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NOTE ON THE OSCILLATION
OF DIFFERENTIAL EQUATION WITH ADVANCED
ARGUMENT

RUDOLF OLAH

We want to consider the oscillatory behaviour of solutions of the nonlinear
differentjal equation with advanced argument

(1) YOO+ p()f(y(9(1))=0, n=2,
where :

a) p(?) is continuous and nonnegative on [to, ®);

b) g(?) is a nondecreasing continuous function on [#, ) and such that t< g(¢);

¢) f(u) is a continuous function on (— %, ®) such that uf(u«)>0 for u#0.

A solution y(t) of the equation (1) is called oscillatory if it has arbitrarily large
zeros, and it is called nonoscillatory otherwise.

We introduce the notation:

. y . y
M; =max {hm sup ———, lim su —}20.
' = Py = S F(y)
We restrict our consideration to those solutions y(t) of (1) which exist on some
interval [T,, ) and satisfy
sup {|y(8)|: o<t<®}>0 for any te[T,, »).

Lemma 1 (Kiguradze) [1]. Let y(¢) be a solution of the equation (1) satisfying
the condition

y(t)> for te[t, »)

and let y™”(£)<O0 for t€[t, »).

Then there exista t, € [to, ®) and an integer l € {0, 1, ..., n} such that / + n is odd
and

2) y (>0 for te[t, ») (i=0,..,1-1),
D)"Y >0 for te[t, ) (i=l, .., n—1).

An analogous statement can be made if y(#)<0 and y™(¢) =0 for t€[t, ©).
The next lemma characterizes the oscillatory behaviour of bounded solutions.
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Lemma 2. Suppose that the conditions a)—c) are satisfied and, in addition,

?3) J-mt"_lp(t) dt=oo,

Then every bounded solution of equation (1) is oscillatory if n is even, and every
bounded solution of equation (1) is oscillatory or }ir;_} y2()=0,i=0,1,..,n—1,
if n is odd.

Proof. Let y(f) be a bounded and positive solution of equation (1) on [f, ).
From the equality

Y0 = 2 (-1 G )+

N T

s=t=1, with regard to equation (1) we get

0 =3 (17 G o) +
@ |
—1)ritt s it
o [ =07 p st du.

Let n be even. Since y(t) is a positive and bounded solution of equation (1), in
view of Lemma 1 we have /=1 and for j=1, from (4) we get

Y (0> gy [ = 0 p ) du

Integrating the last inequality from T to ¢, t> T =1, we obtain
1 ! e
YOGy [, =D a(w)) du.

Let y(t)— ¢ >0 as t— «. Since y(t) is nondecreasing, gsy(t)<c for t=z0n=T.
Then there exist positive constants ci, ¢; such that ¢, <f(y(g(?)))<c, t=t. As
t— o, we have
c>—S J‘w(u —-T)""'p(u) du
(n - 1) ! n ’

which is a contradiction to (3).

Let n be odd. In view of the fact that y() is bounded, / =0 and from the equality
(4) for j=0 we get
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YD-yO> 2 [ = D p @O @) du, 12T,

Let y(t)— L >0 as t— . Since y(t) is a nonincreasing solution of the equation (1),
then L<y(t)<2L for t=t=T. Then there exist positive constants L, L, such
that Ly < f(y(g(1)))<L,, t=t. As t—», we get

WD>YD- L2l [ w1 p(w) du,

which is a contradiction to (4), so lim y(#) =0. The proof of Lemma 2 is complete.

In this paper the theorems have specific character for differential equations with
advanced argument. The assertions of these theorems are not true for the
corresponding ordinary differential equations.

Theorem 1. Suppose that the conditions a)—c) are satisfied, M;<o and in
addition

q(1)
5) lim sup (s—9"'p(s) ds>My(n—1)!.
— t
Then every solution of equation (1) is oscillatory if n is even, and every solution of
equation (1) is oscillatory or lim y()=0, i=0, 1, ..., n—1, if n is odd.

Proof. Let y(t) be a nonoscillatory solution of the equation (1). Without loss of
generality we may suppose that y(t) is eventually positive on [z, ).

Suppose that n is even and / =1. From (4) with regard to Lemma 1 for j=1 we
obtain

Y=gz [, (=0 PO du, 1=

Integration of the last inequality from ¢ to g(t), t> 1o, yields

a(0)
(6) y(g(t))/( 1), (u=0""p(u)f(y(9(u))) du.

We remind that the condition (5) implies (3). If now y(¢) increases to a finite limit
as t— o, then similarly as in the proof of Lemma 2 we get a contradiction to (3).
Let y(¢) increase to infinity as t— . From (6) we get

a(n)

a(0)
=Dtz ot f ‘f&%” (= 0""p() du,
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a(n)

— 1)1 _Z_ — -l
(n 1)'y(y(u(r)?)g?w(u(mj'(z)zj: (u=1) p(u) du,

4(0)
(n—1)! lim sup m>hm sup (u=0)" "p(u) du,
which is a contradiction to the condition (5).
Let n be odd and / =0. In view of Lemma 1, from (4) for j =0, t> t, we have

Y= 30> 55y [ =0 p g du

Since y'(¢) <0 for t>1, y(r) decreases to limit L=0 as t— . Let L >0. Then
similarly as in the proof of Lemma 2 we get a contradiction to (3), so lim y(f) = 0.

Let/e{2, ..., n—1}. Withregard to Lemma 1 from (4) for j =/, t> t,, we have
V0= Gyt |, (=07 P39 () du.

By integrating the last inequality from % to ¢, t> 1, we obtain

Y= [ p o)) du.

Repeating this procedure we get

y =815 [ pasa) du.

