
Mathematica Slovaca

John Knopfmacher
Enumerating non-equivalent matrices over principal ideal domains

Mathematica Slovaca, Vol. 44 (1994), No. 3, 287--296

Persistent URL: http://dml.cz/dmlcz/130905

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/130905
http://project.dml.cz


Mathematica 
Slovaca 

©1994 
^, . . i ~~ \ ~ ~«— ,-.«,- Mathematical Institute 

Ma th. Slovaca, 4 4 (1994 ) , No . 3, 2 8 7 - 2 9 6 siovak Academy ofsdonn 

ENUMERATING NON-EQUIVALENT MATRICES 

OVER PRINCIPAL IDEAL DOMAINS 

JOHN K N O P F M A C H E R 

(Communicated by Wolfgang Schwarz) 

ABSTRACT. Let .A/f* (R) denote the set of all 2-sided equivalence (associate) 
classes of non-singular n x n matrices over a given principal ideal domain R. For 
various domains R arising in algebraic number or function theory, asymptotic 
estimates are obtained for the average or the tota l number of classes of large 
"norm" or "degree" in A4*ri(R) . 

1. Introduction 

Let Mn(R) denote the ring of all n x n matrices with entries in a given 
principal ideal domain R. In the theory of integral matrices (cf. N e w m a n [6]), 
special attention is frequently paid to the set Ain(R) of all (2-sided) equivalence 
classes A of matrices A in Afn(it), under the relation ~ such that A ~ B if 
and only if A = UBV for some units U, V in Mn(R). 

Usually this is done when R satisfies certain finite norm conditions as speci
fied below, and in this paper we shall also confine attention to the subset Mn(R) 
of all equivalence classes of non-singular matrices in Mn(R). 

The finite norm conditions to be imposed on R are: 

(VI) for every element a ^ 0 in i t , the norm, N(a) := card ( i t /a it) < oc; 
(1.2) for every integer k > 1, the total number 

R(k) := # { Non-associate a G R: N(a) = k} < oo . 

Given condition (1.1), which implies N(ab) = N(a)N(b) by [6; p. 4], it will 
be useful later to note that (1.2) is then equivalent to: 

(.1.3) The multiplicative semigroup GR of all associate classes a of non-zero 
elements a E R forms an arithmetical semigroup in the sense of [2], 
under the extended norm N(a) := N(a) . 

AIMS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 15A33, 15A36, 15A54, 11M4V 
! 1H12. 14G10. 

K e y w o r d s : Equivalence class of matrices, Non-singular matrice , Finit norm condition. 
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Under the above conditions on 12, it is sometimes useful to consider the 
formal zeta function 

oc 

CR(3)= £ N(a)-* = j2mk-*. 
a£GR k=l 

Now define a norm function || || on A4n(R) by 

\\A\\ = \\A\\=N(det(A)), 

and formally write 

oc 

CR)(S)= Y, \\A\r = Y,R{n)(k)k~°-
A£M+}(R) k = l 

where 
RW(k) = #{AeM;t(R): \\A\\ = k}. 

The main aim of this paper is to derive asymptotic estimates for the average 

— Yl R^n'(k) or for R(n\k) itself under certain extra assumptions about R. 
x k<x 

which are always satisfied if R happens also to be 

(i) the ring of all algebraic integers in an algebraic number field A'. or 
(ii) the ring of all integral functions in a given algebraic function field A" 

in one variable over a finite field ¥q , 

respectively. 

Our arguments will make use of: 

(1.4) LEMMA. The non-singular matrix zeta function 

C{
R

)(s)=(R(s)(R(2s)...CR(ns). 

