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(Communicated by Michal Feckan ) 

ABSTRACT. In this paper we s tudy the t ime dependent Dirichlet space which 
is generated by pseudo-differential operators. Also we find the set of inequalities 
defining an optima l control of a system governed by pseudo-differential operators 
with symbols defined in terms of conditionally exponential convex function. 

1. Time dependent Dirichlet form on W1 

Let us introduce certain function spaces on R x l n . 

DEFINITION 1.1. A real valued function a: W1 —> R is said to be conditionally 
exponential convex if for any x l 5 . . . , xn G l n and CA,..., Cn G R we have 

n 

Y, Hxj) + a(xk) - a(x3 + xk)] Cfk > 0 . (1.1) 
3,k=l 

LEMMA 1.1. Let a2 : Rn —> IR be a continuous conditionally exponential convex 
function. Then 

0 < a 2 ( £ ) < C Q ( l + |£ | 2 ) , (1.2) 

aг(0 = C 
*\{o} 

Q(0+ f ì-expOcO + ү (x,0 
+ x 12 

l + \\x |2 
dџ(x) 

Hxl' (1.3) 

where C > 0 is a constant, Q: W1 —> R is a continuous negative quadratic form 
on W1 and lx is a positive bounded measure on R n \ {0}, and 

\a2(0 - a2(V)\ < 4a(0a(e - v) + a2(£ - rj), (1.4) 
W0-<rj)\<a{Z + rj). (1.5) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 49J20, 49K20, 35S15. 
K e y w o r d s : conditionally exponential convex function, optimal control, pseudodifferential 
operator. 
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Remark. The estimate (1.2) can be found in [3], [7], [8] and (1.3) in [4]. We 
have taken (1.4) and (1.5) from [1], [2]. 

For any continuous conditionally exponential convex function a2: Rn —>> R 
and for any S > 0, we introduce the Hilbert space 

Ha2>s(Rn) = {ue L2(Rn) : ||ix||5>a2 < oc} (1.6) 

where 

NII,a- = / ( - + a2(0)25K€)l2de, (i.7) 

where u is Fourier transform of u. 
Clearly Ha2'°(Rn) = L2(Rn), and if we identify [L2(Rn)]* with L2(Rn), we 

have (see [2], [6]) 
[PTa2 '5(Rn)]* = H a 2 ' " 5 ( R n ) , 

where 
Ha2'"5(Rn) = {ue L2(Rn) : |M|_5 j a 2 < oo} 

and the negative norm is given on L2(Rn) by 

s > a 2 = f(l + a2(0)~2S\u(0\2^ = 
J 0^v< 

s u p Ì { U ^ 
0^vGHa2'5(Mn) IMIs.a2 

Later we will often assume that a2 also satisfies 

* 2 ( 0 > CrKlr, (1-8) 

for some r > 0 and all f G Rn , |f| > a > 0. In this case Ha2'5(Rn) is 
continuously embedded in the usual Sobolev space HSr(Rn) and for Sr > ^ 
we find Ha^s(Un) C C^W1) with a continuous embedding. 

Now we formulate the main new results of this paper. We will introduce 
certain function spaces on ]0, T[ x Rn C R x Rn . 

Let T 2 (0 ,T 5 H f t 2 ' 5 (R n ) ) denote the space of all measurable functions 
t i-> f(t): ]0,T[ ^ Ha2>s(Rn) where the variable t denotes "time". We assume 
that t e ]0,T[, T < oo, with Lebesgue measure dt on ]0,T[ such that 

fTr V 
J ll/(t)H/La2,5(Rn) dt I = ||/||L2(0,T,/L«2^(IR-)) 

and L 2 (0 ,T , i J« 2 > 5 ( i r ) ) is endowed with the scalar product 

T 

(^'^)L 2 (0 ,T ,Ha 2 ,S(Rr l ) ) = / (f(t),g(t))Ha2fS(Rrly 

0 
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which is a Hilbert space ([5], [6]). 
Analogously, we define the spaces L2(0,T, L2(R

n)) and F2(0,T,iJa2 - 5 (R n ) ) 
and then we have a chain in the form 

L2(0,T,Ha2 '5(Rn)) C L2(0,T,L2(Rn)) C L2(0,T,Ha2'-^(Rn)) . (1.9) 

Now, let us define the continuous conditionally exponential convex function 

a2: Rn 4 R b y a2(£) = £ a2(£j) (f e Rn , ^ € R) where a2: R -> R is 
j=i 

a continuous conditionally exponential convex function, 1 < j < n. 
Further, let bj : ]0, T[ x Rn -> R, (t, x) i-> &.(t, x), 1 < j < n, be a function 

satisfying the following conditions: 

(i) b, is independent of x •; 
(ii) b-(£, •) is bounded and measurable; 

(iii) 11-> 6 •(£, x) is a continuous function; 
(iv) bj(t,x) >d0>0 for all (t,x) G ]0,T[ x Rn and 1 < j < n. 

