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Math. Slovaca 33,1983, No. 3, 241—248 

NOTE ON THE OSCILLATION 
OF DIFFERENTIAL EQUATION WITH ADVANCED 

ARGUMENT 

RUDOLF OLAH 

We want to consider the oscillatory behaviour of solutions of the nonlinear 
differential equation with advanced argument 

(1) yM(t) + p(t)f<y(g(t))) = 0, n^2, 

where : 
a ) P(0 is continuous and nonnegative on [to, °°); 
b) g(t) is a nondecreasing continuous function on [/0, °°) and such that t<g(t); 
c) f(u) is a continuous function on (—°°, o°) such that uf(u)>0 for u4=0. 
A solution y(t) of the equation (1) is called oscillatory if it has arbitrarily large 

zeros, and it is called nonoscillatory otherwise. 
We introduce the notation: 

M/ = max ilim sup7/-r> -in* sup- r r - r l ^O. 
l>~- f(y) y— f(y)i 

We restrict our consideration to those solutions y(t) of (1) which exist on some 
interval [Ty, <») and satisfy 

sup {|y(/)|: t0^/<°°}>0 for any t0e[Ty, «>). 

Lemma 1 (Kiguradze) [1]. Lety(t) be a solution of the equation (1) satisfying 
the condition 

y(t)> for te[t0, ™) 

and let y(n)(t)^0 for te[t0, «>). 
Then there exist a h e [to, °°) and an integer I e {0, 1, ..., n} such that / + n is odd 

and 

(2/) y ° ( / ) > 0 for te[h, «>) (i = 0, ..., / ^ 1), 

( - l ) , + y ° ( 0 > 0 for te[tu o>) (/ = /, ..., n - l ) . 

An analogous statement can be made if y(t)<0 and y(n)(t)^0 for te[to, °°). 
The next lemma characterizes the oscillatory behaviour of bounded solutions. 
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Lemma 2. Suppose that the conditions a)—c) are satisfied and, in addition, 

(3) J" r-fp(t)dt=co. 

Then every bounded solution of equation (1) is oscillatory if n is even, and every 

bounded solution of equation (1) is oscillatory or lim y°\t) = 0, / = 0, 1, ..., n — 1, 
t—»°o 

if n is odd. 
Proof. Let y(t) be a bounded and positive solution of equation (1) on [t0, co). 

From the equality 

y0)(t) = % (-!)'"' j i ^ - y('\s) + 

s^f^/o, with regard to equation (1) we get 

y°V)=|i ( - i y - ' ^ ^ V ( s ) + 
(4) 

+ (
(
n"-f_i) ! f ( « - t)""'"1p(«)/(y(.'?(«))) d«. 

Let n be even. Since y(t) is a positive and bounded solution of equation (1), in 
view of Lemma 1 we have / = 1 and for j = 1, from (4) we get 

/ ( 0 ^ - - 2 ) ! / , " ( " - O""Jp(«)/(>'(0(«))) d M -

Integrating the last inequality from T to /, t>T^t0, we obtain 

y(0^(r^-T)! £ ("- T)""xp(«)/(y(fl(«))) d«. 

Q 

Let y(/)—»c>0 as /—>oo. Since y(t) is nondecreasing, iz^y(t)<c for t^U^T. 

Then there exist positive constants Ci, c2 such that Ci^f(y(g(t)))^c2, t^h. As 
t—•oo, we have 

c > 
- 0 0 

which is a contradiction to (3). 
Let n be odd. In view of the fact that y(t) is bounded, / = 0 and from the equality 

(4) for y = 0 we get 
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y ( T ) - y ( 0 ^ ( n i 1 ) ! II ("-T)n-lp(u)f(y(g(u)))du, t^T^u. 

Let y(t)—>L>0 as t—• oo. Since >>(/) is a nonincreasing solution of the equation (1), 
then L<y(t)^2L for t^h^T. Then there exist positive constants Lu Li such 
that L!^f(y(g(t)))^L2, t^U. As /->oo, we get 

y(T)>yM-L^-^^f\u-^ 

which is a contradiction to (4), so lim y(t) = 0. The proof of Lemma 2 is complete. 
t—*ao 

In this paper the theorems have specific character for differential equations with 
advanced argument. The assertions of these theorems are not true for the 
corresponding ordinary differential equations. 

