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ON METRIZATION OF THE UNIFORMITY
OF A PRODUCT OF METRIC SPACES

JAN BORSIK and JOZEF DOBOS

Let T be a nonempty set. Denote by #(T) the set of all mappings f:{x€R";
Vte T:x(1)Z0} — R such that d(x, y) = f({d.(x(t), y(t))}:c7) is a metric on the

set [[ M, for every collection of metric spaces {(M,, d.)}:cr-
teT

In [3] we have established a necessary and sufficient condition for the product

topology on [] M, to be metrized by d. A natural question arises whether we can
teT

investigate metrizability by the metric d of the product uniformity on [IM,. The

teT
special case when the index set T has exactly one element was solved in [2]. The

present paper gives a complete answer regarding any index set T. The necessary
and sufficient condition is formulated in Theorem. »
For elements of the uniform spaces theory we refer to [1].

Definition 1. Let D = {(M,, d)}..r be a collection of metric spaces. Define
a mapping op: (H M,)2 — RT by
teT A
1) (eo(x, ¥)) () =d.(x(2), y(1))

for each x, ye [[M,, teT.

teT

Definition 2. Let T be a nonempty set. Suppose R™ to be ordered coor-
dinate-wise, i.c. : '
x=y ifandonlyif x(t)=y(t) foreach teT.

Define a function ©: T—>R by ©(t)=0 for eachte T. Put T*={xe R™: xZO}.
Denote by M(T) the set of all functions f: T*— R such that foo, is a metric for
every collection of metric spaces D = {(M,, d,)}.cr.

Lemma 1. Let fe M(T). Then
() Vx,yeT :x=2y > f(x)=2-f(y),
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3) VxeT : f(x)=0 < x=0.

Proof. See [3].

Definition 3. Let (M, d) be a metric space. Define a uniformity % on the set
M as follows :
4) U={AcM?;3e>0:d'((0,e))cA}.

Definition4. Let {(M,, d)}..r be a collection of metric spaces. Let
{(M,, %,)}r be a collection of uniform spaces defined according to (4). Denote by
9y the product uniformity of the collection {(M,, %.)}.c1, I.€.

(5) %D={Ac<HM,)2:EFcT,FaéﬂfinittheFHU,e %

teT

ﬂ(m Xm)(U)cA},

tell
where , is the projection.

Denote by %; the uniformity on the set [TM, derived by (4) from the metric

teT

foop.

Lemma 2. Let D ={(M,, d,)}.r be a collection of metric spaces. Let f € M(T).
Then Up < %.
Proof. Let Ue€ %p. Then by (5) we have AF T, F# 0 finite Vie F 3U, e %,:

(N (m xm)'(U)< U. Let te F. Since U, € %,, there is, according to (4), a positive

teF
€, such that

d;7'((0, &) U.,.
Denote V, = (7, X m,)"'(d; ({0, &))). Then we have
(6) AV.eN(@xz) (U)cU.

teF teF

Define a mapping A: F—RT as follows:

(26, it i=t
@O O=10" ¢ e

for each teF, ieT.

Let teF. Denote 6,=f(A(t))/2 (accordiné to (3) we have 6,>0) and W,
= (foon)7'(€0, 8)).
Then W, e % for all teF, therefore

(7) W, e.

teF
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We show that W,c V, for all teF. Let teF, (x, y)€ W.. Then f(eo(x, )’.)) <é
= f(A(t))/2, therefore from (2) it follows that 1(go(x, y) = A(1)/2). ie.

d(x(1), y(1)) = (eo(x, y)) () <(A(1)) (D/2=¢.
Therefore (x, y) € V.. Then by (6) we have [ W, = (] V. < U and therefore by (7)

teF teF

we get Ue%,.

Proposition 1. Let D ={(M,, d,)}..r be a collection of metric spaces. Let
feM(T) be a mapping continuous at the point ®. Then Up = U;.

Proof. By lemma2 it suffices to prove that % <%,. Let Ue%;. Then
according to (4) there is a positive £ such that

) (foon) ({0, €))c U.
Since f is continuous at the point @, we have
) AFc T, F#0 finite 3y>0VyeT*:

(Vte F: y()<y) = f(y)<e.
Denote V=) (nm Xm) '(d;'({0, y))). Then Ve %,.

We show that V=(fo0p)7'({0, €)).
Let (x, y)€ V. Then d.(x(t), y(t))<y for all te T, therefore from (4) we get

(foon) (x, y)=f(eo(x, y))<e, ie. (x,y)e(foon) ({0, €)).
Therefore V < (foon) ' ({0, €)). Then from (8) we have V < U, therefore U € .
Definition 5. Let D = {(M,, d.)}, . r be a collection of metric spaces. Define
(10) - In={teT:sup Im d, <}, “
(11) So={te T:Ve>0:d;'((0, £)) +0}.

Theorem. Let D ={(M,, d\)}.cr be a collection of metric spaces. Let M, be
a nonempty set for each te T. Let f e M(T). Then %, = %, if and only if

Ve>03FcT, F+0 finite 36 >0 Vo e NT-UpuP) g e T*:

(A) Vte T—(IpUF): a(t)Za(r),
(B) - Vtelp—F:a(t)=sup Im d,,
©) Vte FNnSp: a(t)=4,
(D) f(a)<e.