P r o o f . By the Smith Normal Form Theorem (cf. [6; p. 26]). every non-
singular matrix A in AIn(R) is equivalent to a diagonal matrix of the form 

S(A) — diag[Oi, flitto,---, OiO2 .. . an] . 

where the a., ^ 0 in R are unique for A up to associates in R. Hence 

(ietUl) = a.\'a"~[ . .an . 
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I t fo l lows t h a t 

oc 

CJr'W = Y1*{A 6 Mn(R) : p | | = k}k~> 
k=l 

OC 

= Yl #((5i' • • •. O e GJ : N(anan-l ...an) = k}k~' 
fc=i 

= ( £ *(«.)-")( £ Ar(a2)-("-^)..f £ % ) - ) 

= C«MCfl((n-l)s)-.-Ci.(s), 
recalling the multiplicative property of jV and the definition of || || above. 

(1.5) COROLLARY. When R — 7L, the non-singular zeta function for matrices 
of rational integers 

4n)(*) = C(s)C(2T.C(nT 
where ((s) is the Riemann zeta function. 

This special case has been used previously by B h o w m i k [1]. We also note 
two further corollaries: 

(1.6) COROLLARY. If the principal ideal domain R is the ring of all algebraic 
integers in a given algebraic number field, K, then 

CR
n)(s) = CK(sKK(2s)...(K(ns), 

where CK(*>) i>s the Dedekind zeta function of K. 

(1.7) COROLLARY. If Rq == ¥q [t] is a polynomial ring in an indeterminate t 
over the finite field ¥q with q elements, then 

cS^ПO-v-T1 

r = l 

P r o o f. This corollary is a consequence of Lemma 1.4 and the fact that the 
special domain Rq — ¥q[t] has zeta function 

oc 

Ci<,>)=£9m-<r"" = (1-c71-T1-

N o t e . Although a theory of generalized, semi-diagonal "Smith normal 
forms" has been developed for matrices over an arbitrary Dedekind domain R 
(cf. N a r a n g & N a n d a [5]), this paper will confine attention to the simpler 
diagonal forms available in the case of a principal ideal domain. 
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2. Rings of algebraic integers 

In this section, it will be assumed that the principal ideal domain R is also 
the ring of all algebraic integers in a given algebraic number field K. We then 
have: 

(2.1) THEOREM. The numbers 

Rtn\k) = #{AeMn(R): \\A\\=k} 

have asymptotic mean-value 

n 

lim ^ f i ( n ) ( fc) = ^ n ^ ( r ) -
x —> oc X *-—^ -- --

k<x r=--2 

where CK(S) is ^ie Dedekind zeta function of K and AK > 0 is a constant. 
More precisely 

YR(n){k)= (AKf[CK(r))x + p(x), 
k<x ^ r=cx. ' 

where 

( 0(x") if[K:Q]>3, 

p(x)=l O(x^logx) if[K:Q]=3, 

(O(^x-) if[K:Q]<3, 

tmth v = rlK = l- 2/(1 + [K : Q]) . 

P r o o f . Under the present assumptions on R, the zeta function 

oc 

(«.(*) = (K(S)= J2K{m)m~°> 
m = 1 

where K(m) = R(m) is the number of ideals of index m in /?,. Then a theorem 
of Weber and Landau states that 

] Г R(m) = J2 K(m) = Aкx + 0(x") 

m<x m<x 

where AK > 0 is an explicit constant (cf. L a n d a u [4]). Furthermore, by some 
results on isomorphism classes of finite /^-modules treated in [2; Chapter •");. the 
matrix zeta function 

Cn\«) = CK(»KK('2S) .. .<;K(n») 
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can be re-interpreted as the "zeta function" of the category T of all finite 
R-modules whose indecomposable direct summands have the form R/Pm for 
some prime ideal P in R and some m < n. In order to deduce the present 
theorem on ^ R^n\k), it is then possible to invoke the following theorem of 

k<x 

[2; Chapter 5]: 

(2.2) THEOREM. Let a — (ki,k2,.. .) be an arbitrary finite or infinite in
creasing sequence of positive integers, and let Ta denote the category of all 
finite R -modules whose indecomposable direct summands have the form R/P7n 

for some prime ideal P in R and some m 6 {Aq, k2l... } . Let Ta(k) denote the 
total number of isomorphism classes of R -modules of cardinal k in Ta. Then 
the zeta function 

