mathbf{M}^{\prime}=(M, \odot, \neg, 1)$ is a left-MV-algebra and $a \in M$, the upon defining $x \odot^{a} y:=x \odot \neg(a \odot \neg y)$ and $\neg^{a} x:=a \odot \neg x$, the structure $\mathbf{M}^{\prime}(0, a)=\left([0, a], \odot^{a}, \neg^{a}, a\right)$ is a left-MV-algebra.

Proof. If \mathbf{M}^{\prime} is a left- $M V$-algebra, then the algebra $\mathbf{A}\left(\mathbf{M}^{\prime}\right)=(M, *, 0)$ fulfils the above axioms, and so, by the proposition, $\mathbf{M}^{\prime}(0, a)$ is a left- $M V$-algebra, where $x \odot^{a} y=x *(a * y)=x \odot \neg(a \odot \neg y)$ and $\neg^{a} x=a * x=a \odot \neg x$.

Corollary 4. Let \mathbf{M} be an $M V$-algebra, $a \in M$. Define $\mathbf{M}(0, a)=$ $\left([0, a], \oplus^{a}, \neg^{a}, 0\right)$ via $x \oplus^{a} y:=(x \oplus y) \wedge a$ and $\neg^{a} x:=\neg(x \oplus \neg a)$. Then $\mathbf{M}(0, a)$ is an $M V$-algebra.

Proof. For any $x, y \in[0, a]$ we have

$$
\begin{aligned}
x \oplus^{a} y & =\neg^{a}\left(\neg^{a} x \odot^{a} \neg^{a} y\right) \\
& =a \odot \neg(a \odot \neg x \odot \neg(a \odot \neg(a \odot \neg y))) \\
& =a \wedge \neg(\neg x \odot \neg(a \wedge y)) \\
& =a \wedge \neg(\neg x \odot \neg y) \\
& =a \wedge(x \oplus y)
\end{aligned}
$$

and $\neg^{a} x=a \odot \neg x=\neg(\neg a \oplus x)$.
Combining Proposition 1 and Corollary 4, we get the promised description of interval $M V$-algebras:

Theorem 5. Let \mathbf{M} be an $M V$-algebra and let $a, b \in M$ with $a \leq b$, where $\leq i s$ the natural order of \mathbf{M}. Define $\mathbf{M}(a, b)=\left([a, b], \oplus_{a}^{b}, \neg_{a}^{b}, a\right)$ by

$$
x \oplus_{a}^{b} y:=(\neg(\neg x \oplus a) \oplus y) \wedge b \quad \text { and } \quad \neg_{a}^{b} x:=\neg(x \oplus \neg b) \oplus a .
$$

Then $\mathbf{M}(a, b)$ is an $M V$-algebra.

Proof. Let $x, y \in[a, b]$. Then

$$
x \oplus_{a}^{b} y=\left(x \oplus_{a} y\right) \wedge b=(\neg(\neg x \oplus a) \oplus y) \wedge b
$$

and

$$
\begin{aligned}
\neg_{a}^{b} x & =\neg_{a}\left(x \oplus_{a} \neg_{a} b\right) \\
& =\neg(\neg(\neg x \oplus a) \oplus \neg b \oplus a) \oplus a \\
& =\neg((x \vee a) \oplus \neg b) \oplus a \\
& =\neg(x \oplus \neg b) \oplus a .
\end{aligned}
$$

Corollary 6. Let \mathbf{M} be an $M V$-algebra and let $a, b \in M$ such that $a \leq b$, where \leq is the natural order of \mathbf{M}. If $a, b \in B(\mathbf{M})$, then in the $M V$-algebra $\mathbf{M}(a, b)$ we have $x \oplus_{a}^{b} y=x \oplus y$ and $\neg_{a}^{b} x=(\neg x \wedge b) \vee a$.

Proof. For any $x, y \in[a, b]$,

$$
\begin{aligned}
x \oplus_{a}^{b} y & =(\neg(\neg x \oplus a) \oplus y) \wedge b \\
& =(\neg(\neg x \vee a) \oplus y) \wedge b \\
& =((x \wedge \neg a) \oplus y) \wedge b \\
& =(x \oplus y) \wedge(\neg a \oplus y) \wedge b \\
& =x \oplus y
\end{aligned}
$$

since $\neg a \oplus y \geq \neg a \oplus a=1$ and $x \oplus y \leq b \oplus b=b$.
Corollary 7. Let $\mathbf{A}=(A, \circ, 1)$ be an algebra satisfying (A1), (A2) and (A3). Let $a, b \in A$ such that $a \leq b$, where \leq is the induced order of A. Define $x \oplus_{a}^{b} y:=((b \circ((x \circ a) \circ y)) \circ(b \circ a)) \circ a \quad$ and $\quad \neg_{a}^{b} x:=(b \circ x) \circ a$.
Then $\mathbf{M}(a, b)=\left([a, b], \oplus_{a}^{b}, \neg_{a}^{b}, a\right)$ is an MV-algebra.
Proof. The structure $\left([a, 1], \oplus_{a}, \neg_{a}, a\right)$ is an $M V$-algebra, where $x \oplus_{a} y=$ $(x \circ a) \circ y$ and $\neg_{a} x=x \circ a$, and therefore, $\mathbf{M}(a, b)$ is an $M V$-algebra, where

$$
\begin{aligned}
x \oplus_{a}^{b} y & =\left(x \oplus_{a} y\right) \wedge b \\
& =((x \circ a) \circ y) \wedge b \\
& =((b \circ((x \circ a) \circ y)) \circ(b \circ a)) \circ a
\end{aligned}
$$

as $[a, 1]$ is a lattice with $x \wedge y=((y \circ x) \circ(y \circ a)) \circ a$ for any $x, y \in[a, 1]$, and

$$
\begin{aligned}
\neg_{a}^{b} x & =\neg_{a}\left(x \oplus_{a} \neg a b\right) \\
& =((x \circ a) \circ(b \circ a)) \circ a \\
& =(b \circ((x \circ a) \circ a)) \circ a \\
& =(b \circ x) \circ a .
\end{aligned}
$$

IVAN CHAJDA - JAN KÜHR

REFERENCES

[1] CIGNOLI, R. L. O.-D'OTTAVIANO, I. M. L.-MUNDICI, D.: Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
[2] CHANG, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] CHAJDA, I.-HALAŠ, R.-KÜHR, J. : Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005), 19-33.
[4] CHAJDA, I.-HALAS̆, R.-KÜHR, J.: Implication in MV-algebras, Algebra Universalis 52 (2004), 377-382.
[5] MUNDICI, D.: Interpretation of $A F C^{*}$-algebras in Eukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.

Received May 24, 2004
Department of Algebra and Geometry Faculty of Science
Palacký University
Tomkova 40
CZ-779 00 Olomouc
CZECH REPUBLIC
E-mail: chajda@inf.upol.cz
kuhr@inf.upol.cz

[^0]: 2000 Mathematics Subject Classification: Primary 06D35.
 Keywords: $M V$-algebra, interval $M V$-algebra.

[^1]: ${ }^{1}$ The induced order of \mathbf{A} is defined by $x \leq y$ if and only if $x * y=0$.