Theorem 1. Suppose that the conditions a)—c) are satisfied, Af/<oo and in 
addition 

rod) 
(5) lim sup (s-t)n~lp(s)ds>Mf(n-1)!. 

f-*°° it 

Then every solution of equation (1) is oscillatory ifn is even, and every solution of 

equation (1) is oscillatory or lim yO)(t) = 0, i = 0, 1, ..., n — 1, if n is odd. 

Proof. Let y(t) be a nonoscillatory solution of the equation (1). Without loss of 
generality we may suppose that y(t) is eventually positive on [/0, °°). 

Suppose that n is even and 1=1. From (4) with regard to Lemma 1 for j = 1 we 
obtain 

y'O^f^Zy. \~("-t)"-2p(u)f(y(g(u))) dM, t»k. 

Integration of the last inequality from t to g(t), t>t0, yields 

1 rg(t) 

(6) yW)>(^Ty.l ("-t)n-1p(u)f(y(g(u)))du. 

We remind that the condition (5) implies (3). If now y(t) increases to a finite limit 
as /—> oo, then similarly as in the proof of Lemma 2 we get a contradiction to (3). 

Let y(t) increase to infinity as t—>oo. From (6) we get 
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•чO) 

(n-l)l sup -7T\^\ (u-t)n~ln(u)du, 
V y(g0t0)))5£>v(c,(t)) f(Z) J, V > f \ t -> 

z fQit) 

(« - 1)! lim sup —r-r^lim sup I (u - t)n ln(u)du, 
*-*°° f(z) '-00 Jt ^ 

which is a contradiction to the condition (5). 
Let n be odd and / = 0. In view of Lemma 1, from (4) for j = 0, / > /0, we have 

y(to) - y(t) ^(~iy [ (« " to)n-lp(u)f(y(g(u))) du. 

Since >>'(/)^0 for / > / 0 , y(t) decreases to limit L ^ O as /—>oo. Let L > 0 . Then 

similarly as in the proof of Lemma 2 we get a contradiction to (3), so lim y(t) = 0. 
/—»oo 

Let le {2, ..., n — 1}. With regard to Lemma 1 from (4) forj = /, / > / 0 , we have 

y^O^^n - / _ ! ) , / " ( - - tr'-'p(u)f(y(g(u))) du. 

By integrating the last inequality from /0 to /, / > / 0 , we obtain 

y('"\t)^^y [ p(u)f(y(ff(u))) du. 

Repeating this procedure we get 

y'O* (
(7_ _) .,2 f" p(«)f(yi0(«)))dw-

We integrate last inequality from / to g(t), / > / 0 , 

1 r<*(') r" 

y(0(())^(^±2y J, p(u)f(y(a(")))j, (s-'°r2ds dM> 

yfoW) £*^fyy, J, (« - 0""V(«)/(3'(i9'(«))) d", 

which is the inequality (6). The proof now proceeds as above, when y(t) increases 
to infinity. This completes the proof. 

Corollary 1. We consider the differential equation 

(7) yM(t) + p(t)y(g(t)) = 0. 

Suppose that the conditions a), b) are satisfied and in addition 

roO) 

(8) lim sup (s-t)n'1p(s)ds>(n-l)l. 
t~+°° Jt 
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Then every solution of the equation (7) is oscillatory if n is even, and every solution 

of the equation (7) is oscillatory or lim y(,)(t) = 0, i = 0,1,..., n — 1, if n is odd. 

It can occur that the ordinary differential equation has a nonoscillatory solution, 
but if the corresponding differential equation with advanced argument has 
a solution, then this solution is oscillatory. 

E x a m p l e 1. The ordinary differential equation 

y ( t ) + 4 ^ ( 0 = 0 , t>o, 

has a nonoscillatory solution y(t) = t2, but the corresponding differential equation 
with advanced argument 

y"(0+47><i49t)=o, />0, 

in view of the condition (8), has every solution oscillatory. 

Theorem 2. Suppose that the conditions a)—c) are satisfied, Mf<<x> and in 
addition 

(9) l i n 2 s u P (u-s)n-2p(u)duds>Mf(n-2)\. 

Then the equation (1) has no solution satisfying (2i), and lim y{l)(t) = 0, i = 0, 1, 
t—»oo 

..., n — 1 , for every solution of the equation (1) which satisfies (20). 
Proof. Let y(t) be a positive solution of the equation (1) on [t0, oo). Let 1=1. 

Then n is even and from (4) for j = 1 we get 

(10) y ' ^ ( ^ z y . / " ( " - 0 " " p(«)/(y(0(«))) d" . 