On C^° (Rn) we consider the family of psedo-differential operators 
n 

LW(X,D)U(X) = Y,bJ(t,x)a2
j(I)j)u(x). (1.10) 

We can associate with L^)(x,D) the bilinear form 

E{t\u,v) = ! L(t)(x,Ђ)u(x)-v(x)dx 

(1.11) 

= E(6i(*.-)^(Di) t t'0i(Di)w)o-
j = i 

Now using (i) => (iv) we get, as in [2]: 

P R O P O S I T I O N l . l . For all u,v e Ha2'i(Rn), 
l ^ ) ( « , « ) | < c | | « | | i i a 2 | H | i i a a , (1.12) 

E^(u,u)>d0\\u\\la2-d0\\uf0. (1.13) 

P r o o f . Since C°°(lRn) is dense in i7 a 2 '5(K n ), it is sufficient to prove (1.12) 
and (1.13) for u,v e C0°°(Rn). It follows that 

\EW(U,V)\ = \(LW(X,D)U,V)0\ 

= | (Ľ^( l ,-Ч 2 (D>,) o 

^ C ^ H a ^ D . ^ H o l l a ^ D ^ H I o : 
j = i 
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but H^.í/D^llo < C|M| i ) 0 2 for all u e C0°°(M"). 

To prove (1.13), by (1.11) we find 

E^(u,u)=(L{t\x,D)u,u)0 

n 

= ^ ( 6 j ( í , a r ) o j ( D J . ) « , a j ( D j ) U ) ( 

i=i 
n « 

= E / &,•(*, *)s-(D> • S ' (DJ>
 dx 

i=iR
y„ 
n ,» 

> ^ £ j a/D,.)«•<.,.(D^udx 

П 

= d o Л П^C ĵO^Ho' 
.7 = 1 

i.e. EW(u,u) > 0. 

But 

£?(*)(«,«) >d0ja5(e.)|«(O|2d^ 

= ^ / ( - + E a i ^ ) ) l " ( e ) | 2 d e " d o / | f i ( 0 | 2 d e 

K n J=1 Rn 

= do\\u\\±ya* - ^ o l l ^ H o -

From (1.12) and (1.13) it follows that £ w , with domain Ha2>i(Rn), is a closed 
symmetric bilinear form on L2(Rn). 

Clearly for all u,v G Ha ^(Rn) the function £ i-> E^(U,V) is measurable. 

As in [1; Theorem 2.1], we find, for u,v G Ha2'i(Rn), 

£ ( t )(u,U) = | ff(u(x + y)-u(x))(v(x + y)-v(x))-

R Rn n (1.14) 
• ^ b ^ x ) ^ . ( d ^ d x , 
j=i 

where //• is the image of jl. under the mapping 

Г І : R - > R П , ^ ( O , . . . , 0 , ^ , 0 , . . . , 0 ) : 
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i.e. f. is in the j t h position. Thus 

E{u, v)=\j J J (u(t, x + y)- u(t, x)) (v(i, x + y)- v(t, x)) • 
R R™Rn 

•^2bj(t^x) V>j(dy)dxdt- / / -^(t,x) • v(t,x) dxdt 

j = l R Rn 

defined for 

ueF = {w6 L2(0,T,Ha2'^(Mn)) : f f G L2(0, T, ILa2'-^(Rn))} , 

and v G L2(0,T, ILa '2 (Rn)) gives a time dependent Dirichlet form. So we have 
defined parabolic Dirichlet space (T, E). • 

2. Formulation of the control problem 

Analogous to (1.9), we have a chain of the form 

L2(0,T,Hf'1(Rn))CL2(0,T,L2(R
n))=L2(Q)CL2(0,T,Hf'~1(Rn)) 

(2.1) 
where HQ ' (Rn) is the subset of LIa , 5 (R n ) of all functions which vanish on 
the boundary T of Rn . 

It follows from (1.13) that the continuous bilinear form is coercive, and assume 
that the function 

t i-r Ew (y, (/)) is measurable on ]0, T[ . (2.2) 

We can apply the following theorem of L i o n s [5], [6]. 

