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(Communicated by Sylvia Pulmannovd) 

ABSTRACT. To present the decision maker 's (DM) preferences in multicriteria 
decision problems as a partially ordered set is an effective method to catch the 
DM's purpose and avoid misleading results. Since our paper is focused on minimal 
path problems, we regard the ordered set of edges (E , < ) . Minimal paths are 
defined in respect to power-ordered sets, which provides an essential tool to solve 
such problems. An algorithm to detect minimal paths on a multicriteria minimal 
path problem is presented. 

1. Introduction 

Weighted graphs play an important role in most combinatorial optimization 
problems (see [8; pp. 95-97]). For a longest path on an acyclic directed graph the 
weight of an edge may symbolize the duration of time for a step in the schedule 
of a project. For a shortest path in a network the weights may be distances 
between locations. In general the weights are values in some scales (km, hours) 
which measure distances or time. 

In a lot of decision problems the scaling causes many difficulties and some­
times one comes even to misleading results. If a decision maker presents his 
choices and preferences, then it is often better to describe the preferences in 
form of a partially ordered set (see [3]) than to measure them in a scale. 

In the paper we assume throughout that a decision maker presents his pref­
erences in form of a partially ordered set. Hence we consider ordered graphs 
G = (V,E) where the set (V; <) of vertices and/or the set (FJ; <) of edges is 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 05C38, 05C85; Secondary 90C35. 
K e y w o r d s : minimal path, bicriterion pa th problem, multicriteria analysis, power ordered set, 
efficient solution. 

t Passed away on January 23, 2006. 
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partially ordered. In location problems one needs partially ordered sets (V; <). 
As we will only consider path problems, we confine us to (E; <) and call such a 
graph an ordered graph. 

In the papers of S c h w e i g e r t [5], [6] various methods have been developed 
to solve such problems. The essential tool was the power-ordered set (P(E); < ) . 
This concept is necessary for the theory to define minimal paths, but our ap­
proach contains a decision procedure which works without this tools. Besides 
an algorithm for generating all minimal paths we show that every shortest path 
problem in graph-theoretical as well as every efficient path problem in multicri-
teria optimization can be analyzed within our framework. 

2. Fundamental concepts 

For the convenience of the reader we will explain most of our definitions with 
the help of the following example. 

G = (V,E) 

P t 

(E;<) 

ЬQL Ph 

f т т 

d 6 O a 

9 O O c 

(E; <) is presented by a Hasse diagram. For instance g, c are minimal ele­
ments in this order which are not comparable. For instance / is smaller than b 
and h. 

DEFINITION 2.1 . Let £ = (E;<) be finite ordered set. V(£) = (P(E))<p) 

is called the power ordered set of E if P(E) is the power set of E without the 
empty set and if the relation <p is defined on P(E) in the following way. 

{ a l 5 . . . , an} <p { 6 1 ? . . . , bm} if and only if there exists an injective mapping 
7T: { a l 5 . . . , a n } -> {6 1 ? . . . ,b m } such that a- < 7r(aJ for i = 1 , . . . , n in (E\ <) 
and m> n. 
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E X A M P L E 2.2. We consider the ordered set (E; <) with the Hasse diagram 

1 

a 

0 

(P(E); < ) has the following Hasse diagram 

{ 0 , a , l } 

.{0,1} 

{0,a} 

LEMMA 2.3 . The relation < defined on P(E) is an order relation. 

P r o o f . Obviously <p is reflexive. By the composition of maps it is easy to 
see that <p is transitive. Let A < B and B < A. Then there exist injective 
maps 7r: A —> B and (p: B —> A such that a < 7r(a) < (p(7r(a)). if o ir is 
increasing on a finite set and therefore the identity. • 

R e m a r k 2.4. As supremas and infimas not always exists in (P(F?);< ) , the 
power ordered set of E is usually no lattice. 

R e m a r k 2.5. The concept of a power ordered set can also be defined for infinite 
ordered sets. We call the subsets A,Be P(E) order-equipotent if there exists 
an injective map n\ A —> B with a < 7r(a) and an injective map tp: B —> A 
with b < (p(b). In the following we write < instead of < . 

3. P rope r t ies of minimal paths 

All of the graph theoretical optimization problems like shortest paths, mini­
mal matchings and optimal travelling-salesman-tours can be formulated for or­
dered graphs. We confine us to the problem of finding minimal paths on ordered 
graphs (see [8; p . 97]). Let G = (V,E) be an acyclic directed graph with a 
source s and a sink t. We present a directed path P by the set { a l 5 . . . , ak} of 
its edges. 
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DEFINITION 3 .1 . A directed path P = { a l 5 . . . , ak} of G from s to t is called 
minimal if there exists no path T = {6 1 ? . . . , bm}, m < fc, from s t o t such that 
{ a 1 ? . . . , a f c } > {&-. , . . . ,bm} . 

