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O N A PROPERTY OF RIESZ SPACES 

RASTISLAV POTOCK* 

Riesz spaces E with the property that every positive linear operator from E to an 
Archimedean Riesz space is sequentially order-continuous have been investigated 
by many authors. A complete characterization of such spaces has been given by 
D. H. Fremlin. His theorem says that they are exactly the Riesz spaces in which 
every relatively uniformly closed ideal is a o-ideal (i.e. admits suprema and infima 
of monotonic sequences). My purpose in this paper is to investigate Riesz spaces E 
with a stronger property, namely that every positive linear operator from E to an 
Archimedean Riesz space maps order convergent sequences to relatively uniformly 
convergent sequences. It turns out that the above mentioned condition continues to 
be sufficient as well as necessary. Then I shall show that certain known types of 
Riesz spaces (e.g. Riesz spaces with the diagonal property or with the property that 
disjoint order-bounded sequences are stable) have the described property. In the 
second section of this paper I relate this result to others concerning the order and 
topological structures of Riesz spaces. 

My terminology will follow [1] or [2]. 

I 

Definition 1.1. Lef E be a Riesz space. A sequence x„ of the elements of 
E order-converges to an element x in E if there is a decreasing sequence u„e E with 
infimum 0 such that \x„ — x\ < u„ for each n. A sequence x„ is relatively uniformly 
convergent to an x in E if there is an e e E* and a real sequence converging to 
0 such that \x„ —x\^a„ e for every n. 

Definition 1.2. LetEandFbe Rieszspaces. A linear operator T: E^*Fis said to 
be positive if Tx^ Ty in F whenever x^y in E. Tis sequentially order-continuous 
if inf Tx„ = Tx in F whenever x„ is a decreasing sequence with infimum x in E. T is 
strongly sequentially order-continuous if x„[x implies the relatively uniform 
convergence of Tx„ to Tx in F. 

Definition 1.3. A Riesz space E has the o-property if every countable set in E is 
included in a principal ideal of E. 
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Theorem 1.1. Let E be a Riesz space Then these are equivalent: 
(i) every order-convex relatively uniformly closed set is closed for the operations 

of taking infima and suprema of monotonic sequences; 
(ii) every relatively uniformly closed ideal in E is a o-ideal; 

(iii) every positive linear operator from E to an Archimedean Riesz space with 
o-property is strongly sequentially order-continuous. 

Proof, (i)—>(ii) is obvious, (ii)—»(i) is proved in [2] th. 1 3A. I shall prove that 
(i) implies (iii) 

Let T be a positive linear operator from E to F, where F is an Archimedean 
Riesz space with o-property, x„ be a sequence decreasing to 0 in £ and consider 
A = {x; 3nTx^T(x„)}. Then A is an order-convex set including all x„. The 
order-convexity of A follows easily from the fact that x e A and y e E* imply the 
existence of a natural number n such that T(x + y) > Tx> Tx„. Hence x + yeA. 

Consider now the set B = {xeE; 3 a sequence y„ e A ; Ty„ » Tx} This is an 

order-convex set including A. For xeB and y e E* imply that there is a sequence 

y„ + y e A such that T(y„ + y) = Ty„ + Ty * Tx + Ty = T(x + y). I shall show 

T U 

that B is relatively uniformly closed, i.e. x„ e B, x„ >x implies x e B. For each n 

there is a sequence xk„eA such that T(xk„) * T(x„) with k tending to infinity, i.e. 
there is a real sequence a* converging to O with respect to k and an element u„eF 
such that | T(xk„) — T(x„)\ ^ ik„u„ for each k. Since F has the o-property there is an 
ueF such that u„^K(n)u for each n, where K(n) is a function from N to N, 
N the set of natural numbers. Denoting akK(n) by bk„ we obtain that there is a real 
sequence c„{0 such that for each n there is a k(n) with c„~^bk}n). This is because 
the real numbers have the diagonal property, which is precisely the fact stated 
above (see also the definition 1.4). From this we obtain the existence of a sequence 
xk(n) of the elements of A such that | T(xk(n)) - T(x„)\ s= c„u for each n. The rest of 
the proof follows from the fact that 

| TW*) - T(x)\ *£ | r(jc;<n)) - 7X*„)| + | T(x„) - T(x)\ *= c„u + d„v, 

where the existence of a real sequence d„J,0 and an element veF* follows from the 
above assumption. 

By the condition (i) OeB, i.e. there exists a sequence y„eA such that 

T(y„) * T(0) = 0. Since y„ e A for each n we obtain for a subsequence, say x^„) 

of x„ that T(y„) > T(xk(„)) >0, so T(x„) — » 0 , as required. 