THEOREM 2 .1 . Assuming (1.13) and (2.2) hold, then if f is given in 

L2(0,T,Ha2"^(Rn)) and y0 G T 2 ( R n ) ; there exists a unique y G [u G 

L2(0,T,iLa2'2(Rn)) : | | G L 2 ( 0 , T , i L a 2 ' - ^ ( R n ) ) } satisfying 

at 
Q = ]0, T[ x ft, fi is an open set of Rn , 

l ] o ,T [x r= 0 ' r %sho 

y(0,x) = y0(x) in Rn . 

2/|]o,T[xr = ° ' r i 5 boundary of ft, 

77.e operator 

jt+L{t) e£(L2(0,T,Ha2>i(Rn)),L2(0,T,Ha2>-HRn))). (2.3) 
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The problem which is denned by the above theorem is known as mixed Dirich-
let problem. 

Now, we formulate the control problem. Thus the space T2(0, T, L2(Rn)), 
being the space of controls is given. A system which is governed by the operator 
L^ + J^ is given by (2.3) or by mixed Dirichlet problem. Let / and y0 with 
/ e F2(0,T,Ha2 - ^ ( M n ) ) , y0 £ L2(R

n) be given. We assume that (1.13) and 
(2.2) hold; then for the control u G F2(0,T, F2(R

n)) the state of the system 
y(u) which depends on i , t will be denoted by y(t,x]u) and is given by the 
solution of 

^ + LWy(u) = f + u in Q, 

y(u)\r, = 0, r ' = ] 0 , T [ x r = Lateral boundary of Q , 

y(0,x;u) = y0(u) in Rn , 

y(u)eL2(0,T,Ha2^(Rn)). 

The observation Z(u) is given by: 

Z(u) = y(u), 

N is given as N e C(L2(0,T,L2(R
n)),L2(0,T,L2(R

n))) 

(Nu, U)L2(O,T,L2(R»)) ^ 7| |U|IL2(O,T,L2(R«)) . 7 > 0 . (2.4) 

Let L2(0,T,L2(R
n)) = L2(Q). 

The cost function J(u) is given by 

J(u) = \\y(u) - Zd\\l2(Q) + (Nu,u)L2(Q) 

= f(y(u) - Zdf dp(x) dř + (Nu, u)La(Q) 
(2.5) 

Q 

where Zd is a given element in L2(Q). 

Let Uad (set of admissible controls) be a closed convex subset of L2(Q). We 
seek inf J(v), v G Uad. 
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THEOREM 2.2. We assume that (1.13) and (2.1) as well as (2.4) hold. The 
cost function is given by (2.5). The optimal control u is characterized by the 
following system of equations and inequalities 

- f - + I(V«) = / + - in Q, 
y(u)\r,=0, r ' = ]0,T[xr 

= Lateral boundary of Q, 

y(0,x;u) = y0(x) in Rn , 

-^l+L^P(u) = y(u)-Zd m Q, 

p(u) | r # =o, r ' = ] o , r [ x r , 
P(T,x;u) = 0 in Rn , 

u € U^ , 
(P(u) + Nu,v-u)L2(Q) > 0 for all v G c7ad , 

i.e.. 

J (P(u) + jNa) (t> - u) dp(x) dt>0 for all v G Uad , 

Q 

i/W,PWGi:2(o,r,iY f l 2^r)). 

P r o o f . The control u G Uad is optimal if and only if 

J'(u)(v -u)>0 for all v G Uad , 

that is 
(y(u) - Zd, y(v) - y(u))L2{Q) + (Nu, v - u)^(Q) > 0 . (2.6) 

(2.6) may be written as: 

T 

I {y(u) - zdi y(v) - y(u))L2(R-) dt + (Nu>v ~ U)L2(Q) > ° • 
0 

We introduce the adjoint state P(u) by 

-^-P(u) + LWp(u) = y(u)-Zd, 

P(T,u) = 0, 

P(u)eL2(0,T,Ha2>i(Rn)). 
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Then 

T 

0 
T 

j(y(u)-Zd,y(v)-y(u))dt 

T T 

= f(-§-tP(u),У(v)-y(u)) dt + f(L^P(u),y(v)-У(u)) dt 
0 0 

т т 

= J (P(u), | (y(v) - y(u))) àt + J (P(«), _W (y{v) _ y(u))) dt 

0 0 

т 

= j(p(«),(| + i ( ť ))(.(«)-г/(«)))dť 
0 

т 
= (P(u),v-u) d_ = (P^.v-u)^ 

'L2(Q)' 

Hence, (2.6) may be written as: 

(P(u)+Nu,v-u)L2{Q) >0 for all v e Uad , 

which completes the proof. • 
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