R e m a r k 3.2. The principle of dynamic optimization is of course valid. A mini­
mal path P from 5 to t consists of minimal (a, b)-paths where a, b are vertices 
of P . 

E X A M P L E 3.3. In the example above, P = {a, d, g} and Q = {a, c, e,#} are 
minimal paths. The path T =- {a, c, / , h} is not minimal because we have a < a, 
d < / , g</i. 

4. Efficient and minimal paths 

In multicriteria optimization one considers several objective functions. For 
instance we may consider for every edge e a vector (w± (e),w2(e)) where the first 
component is the distance and the second component is the travel time between 
the two vertices a, b of the edge e. In a region with mountains the components 
need not to be in proportion. Let us consider the following example: 

0 1 

If we have a path P = { e 1 ? . . . ,efe} from s to t , then the weight w(P) is 
defined as 

w(P) = {Wl(P),w2(P)) = ( X X e J , 5 > 2 ( e . ) ) • 
M = l z = l / 

In our example the path P = {a, d, g} has the weight w(P) = (5, 6). 
The order relation in vector optimization is defined componentwise ([4]). 

Let P l 5 P 2 be two paths with w(Px) = ( ^ ( P J , . . . ,it;n(P1)) and w(P2) = 
(^ X (P 2 ) , . . .,w2{Pn)) . We have w(Pj < w(P2) if and only if w^PJ < w{(P2) 
for every i = 1 , . . . , n and we have w(Px) < w(P2) if and only if w(Px) < w(P2) 
and there is some j G { 1 , . . . , n} with w (Px) < w (P2). 
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DEFINITION 4 . 1 . A path P from s to t of the vector-weighted graph G is 
called efficient if there exists no other path Q from s to t such that w(Q) < 
w(P) (compare [7; p. 213] or [7]). 

The aim of this section is to show that to every such vector optimization 
problem one can present an ordered graph such that every efficient path is a 
minimal path on this ordered graph G = (V, E). 

We define the poset (E; <) of the edges of the graph G in the following way. 
e < h if and only if w(e) < w(h). 

For the graph G from above with vectors as weights we recognize that we 
get the same poset as in our example in Section 2. 

THEOREM 4.2. Let G be a vector-weighted acyclic directed graph with a source 
s and a sink t. Let w(e) > 0 for every edge e £ E. Let (E\ <) be the poset which 
is given by the vector-weights. Every efficient path from s to t is a minimal path 
from s to t. 

P r o o f . Let P = {&i,.-.,&m} be an efficient path from s to t. Assume 
that P is not minimal. Then there exists a path Q = {al,..., ak}, k < ra, with 
Q < P. Then we have a1 < b^m, • •, ak < bn,k\ for an injective mapping 
7r: { 1 , . . . , k} —> { 1 , . . . , n} and furthermore there exist an index j £ { 1 , . . . , k} 

k m 

with w(a.) < w(bn(j\) or k < m. In every case we have ^ w(a{) < ^ w(bs). 
i=l s=l 

Hence we have w(Q) < w(P), which is a contradiction to P is efficient. • 

R e m a r k 4 .3 . The hypothesis w(e) > 0 for e £ E does not seriously restrict 
our statement. We may always add a constant vector to every weight w(e) of 
an edge without changing the problem essentially. 

5. Comparisons in the power ordered set 

We like to avoid the computation of the power ordered set (P(E)-, <) of a 
partially ordered set (E\ <). Instead of this we need a procedure which decides 
wether A < B for A, B £ P(E) or A = {av...,an} and B = {b1:... ,bm}. 
Therefore we set this problem in relation to graph theoretical matching prob­
lems. The vertices incident to the edges of the matching A are saturated by the 
matching B (see [8; p 107]). 
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THEOREM 5 .1 . Let (E\ <) be a partially ordered set, A = { a 1 ? . . . , an} and 
£? = {&-_,..., bm} (n, m are natural numbers) subsets of the power ordered set 
(P(E); <) of (E\ <). Let G be a bipartite graph with vertex bipartition (A, B) 
such that two vertices a £ A and b G B are adjacent if and only if a < b. 

Then A < B if and only if there exists a A -saturating matching in G. 

P r o o f . 

(i) Let A < B. There exists an injective mapping 7r: { a l 5 . . . , a n } -» 
{bx,..., bm} such that a{ < 7r(a{) for i = 1 , . . . , n in (E\ <) and m >n. 

