Mathematica Slovaca

Ali M. Sarigöl
On $|\mathbb{T}|_{k}$ summability and absolute Nörlund summability

Mathematica Slovaca, Vol. 42 (1992), No. 3, 325--329
Persistent URL: http://dml.cz/dmlcz/130951

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON $|\mathbf{T}|_{k}$ SUMMABILITY AND ABSOLUTE NÖRLUND SUMMABILITY

M. ALI SARIGÖL

Abstract

This paper gives the necessary and sufficient conditions in order that a series $\sum a_{n}$ should be summable $|T|_{k}, k \geq 1$, whenever $\sum\left|a_{n}\right|<\infty$, and so extends the known results of [2] and [3] to the case $k>1$.

1. Definitions and notations

Let $\sum a_{n}$ be an infinite series with the sequence of its partial sums $\left(s_{n}\right)$ and let $\mathbf{T}=\left(a_{n v}\right)$ be an infinite matrix. Suppose that

$$
\begin{equation*}
T_{n}=\sum_{v=0}^{\infty} a_{n v} s_{v}, \quad(v=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

exists (i.e., the series on the right-hand side converges for each n). If $\left(T_{n}\right) \in \mathrm{bv}$, i.e.,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|T_{n}-T_{n-1}\right|<\infty, \quad\left(T_{-1}=0\right) \tag{2}
\end{equation*}
$$

the series $\sum a_{n}$ is said to be absolutely summable by the matrix \mathbf{T} or simple $|\mathrm{T}|$. As known, the series $\sum a_{n}$ is said to be $\left|\mathbf{N}, p_{n}\right|$ summable if (2) holds whenever \boldsymbol{T} is a Nörlund matrix, [2]. By a Nörlund matrix, we mean one that

$$
a_{n v}=\frac{p_{n-v}}{P_{n}} \quad \text { for } \quad 0 \leq v \leq n, \quad \text { and } \quad a_{n v}=0 \text { for } n>v
$$

where $\left(p_{n}\right)$ is a sequence of real or complex numbers for which

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} \neq 0, \quad P_{-1}=0
$$

[^0]Let $\left(T_{n}\right)$ be given by (1). If

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $|T|_{k}$ summable, $k>0$, [5], and for $k=1$ this is the usual definition of $|\mathbf{T}|$ summability. Moreover, when \mathbf{T} is a Nörlund matrix, this definition reduces to the customary definition of absolute summability $\left|\mathbf{N}, p_{n}\right|_{k}$, as given by Borwein and Cass [1], for example.

Mears [2] established the necessary and sufficient conditions in order that $\sum a_{n}$ should be summable $|T|$ whenever $\sum\left|a_{n}\right|<\infty$. Also Mc Fadden [3] obtained some comparison theorems between the summabilities $\left|\mathbf{N}, p_{n}\right|$ and $\left|\mathbf{N}, q_{n}\right|$, using Mears's result. But, since $|\mathbf{T}|_{k}$ summability includes the $|\mathbf{T}|$ summability, this also raises the problem: what are the necessary and sufficient conditions in order that $\sum a_{n}$ should be $|T|_{k}$ summable whenever $\sum\left|a_{n}\right|<\infty$, which enables us to extend Mears's and McFadden's results to the case $k>0$. We give an affirmative answer to the problem for $k \geq 1$.