(iii)—»(i). Let T b e a positive linear operator from E to an Archimedean Riesz 
space F. Let x„ be a decreasing sequence in E with zero infimum. Consider the 
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ideal A generated by X\. We have inf x„ = 0 in A. The restriction of T t o A will be 
denoted by T . This is a positive linear operator to an Archimedean Riesz space 
F i= the ideal generated by T(*i) in F. This space has the o-property. By the 
condition (iii) Ti is strongly sequentially order-continous, i.e. x„\0 implies T(x„) = 

TI(JC„) »0 in Fi, so T(x„) »0 in F. Thus we have proved that E has the 

sequential order-continuity property (for this definition see [2]). The result follows 
now from [2], th. 1.3A. 

Lemma 1.1. Each Banach lattice has the o-property. 

Proof. See [3]. 

Corollary 1.1. Let E be a Riesz space with the property that every relatively 
uniformly closed ideal in E is a a-ideal. Then every positive linear operator from 
E to a Banach lattice is strongly sequentially order-continuous. 

Definition 1.4. A Riesz space E has the diagonal property if whenever x„k is 
a double sequence in E such that x„k[0 for each n, there is a sequence x„[0 in 
E such that for each n there is a k with x„^x„k. 

Definition 1.5. Sequential order-convergence is relatively uniform in E if x„[0 
implies x„—*0 relatively uniformly. 

( * - - » 0 ) . 

Lemma 1.2. ([1], th. 70.2.) An Archimedean Riesz space E has the diagonal 
property if and only if it has the o-property and sequential order-convergence is 
relatively uniform in E. 

Lemma 1.3. ([2], prop. 3.4.) If E is an Archimedean Riesz space, then E has the 
diagonal property if and only if it has the a-property and the sequential order-
continuity property. 

Proposition 1.1. If E is an Archimedean Riesz space then E has the diagonal 
property if and only if it has the a-property and every positive linear opera tor from 
E to an Archimedean Riesz space with a-property is strongly sequentially 
order-continuous. 

Proof . If E has the diagonal property then, by lemma 1.2. it has the o-property 
and sequential order-convergence is relatively uniform. It follows easily that each 
positive linear operator on E has the property stated in the proposition. 

Conversely, if E has the o-property then by the hypothesis the identical mapping 
I: E-* E maps order-convergent sequences to relatively uniformly sequences, i.e. 
sequential order-convergence is relatively uniform in E. 
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Definition 1.6. Disjoint order-bounded sequences are stable in E if x„—»0 
relatively uniformly whenever x„ is a disjoint order-bounded sequence in E. 

Proposition 1.2. If E is a Riesz space in which disjoint order-bounded sequences 
are stable, then every positive linear operator from E to an Archimedean Riesz 
space with o-property is strongly sequentially order-continuous. 

Proof Follows from [2], prop. 3.3. 

II 

Definition 2.1. A topology on a Riesz space E is compatible if E+ is closed with 
respect to this topology. 

A topology on E is locally solid if the solid neighbourhoods of 0 form a local 
base. 

Proposition 2.1. Let E be a Riesz space. Then these are equivalent: 
(i) every order-convex relatively uniformly closed set in E is closed for the 

operations of taking infima and suprema of monotonic sequences; 
(ii) whenever F is an Archimedean Riesz space with a locally solid, locally convex 

topology and T: E—»F is a positive linear operator, then inf x„ = 0 implies 
T(x,)—>0 in the topology of F. 

Proof, (i)—»(ii). Let / be a positive linear functional on F. In view of [2], 
th. 1.3A, we obtain that inf x„ = 0 implies / T(x„)—*0 in F, since / T is a positive 
linear functional on E. Since owing to the local solidness of F each continuous 
linear functional on F is the difference between two positive linear functionals, we 
have that T(;t„)—>0in the weak topology of F, so T(x„)—»0 in the topology of F, as 
required. 

(ii)-+(i). Let T be a positive linear operator from E to an Archimedean Riesz 
space F Then there exists a locally solid, locally convex topology on F (see [4]). By 
the condition (ii) we have that T(x„)—»0 in this topology whenever inf x„ = 0 in E. 
From this we obtain inf T(JC„) = 0 in F, since the topology is compatible. The result 
follows from [2], th. 1.3A. 

Proposition 2.2. Let E be a Riesz space. Then 
(1) every order-convex relatively uniformly closed set in E is closed for the 

operations of taking infima and suprema of monotonic sequences implies 
(ii) whenever F is an Archimedean Riesz space and T: E—>F is a positive linear 

operator, then x„\0 in a compatible topology of E implies inf T(x„) = 0. 
Proof. Since E* is closed with respect to the topology of E, we have that 

inf x„ = 0 (see [5], prop. 3.1.14). The result then follows from [2], th. 1.3A, since 
the condition (i) implies that E has the sequential order-continuity property. 
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ОБ ОДНОМ СВОЙСТВЕ ПРОСТРАНСТВ РИССА 
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Резюме 

В работе обобщаются некоторые результаты Д. Фремлина. Даются необходимые и дос­
таточные условия, при которых всякий положительный линейний оператор обладает свойством 
усиленной о-непрерывности. 
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