Proof. Necessity.
Let £>0. Since % = Up, we have (fo0p)~*({0, £/2)) € %,,. Therefore according to
(5) we have
AFc T, F# 0 finite Vte F 3U, € %,: ‘rl(n, Xm) (U, = (fo0n) ({0, €/2)).
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Let t € F. Since U, € %,, according to (4) there exists ¥, >0 such that d;'((0, v,)) = U..
Denote V=[] (x, X)) "(d;'({0. v.))). Then cbviously

feF
(12) Ve (foon) ({0, £/2)).
Let te FnS,. Then there are u,, v, € M, such that
(13) 0(d.(u, v)<Y..
Put
14) 0 =min {d(u, v,): te FnSp;}>0

(in case of FnS, =@ let 6 >0 be arbitrary).

Let ae N7 o™ Let te T—1I,. Then there are p,, q. € M, such that

(15) d(p., q) = a(t).

Denote J = {te Ip: sup Im d, >0}.

Let t e J. Then there are r,, s, € M, such that

(16) d(r., s,)$(1/2) sup Im d,.

Let te T. Since M, is a nonempty set, choose an arbitrary element w, e M,.

Define the mappings x, y: T— | JM, as follows:

teT

U, v, for te FNnSp

D _ for te T—(IobUF)
x(0)= r, y()= S for teJ—F
W, W, for te[lp —(JUF)]JU(F-Sp).

Denote a=2 - gp(x, y).

Now we show that a satisfies the conditions (A), (B), (C), (D). “A”: Let
te T—(IpUF). Then according to (15) we have

a(t)=(2- oo(x. y)) (1) =2d.(x(1), y(1)) = 2d.(p, q.) = a(t).
“B”: Let teIp, — (JUF). Then we obtain
a(t)=2d,(x(t), y(t))=2d,(w, w)=0=sup Im d,.
Let teJ—F. Then from (16) we have
a(t)=2d,(x(t), y(t))=2d.(r,, 8)>2-(1/2) -sup Im d,=sup Im d,.
Therefore a(t)=sup Im d, for all tel, —F.
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“C”: Let te FnSp. Then from (14) we get
a(t)=2d,(x(t), y(t))=2d.(u, v,)Z9.
“D”: Let te FnSp. Then according to (13) we have
di(x(t), y(0)) = d.(u, v) <.
Let te F—Sp. Then
d(x(t), y(®))=d.(w, w)=0<7,.

Therefore d,(x(t), y(t))<y, for each teF, i.e. (x, y) € V. Then from (2) and (13)
we obtain

f(a)=2f(eo(x, y))=2(fo0p) (x, y)<2-€/2=¢.

Sufficiency. By lemma 2 it suffices to prove that % < %p. Let Ue %,. Then
according to (4) there is a positive € such that

17) (foon)™'(0,2e))c U.
Then by the hypotheses we have

IFc T, F# 0 finite 30 >0 Va e N % Ja e T*: (A) - (D).
Let te F—Sp. Then there is ¥ >0 such that d;'((0, y.)=0. Denote y=
=min {y,: te F—Sp} >0, in case of F—Sp =0 let y>0 be arbitrary. Then
(18) d;'((0,y))=0 foreach te F—Sp.

Denote A =[)(m, x ) *(d;'({0, min {y, 6}))). Then A € %,.
teF
Let (x, y)e A. Then
(19) d,(x(t), y(£)) <min {y, 8} foreach teF.

Let te T. Then there is a positive integer n, such that
d(x(t), y(D))=n,.
Define a mapping a: (T — (IoUF))— N by
a(t)=n,.
Then by the hypothesis there is ae T satisfying (A)— (D). We show that
oo(x, y)=a.
Let te I —F. Then from (8) we have
d.(x(®), y(t))=sup Im d,=a(t).
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Let te FnSp. Then from (19) and (C) we obtain

di(x(2), y())=6=a(t).
Let te T— (IobUF). Then from (A) we get

d(x(1), y(t)=a(t)=a(t).
Let te F—Sp. Then from (19) and (18) we have

di(x(t), y(£))=0=a(t).
Therefore (go(x, y)) (1) =d.(x(t), y(t))=a(t) for each teT, ie. gp(x, y)=a.
Then according to (2) and (D) we obtain
(fooo) (x, y)=f(oo(x, y))=2-f(a)<2e,

therefore (x, y) € (foon) ({0, 2¢)),i.e. A =(fo0p) ({0, 2¢)). Then according to
(17) we obtain A c U, therefore U e %p.
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O METPU3ALIMY PABHOMEPHOW CTPYKTYPHI NIPOU3BENEHMSA
METPUYECKHUX ITPOCTPAHCTB

sIn Bopcuk—Hosed To6om
Pe3rome

ITyct T — HexoTOpOE HemycToe MHOXeCTBO. O603HauuM T+ MHOXKECTBO BCEX HEOTPHLIATEIbHbBIX

BELIECTBEHHBbIX (YHKIMIA, onpefeneHHbIx Ha MHOxectBe T. Ilycts f: T*—R — dbyuxkums, nis
KOTOPO#H

d(x, y)=f(d.(x(1), y(1)))

SBIAETCA METPHKOH Ha MHOXecTBe IT M, NI KaXJOro ceMeMCTBa METPHYECKMX MPOCTPAHCTB
teT

(M, d,) (te T). B HacTosmeit paGoTe Mul mpemiaraeM HOeOXORMMOE M OCTATOYHOE YCIIOBHE MET-
pH3aIMH PABHOMEPHOM CTPYKTYPhI IPOU3BENEHHS IIPH IIOMOLIM METPHKH d.
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