<г° (s) := X ; Ғ a ( k ) k ~ * = ЦCк(кѓs) for Re(s) >k^. 
к=ì i>l 

Furthermore 

J2ғn(к) = UкүicмкAx1'^+P(x), 
h<V ^ 7 > 9 ' к<x ч i>2 

where 

( 0(x^k-) if [K : Q] > (k2 + k,)/(k2 - Aq), 
P(x) = \ _i 

[ 0(x£Jtk2 ) otherwise (e > 0 arbitrary). 

In addition, if Aq = 1, then 

_ ( 0(x^ log x) if [K : Q] = (k2 + l)/(k2 - 1), 
P(X) ~ { OfV/fc) if [K . Q] < (k2 + l)/{k2 _ 1}. 

rriieorem 2.1 follows from Theorem 2.2 on consideration of the special se

quence (\n = ( 1 , 2 , . . . , n) for which Aq = 1, k2 — 2, since the identity (/ (s) ~ 

(K(*)(K(2S) • • • CA'(^S) then implies that R^n\k) = Tan(k). By way of exam

ple, we note that the further special choices R = Z, Z[V—T] or Z[>/2] yield: 

291 



JOHN KNOPFMACHER 

(2.3) C O R O L L A R Y . 

(i) 

#{AeM*(Z) : | d e t ( A ) | < x } = f I J C W J a r + O 

where C(s) is the Riemann zeta function. 

(ii) 

#{AeM*n(Z[^]): |det(A)|2<x} 

where C./irr(s) is the Dedekind zeta function of Q ( \ / - 1 ) • 

(ÜІ) 

# { i Є M*n(Z[V2}) : N(det(A)) < x} 

1 0 8 ( 1 +^ň^>y+ o<^ 
r. — 9 / 

V2 r = 2 

where here N{a + b\T2) = \a2 - 2b2| (a, 6 G Q), arid C ^ * ) ls thi 

Dedekind zeta function of Q(v / 2) • 

R e m a r k . With the aid of special estimates involving the Riemann zeta 
function, B h o w m i k [1] has directly given a sharpened version of part (i) of 
Corollary 2.3. 

3. P o l y n o m i a l a n d a lgebraic funct ion r ings 

Next suppose that the given basic principal ideal domain R is also the prin
cipal order in some algebraic function field K' in one variable / over a finite 
field Fq with q elements. (The simplest example here is the polynomial rin.2; 
Rq =Fq[t] inside K'q = Fq{t).) 

For a general domain R in the present case, the zeta function CH('S) 1akes a 
simplified form (cf. [3; pp. 13/14], say): Firstly 

C11U) --•- y\R(k)k~" ---. V JVrini}q-
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where R#(m) = R(qm) is the number of associate classes in GR (or ideals 
in R) of norm qm (or degree ra); here R(k) = 0 if k is not a power of q. 
Secondly, it can be proved that 

P(y) 
CR(S) = zR(y) 

i -qy 

where y = q ,s, and P(y) is a polynomial in y with rational integer coefficients. 
This leads (cf. [3]) to a formula of type 

R#(m) = ARqm + O(i), AR = P(q~1) > 0 . (3.1) 

It now follows that every element a / 0 in fl has the norm of the form 
N(a) = qc)(a\ where d(a) may be called the degree of a, and similarly, the 
norm of an equivalence class A £ A4*(R) may be re-written as 

p | | - \\A\\ = qd{A) = qd{A) , 

where 0(A), d(A) may be called the q-degrees of A, A respectively (not to be 
confused with the ordinary degree n of A). In terms of the present notation, 

we may then re-write C/"(s) z~ CR(S)CR(^S) • • • CR.(ns) m the form 

oo 

4n)(«) = 4n)(») = EJ2( ,"(9 ,B)»m 

rn=0 W-2) 
= ZR(y)ZR(y2)...ZR(yn). 