Let $\left(\mathbf{N}, p_{n}\right)$ and $\left(\mathbf{N}, q_{n}\right)$ be regular Nörlund means, and let t_{n} and u_{n} denote $\left(\mathbf{N}, p_{n}\right)$ and (\mathbf{N}, q_{n}) means of $\sum a_{n}$, i.e., for $n=0,1,2, \ldots$,

$$
\begin{equation*}
t_{n}=\sum_{v=0}^{n} \frac{p_{n-v}}{P_{n}} s_{v} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}=\sum_{v=0}^{n} \frac{q_{n-v}}{Q_{n}} s_{v} \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
t_{n}=\sum_{v=0}^{n} \frac{R_{n-v} Q_{v}}{P_{n}} u_{v} \tag{6}
\end{equation*}
$$

where R_{k} is determined such that

$$
\begin{equation*}
p_{0}=q_{0} R_{0}, \quad p_{1}=q_{1} R_{0}+q_{0} R_{1}, \ldots, p_{k}=q_{k} R_{0}+\cdots+q_{0} R_{k} \tag{7}
\end{equation*}
$$

2. Main results

We now prove the following theorems:
Theorem 2.1. The necessary and sufficient conditions in order that $\sum a_{v}$ should be $|\mathrm{T}|_{k}$ summable, $k \geq 1$, are, whenever $\sum\left|a_{v}\right|<\infty$,
(i) $\sum_{v=0}^{\infty} a_{n v}$ converges for all n,
(ii) $\sum_{n=1}^{\infty} n^{k-1}\left|\sum_{i=v}^{\infty}\left(a_{n i}-a_{n-1, i}\right)\right|^{k} \leq M<\infty$ for all v.

ON $|T|_{k}$ SUMMABILITY AND ABSOLUTE NÖRLUND SUMMABILITY

The case $k=1$ of this Theorem was proved by Mears.
We require the following result of Maddox ([4], Theorem 5, p. 167) for the proof of the Theorem.

Theorem 2.2. $\mathbf{C}=\left(c_{n v}\right) \in\left(\ell_{1}, \ell_{k}\right)$ if and only if

$$
\sup _{v} \sum_{n}\left|c_{n v}\right|^{k}<\infty, \quad \text { for the cases } \quad 1 \leq k<\infty
$$

Proof of Theorem 2.1.
Sufficiency. Since, by (i), $A_{n v}=\sum_{i=v}^{\infty} a_{n i}$ converges for each $n, v, A_{n v} \rightarrow 0$ as $v \rightarrow \infty$, and so there exists a sequence $\left(\beta_{n}\right)$ such that $\left|A_{n v}\right| \leq \beta_{n}$ for all v. Therefore $T_{n}=\sum_{v=0}^{\infty} A_{n v} a_{v}$ converges for each n, since

$$
\sum_{v=0}^{\infty}\left|A_{n v} a_{v}\right| \leq \beta_{n} \sum_{v=0}^{\infty}\left|a_{v}\right|<\infty
$$

On the other hand we have, for $n \geq 0$,

$$
\begin{equation*}
T_{n}-T_{n-1}=\sum_{v=0}^{\infty}\left(A_{n v}-A_{n-1, v}\right) a_{v}, \quad\left(A_{-1, v}=0\right) \tag{8}
\end{equation*}
$$

Now, denote $v_{n}=n^{1-1 / k}\left(T_{n}-T_{n-1}\right)=\sum_{v=0}^{\infty} n^{1-1 / k}\left(A_{n v}-A_{n-1, v}\right) a_{v}, n \geq 1$, and $v_{0}=\sum_{v=0}^{\infty} A_{0 v} a_{v}$. Then $\left(v_{n}\right)$ is the C-transform sequence of $\left(a_{v}\right) \in \ell_{1}$, where, for all $v \geq 0$,

$$
c_{n v}= \begin{cases}n^{1-1 / k}\left(A_{n v}-A_{n-1, v}\right) & \text { if } n \geq 1 \\ A_{0 v} & \text { if } n=0\end{cases}
$$

Therefore, it follows from Theorem 2.2 and (ii) that $\mathbf{C} \in\left(\ell_{1}, \ell_{k}\right), k \geq 1$, i.e, $\sum a_{n}$ is $|\mathrm{T}|_{k}$-summable, whenever $\sum\left|a_{n}\right|<\infty$.