We integrate last inequality from ¢ to g(z), t>t,

9(n u
W)=z [ 0o [ (s =17 ds du,

(0

Ho =gy [ =0 P59 du,

which is the inequality (6). The proof now proceeds as above, when y(¢) increases
to infinity. This completes the proof.

Corollary 1. We consider the differential equation

) Y1)+ p()y(9(1))=0.
Suppose that the conditions a), b) are satisfied and in addition
' 9
8) lim sup (s=0""'p(s)ds>(n—1)!.
= '
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Then every solution of the equation (7) is oscillatory if n is even, and every solution
of the equation (7) is oscillatory or !iq_} y2()=0,i=0,1,...,n—1, ifnisodd.

It can occur that the ordinary differential equation has a nonoscillatory solution,

but if the corresponding differential equation with advanced argument has
a solution, then this solution is oscillatory.

Example 1. The ordinary differential equation
Y(0)+ 3 (=0, 10,

has a nonoscillatory solution y(¢) = £, but the corresponding differential equation
with advanced argument

y'(t) +4Lt2 y(1491)=0, >0,

in view of the condition (8), has every solution oscillatory.

Theorem 2. Suppose that the conditions a)—c) are satisfied, M;<® and in
addition

g(1) poo
9) lim sup j f (u—s)""p(u)du ds>M;(n—2)!.

Then the equation (1) has no solution satisfying (2.), and lim y2()=0, i=0, 1,

..., n—1, for every solution of the equation (1) which satisfies (20).

Proof. Let y(t) be a positive solution of the equation (1) on [t, ). Let /=1.
Then n is even and from (4) for j=1 we get

(10) Y (0= Grg; [ = 0"7p(f(a(w) du.

Integrating from ¢ to g(t), t>t, we obtain

1 q(1) poo .
A )G [ =9 (g du ds.

We remind that the condition (9) implies (3). Otherwise if

f " p(r) di< o,
then

a(1) oo
0<l‘im supf f (u—s5)""p(u)du ds<
—» 00 t s
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<lim supJ’ f (u—35)""7p(u) du ds=llir£| sup 11] (u—1)""p(u) du<

n—

. 1 ”
<lim sup f (u—t)""'p(u) du=0,

t—o n—1
which is a contradiction.

Let y(t) increase to a finite limit as t— . We integrate (10) from # to ¢,

Y02 Gy [ (= 0" p ) (g ) due

Similarly as in the proof of Lemma 2 we get a contradiction to (3).
Let y(t) increase to infinity as t— . From (11) we get

g(1) oo
(n—2)! sup TZZ)BJ: J:(u—s)"‘zp(u) du ds,

z=y(9(1))
: z . (e 2
(n-2)! il_r:g sup m?lll_gl supf‘ f (u—s)"p(u) du ds,

which is a contradiction to condition (9).
Let /=0. Then n is odd and from (4) for j=0 we have

Y(6) =302 g [ (o= )" "p () (g(u)

Let lim y(t)=L>0. In view of the fact that the condition (9) implies (3), similarly
as in the proof of Lemma 2 we get a contradiction to (3). So girg y()=0.

Corollary 2. We consider the differential equation
y" () +p(0)f(y(9(1))) =0.
Suppose that the conditions a)—c) are satisfied, M;<  and in addition

a9(0)

(12) lim supf f p(u) du ds>M;.
[anded t s

Then every solution of this equation is oscillatory.
Example 2. We cannot decide about the oscillatory character of solutions of
the differential equation with advanced argument

y”(t)+‘—11? y(811)=0, >0,

with regard to the condition (8). But in view of condition (12) every solution of this
equation is oscillatory.
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Theorem 3. Suppose that the conditions a)—c) are satisfied, M; < and in
addition
q(0)
(13) lim sup (s—0)s"?p(s) ds>My(n—1)!.
[andad t

Then the equation (1) has no soliztion satisfying (2:), le {2, ..., n—1}.
Proof. Let y(#) be a positive solution of the equation (1) on [t, ) which
satisfies (2/), /e {2, ..., n—1}. Similarly as in the proof of Theorem 1 we get

to)n—Z

y = [0 P (a(w) du.

We integrate the last inequality from ¢ to g(t), t>t,

1 &V u -
Y&O)> gy [, PN [ (=)™ ds du,

9(0)
YoW)> G2y [, (== P9 (w)) du.
From the last inequality we have

g(0)

(n—1)!lim sup — >l|m sup (u—0(u—1)"?p(u) du,

- f( )~

which is a contradiction to (13). The proof is complete.

Theorem 4. Suppose that the conditions a)—c), (9), (13), M;<x are satisfied.
Then every solution of the equation (1) is oscillatory if n is even, and every solution

of the equation (1) is oscillatory or lim y?(1)=0,i=0,1,...,n—1, ifnisodd.

The proof follows from the Theorems 2, 3.
The above results are new. The sufficient condition [2, Th. 8.4] which guarantees
that every solution of the equation from the example 2 is oscillatory

[[ B p@y at=w, &0, puoy=min {1 g(1),

is not satisfied. But the condition (12) is satisfied.
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3AMETKA O KOJIEBIEMOCTH JU®PEPEHUUAIIBHOIO YPABHEHUA
C OIIEPEXAIOIIMM API'YMEHTOM

Rudolf Olah

Pe3iome
B pa6oTe npusefeHbl JOCTATOUYHbBIC YCI0BHUS ANsl TOrO, YTOOB! KaXKoe peuleHne ypasHeHus (1) npu
YETHOM 1 ABASANOCH KONEGMIOLIMMCS, a MPU HEYETHOM n, NGO KoneGntoluMcs, 1160 yAOBIETBOPSIIO

YCJIOBHIO

lim y(1)=0, i=0,..,n-1.
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