Now consider 

(3.3) T H E O R E M . AS m —• oo 

R{n){qm) = #{AeM*n(R): fl(A)=m}=^nZ(n)gw + Ol 

///. pa.rticular, for Rq = ¥q[t\ . 

< ' ( ' D = ( IT1-'>_r)) 9m+0(qm/2). 

«Г/2) 
r = 2 

n - 1 

P r o o f. By the formula for CRy('s) hi the proof of Corollary 1.7 above, the 
ond statement follcYws from ihe first. 
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Now, note that Z(n)(y) = Fx(y), where Fr(y) := f ] ZR(yr). If F2(y) = 
T—i 

OO OO 

E ftm!/m, F3(y) = E &m?/m, then the equation F2(y) = ZR(y2)F3(y) and 
?n=0 m=0 
(3.1) imply that 

| O J = | Yl R*(k)brn-2k\=0( Yl <lk\bm--2 
0<k<m/2 0<k<m/2 

= o (,•»/- Y, \bm-2k\q-
(m-2k]'2) = o(,"'/2) 

^ 0<fc ' 

since F3(q~~1/2) converges absolutely. Thus 

m 

_ * > _ - * = F^q-1) - ~l 0{q-k'2) = ^(g-1) + 0(g""'/2) . 
/c=0 fc>m 

It then follows from (3.1) and the equation F\(y) = ZR{y)F2{y) that 

m m 

R(n)(qm) = £ R*(rn - k)ak = £(A f ig
m- f c + 0(l))ak 

k=0 k=0 
m , m v 

=A/^x;^'l"fc+o(E'lfc/2) 
k=0 ^ k=0 ' 

= ARF2(q-1)qm + 0(qm'"2). 

The conclusion of Theorem 3.3 can be considerably sharpened if desired: 

(3.4) THEOREM. For all sufficiently large m, 

n 

R(n)(qm) = #{_4 e Ml(R) : d(A) = m} = Y^k(m)qm/k . 
k=l 

•where 

ak(m) = \AR^-2^lhin,k I I z«(e27r,/"'/A f - ' / f r : 
h=0 r = l 

r^k 
n 

In particular. a.i(m) — AR \\ ZR{q"r) as before, and ak(ni) -~ Oi ! 
? - = 2 

rn --> oo . 
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P r o o f . The zeta function 

( n ) = P(y) P(y2) P(y*) 

R {V> (l-qy) ( l - w 2 ) ' " ( l - « » » ) 

has a partial fraction decomposition which can be expressed in the form 

n k — 1 Л*)лл - n(.л ^J2J2 c{k,h) 

k=l h=0 

where Q(y) is a polynomial, and c(k, h) is a constant which can be evaluated 
by THospitaPs rule: 

c(M)= Hm {l-qí/ke-^h/ky)Z^(y) 
n§ y sy — L / K c±Z7T 1 ti I K 

n 

= lP(q-l)~[ZR{e^ihr/k
q-

r/k). r = l 
r^k 

If we now expand (l — q1/k e~27rih^h y)~ as a power series within a suitable 
disc, we obtain 

oo oo n k-1 

J2 R{n) (qm)ym = Q(y) + Y, £ ~Z c(fc> h)im/k e~2n'mh/k ym • 
r n = 0 r n = 0 / [ , _ ! ^ = 0 

This leads to the stated formula for i?(n)(^m) when m > degQ(H). 

(3.5) COROLLARY. For Rq = F<~[;>] and any m > 1, 

* = i 

uj/iere 
fe-i n 

«fc(m) = - L ^ e - 2 ^ i h m / f c T T ( l - e 2 ^ i / i r / f c g 1 - r / f c ) ~ 1 , 
h = 0 r = i 

n - 1 

and <5i(m) = f ] U " 9 r ) _ 1 as befor^ Sjc(m) = 0(1) as m -> oo . 
r = l 
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