Necessity. Choosing $s_{v}=1$ for all v, we have that $T_{n}=\sum_{v=0}^{\infty} a_{n v}$ converges. Thus (i) of the Theorem is necessary and $A_{n v}$ is defined for all v, n. Now, by Theorem 2.2 and (8), we complete the proof of the Theorem as the above discussion.

THEOREM 2.3. The necessary and sufficient conditions in order that $\left|\mathbf{N}, q_{n}\right| \Longrightarrow\left|\mathbf{N}, p_{n}\right|_{k}, k \geq 1$, are

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sum_{v=i}^{n}\left(\frac{R_{n-v}}{P_{n}}-\frac{R_{n-1-v}}{P_{n-1}}\right) Q_{v}\right|^{k} \leq M<\infty, \quad\left(R_{-1}=0\right) \tag{9}
\end{equation*}
$$

for all i.
The case $k=1$ of the theorem is due to McFadden (see [3]).
Proof. If we define the matrix $\mathbf{T}=\left(a_{n v}\right)$ in the following way:

$$
a_{n v}= \begin{cases}\frac{R_{n-v} Q_{v}}{P_{n}} & \text { if } \quad 0 \leq v \leq n \\ 0 & \text { if } \quad v>n\end{cases}
$$

then the conditions of Theorem 2.1 reduce to the conditions of Theorem 2.3. Therefore the Theorem is proved by considering (6).

Corollary 2.4. For $k>1,\left|\mathbf{N}, p_{n}\right| \nRightarrow\left|\mathbf{N}, p_{n}\right|_{k}$, and so $|\mathbf{C}, 1| \nRightarrow|\mathbf{C}, 1|_{k}$, i.e., there exists a series that is summable $\left|\mathbf{N}, p_{n}\right|$ but not summable $\left|\mathbf{N}, p_{n}\right|_{k}$.

In this case, since by (7), $R_{0}=1$ and $R_{v}=0$ for all $v \geq 1$, condition (9) is reduced to

$$
\begin{aligned}
& \sum_{n=1}^{i-1} n^{k-1}\left|\sum_{v=i}^{n}\left(\frac{R_{n-v}}{P_{n}}-\frac{R_{n-1-v}}{P_{n-1}}\right) P_{v}\right|^{k}+i^{k-1}\left|\left(\frac{R_{0}}{P_{i}}-\frac{R_{-1}}{P_{i-1}}\right) P_{i}\right|^{k} \\
& +\sum_{n=i+1}^{\infty} n^{k-1}\left|\sum_{v=i}^{n}\left(\frac{R_{n-v}}{P_{n}}-\frac{R_{n-1-v}}{P_{n-1}}\right) P_{v}\right|^{k}=i^{k-1} \leq M \quad \text { for all } \quad i \geq 2
\end{aligned}
$$

which is impossible.
The author sincerely thanks the referee for comments.

REFERENCES

[1] BORWEIN, D.-CASS, F. P.: Strong Nörlund summability, Math. Z. 103 (1968), 94-111.
[2] MEARS, F. M.: Absolute regularity and Nörlund Mean, Ann. of Math. (2) 38 (1937), 594-601.
[3] McFADDEN, L.: Absolute Nörlund summability, Duke Math. J. 9 (1942), 168-207.
[4] MADDOX, I. J.: Elements of Functional Analysis, Cambridge University Press, Cambridge, 1970.

ON $|T|_{k}$ SUMMABILITY AND ABSOLUTE NÖRLUND SUMMABILITY

[5] TANOVIC̈-MILLER, N.: On strong summability, Glas. Mat. Ser. III 14(34) (1979), 87-97.

Received June 7, 1990
Department of Mathematics
Revised September 18, 1991

Erciyes University
Kayseri 38039
Turkey

[^0]: AMS Subject Classification (1991): Primary 40C05, 40D25, 40F05, $40 \mathrm{G05}$.
 Key words: Absolute summability, Nörlund summability, Infinite series.