In G the vertices a{ and 7r(aJ are adjacent. 

M = {e : e is an edge which is incident to ai and 7r(aJ , i G { 1 , . . . , n}} 
is a matching in G. It is necessary that n < m, otherwise A < B would not 
hold. Therefore M is a ^-saturating matching in G. 

(ii) Let M be a A -saturating matching in G. Then we construct an injective 
map 7r: A -> B as follows: 
For each i G { l , . . . , n } we find an edge in M which is incident to a{ and 
incident to a b- for an index j G { 1 , . . . , m } , because M is A -saturating. We 
set n(ai) = bj . a{ < b- = 7r(a-). • 

5.2. Algorithm for comparisons in the power ordered se t . 

According to the theorem in the previous section the question if two sets A 
and B are A < B with respect to the potential partial order can be answered 
by searching an A -saturating matching in a graph built up as mentioned in that 
theorem. We use the following Kruskal-like algorithm. 

Input. A = { a 1 , . . . , a n } , B = {&-_,..., 6m} 
Is A < B? 

We denote the actual matching with M, the index set of the vertices 
corresponding to elements of A not incident to the edges of the actual 
matching M with IA, the index set of the vertices corresponding to 
elements of B not incident to the edges of the actual matching M 
with IB. 

if m > n then stop A -£. B 

step 1: Initialization 
IA:={l,...,n] 

IБ 
M 

= {!,-••, m} 
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s t e p 2: Construction of the start matching 
For all i G IA do 

choose a j G IB such that a{ < b- (if possible) 
If such an index exist 

set IA := IA \ {i} 
set IA = IB\{3} 
set M ^ M u K a - , ^ . ) } 

s t e p 3: Searching for M-augmenting paths 
While \IA\^Q do 

choose i G IA 

If there exists a j G { 1 , . . . , m} with a{ < b-
then find a M-augmenting path beginning with ai 

If such a path P exists say P = a-b-a- b- . . . L . - a- 6, 

( i 1 5 . . . , z.j . is the enumeration of IA and 
j , j , , . . . 1j\I\_l is the enumeration of IB and |JA | = \IB\) 

IA--=lA\{i) 
iB ••= iB \ 10 
Choose as new actual matching the symmetric difference of M 
and the M-augmenting path: 
M : = { ( a i 1 6 J ) 1 ( o i | f A | 1 6 J ) } u { ( a , I i 1 6 J t + 1 ) : f c = l 1 . . . 1 | / A | - l } 

If such a path does not exist 
stop A ^ B 

s t e p 4: M is an A-saturated matching stop A < B 
(This algorithm is used as a subprocedure in the following section.) 

E X A M P L E 5.3. If we take the partially ordered set (E,<) of Section 2, the 
algorithm stops for A = {a, d, # } , B = {a, c, / , h} with e1 = a, e2 = / , e3 = ft 
and the positive result A < B. For A = {a, d, g}, 1? = {a, c, e, ft} it stops with 
the result "A < B does not hold". 

6. Generating all minimal path 

In the following algorithm we use labels for every vertex of the graph. Every 
label of a vertex i is of the form 

[(eM,--.,eJ,0-,ftfc)]fe 

where (e , . . . , ev) is the series of edges of a path from 1 to i . The preceding 
vertex j of the vertex i in this path is stored in the pointer (j , hk). hk denotes 
the label of j which is used for this path, k is the index of the label. The vertices 
may have temporary or permanent labels. 
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6.1. Algorithm. 

Step 0: Assign to the vertex 1 the temporary label [(-), (-,-)]-_ 

Step 1: If the set of all temporary labels is empty goto 3. Otherwise deter­
mine the labels with the least number i of the vertices. Among them 
determine the label with the least index. Let this be the label of the 
vertex i with the index k. Put this as a permanent label. 

Step 2: While there exists a vertex j G V with e^ = (i,j), e^ G E, do 

a) Assign to the vertex j the temporary label 

[(ep---e^S)'^'^)]fc 
b) Eliminate all labels of the vertex j which presents a non minimal 

path goto 1 

Step 3: Stop. All permanent labels of the sink t present a minimal path from 
s to t. 

In our example the algorithm stops with the permanent labels 

[(a ,d, 5) , (4,[(a ,d) , (2,[(a) , ( l , [ (-) , ( - , - )] 1)] 1)] 1)] i 

and 

[(a, c, e, g), (4, [(a, c, e), (3, [(a, c), (2, [(a), (1, [(-), (-, -)]1)]1)]2)]2)]2 • 

These are both efficient (in usual they are not). 
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