Integrating from t to g(t), t>t0, we obtain 

1 r0(O r°° 

(11) K g ( t ) ) 2 * ( ^ T 2 ) ] / / (u-sy-2p(u)f(y(g(u)))dudS. 

We remind that the condition (9) implies (3). Otherwise if 

J tn-1p(t)dt<^, 

then 
r0(O 

0 < l i m s u p | I (u —s)n-2p(u)du ds^ 
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^ lim sup J J (u-s)n 2p(u)duds = \imsup——- ( (u-t)n~lp(u) du^ 

1 C -1 
^ l i m s u p - — Y J (u-t0)

n p(u)du = 0, 

which is a contradiction. 
Let y(t) increase to a finite limit as t—><x>. We integrate (10) from t0 to t, 

y(0 ^ ( ^ 1 ) 7 £ (" " to)n~lp(u)f(y(g(u))) du. 

Similarly as in the proof of Lemma 2 we get a contradiction to (3). 
Let y(t) increase to infinity as /—>oo. From (11) we get 

( n - 2 ) ! sup - M (u-sy-2p(u)duds, 
z^y(g(t)) J\Z) Ji Js 

- r »(0 r oo 

(n-2)\ limsup-rr-r^limsup (u-s)n~2p(u) du ds, 
*->« f(Z) ' - - Jt Js ^ 

which is a contradiction to condition (9). 
Let / = 0. Then n is odd and from (4) for y = 0 we have 

y(to)" y(t) ^(>73T)T { (" " to)n-lp(u)f(y(g(u))) du. 

Let lim y(t) = L > 0 . In view of the fact that the condition (9) implies (3), similarly 
f—»oo 

as in the proof of Lemma 2 we get a contradiction to (3). So lim y(t) = 0. 
t—»°o 

Corollary 2. We consider the differential equation 
y"(0+p(t)f(y(g(t)))=o. 

Suppose that the conditions a)—c) are satisfied, Mf<& and in addition 

rffO) r~ 

(12) lim sup I I p(w)dMds>M/. 

Then every solution of this equation is oscillatory. 
Examp le 2. We cannot decide about the oscillatory character of solutions of 

the differential equation with advanced argument 

y"(t) + ^py(8U) = 0, t>0, 

with regard to the condition (8). But in view of condition (12) every solution of this 
equation is oscillatory. 
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Theorem 3. Suppose that the conditions a)—c) are satisfied, Mf<<*> and in 
addition 

rяU) 
(13) limsup (s-t)sn-2p(s)ds>Mf(n-l)\. 

Then the equation (1) has no solution satisfying (2i), le{2, ..., n — 1}. 
Proof. Let y(t) be a positive solution of the equation (1) on [t0, <») which 

satisfies (2/), le {2, ..., n — 1}. Similarly as in the proof of Theorem 1 we get 

We integrate the last inequality from t to g(t), t>t0, 

i rs(0 ru 

yCg(0)-»^T2)! J, p(u)f(y(g(u)))J, (s-tor2d5d«, 

y(9(t)) 2*^31)7 J, (« - ')(« - «>)"-p(«)/(y(ff(«))) d«. 

From the last inequality we have 

2 f g ( l ) 

( n - 1 ) ! limsup77^-^limsup (u-t)(u-t0)
n 2

p(u)du, 

which is a contradiction to (13). The proof is complete. 

Theorem 4. Suppose that the conditions a)—c), (9), (13), Mf< <» are satisfied. 
Then every solution of the equation (1) is oscillatory if n is even, and every solution 

of the equation (1) is oscillatory or lim y(/)(0 = 0, / = 0,1,..., n — 1, ifn is odd. 

The proof follows from the Theorems 2, 3. 
The above results are new. The sufficient condition [2, Th. 8.4] which guarantees 

that every solution of the equation from the example 2 is oscillatory 

1 Ро-(г)р(1) <-*=«>, Е>0, #)(0 = ГШП {*, д(()}, 

18 по! 8а{1$Нес1. Вит 1Ье сопёШоп (12) 18 8а118Йес1. 
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ЗАМЕТКА О КОЛЕБЛЕМОСТИ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 
С ОПЕРЕЖАЮЩИМ АРГУМЕНТОМ 

Кисю11 О 1 а п 

Р е з ю м е 

В работе приведены достаточные условия для того, чтобы каждое решение уравнения (1) при 
четном п являлось колеблющимся, а при нечетном л, либо колеблющимся, либо удовлетворяло 
условию 

limy ( , )(t) = 0, i = 0, ..., n-1. 
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