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(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. Let E(S) (resp. C(S)) be the orthomodular poset of all splitting 
subspaces (resp. all complete-cocomplete subspaces) in an inner product space 5 . 
As is known, neither E(S) nor C(S) has to be a lattice ([PTAK, P.—WEBER, H.: 
Lattice properties of subspace families in an inner product space, Proc. Amer. 
Math. Soc. 129 (2001), 2111-2117]). In this note we test E(S) (resp. C(S)) for 
order properties which are "lattice-like". We show that, in general, either E(S) or 
C(S) does not have to enjoy the Riesz Interpolation Property. On the other hand, 
both E(S) and C(S) do possess the regularity property as dealt with in quantum 
logics (see [HARDING, J.: Regularity in quantum logics, Internat. J. Theoret. 
Phys. 37 (1998), 1173-1212]). In the final observation, we show that a very weak 
form of countable lattice completeness implies the (topological) completeness of 
S, contributing slightly to the investigations carried on in [DVURECENSKIJ, A.: 
Gleason's Theorem and Applications, Kluwer Acad. Publ., Dordrecht-Boston-
London, 1993], and elsewhere (the lattice property of E(S) or C(S) is known to 
be too weak to imply completeness of S, see [PTAK, P.—WEBER, H.: Lattice 
properties of subspace families in an inner product space, Proc. Amer. Math. Soc. 
129 (2001), 2111-2117]). 

1. Notions and results 

Let 5 be a separable inner product space ( = a prehilbert space) over the 
real or complex numbers. Let (., .) be the inner product on S. Let us write, 
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for any A C 5 , AL = [b G S : (a, b) = 0 for any a G A}. Let us denote by 
E(S) the set of all subspaces A of S such that A © A1 = S (by the symbol 
© we mean the orthogonal sum). The set E(S) is naturally endowed with the 
partial ordering of inclusion C, and with the orthocomplementation _L. Then 
the set E(S) endowed with C and J_ forms an orthomodular poset ([18]), and 
so does C(S). Obviously, if S is complete (i.e. Hilbert), then C(S) = E(S) and 
we obtain the lattice of all projections L(S), popular in quantum physics. In [18] 
the authors show that neither E(S) nor C(S) need to be lattices (though they 
can be so even for S incomplete). In our first result, we strengthen the cited 
results by showing that both C(S) and E(S) do not have to enjoy the Riesz 
Interpolation Property (the RIP for short). Recall ([5]) that an orthomodular 
poset (P, <, ±) is said to have the Riesz Interpolation Property if the following 
condition is satisfied: 

If a,b,c,d G P and c < a, c < b, d < a, d < b, then there is an 
element e G P such that e < a, e < b and c < e, d < e. 

It should be noted that a variant of this condition has first been applied in order 
groups ([8]) and theories of uncertainty ([6]). 

Our first result says that E(c00) does not have to enjoy RIP. Though we 
can also construct more sophisticated examples to this effect, and we shall do it 
later, we felt it desirable to discuss the RIP first in this natural example. Recall 
that by c00 we mean the (inner product) subspace of I2 whose all but finitely 
many coordinates are equal to 0. 

THEOREM 1. E(c00) does not have the RIP. 

P r o o f . Let us first prove a few auxiliary results. (The proof technique of 
this is similar to that of [18] but certain modifications are needed in places. They 
are based on the new Proposition 6 and its interplay with Proposition 5.) 

STATEMENT 1. Let S be an inner product space and let S have a count­
able linear basis. Then S and c00 are isomorphic as inner product spaces and 
therefore E(S) and E(c00) are isomorphic as orthomodular posets. 

P r o o f . Use the Gram-Schmidt orthogonalization process in an obvious 
manner. • 

STATEMENT 2. Take the vector p = ( l , \, | , . . . , £ , . . . ) G £2, and put S = 
c00 + (p) (thus, S = Span(c00 U {p}); S is understood as a subspace of £2). 
Then E(S) does not satisfy the RIP. 

Statement 2 will be proved in a series of propositions. 
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PROPOSITION 1. Let fn denote the l'Kronecker delta" element of S, i.e. 
fn(m) = S™, where 5™ = 1 if m = n, 8™ = 0 otherwise. Let F1 = Span{/n : 
n G N, n odd}, F2 = Span{/n : n G N, n even}. Then F1@F2 = c00. 
Moreover, with the orthocomplementation _L in S, F-1 = F2 and F2 = Fx. 

P r o o f . Obvious. • 

PROPOSITION 2. We have: JF\ + (p) £ E(S). 

P r o o f. If (Fx + (p)) 0 (Fx + (p))1- = S = (F\ + (p)) + F2, then we have 

F2 = (F\ + (p))X (because (F1 + (p))1 C Ff = F2). Then p G Ff — a 
contradiction. D 

PROPOSITION 3. Let 

A = Span{2n • / 2 n - (2n + 2) • / 2 n + 2 : n G N, n odd} , 

S = Span{(2n + 2 ) . / 2 n + 2 n - / 2 n + 2 : n G N, n odd}. 

Then peA±,A®B = F2 and (F1 + (p) + B) 0 A = S. Thus (F\ + (p) + B) 
EE(S). 

P r o o f . Straightforward. • 

PROPOSITION 4. Let 

C = Span{(2n + 2) • / 2 n + 2 - (2n + 4) • / 2 n + 4 : n G N, n odd} , 

D = Span{/2} + Span{(2n + 4) • / 2 n + 2 + (2n + 2) • / 2 n + 4 : n G N, n odd} . 

Thenpe CL, C&D = F2, Ce(F1 + (p) + D) = S (and therefore Fx + (p)+D 
G E(S)) and, moreover, B D D = {o} . 

P r o o f . We show that B fl D = {o}; the rest merely requires a straightfor­
ward verification. Let x G B H D. Then 

* = E a n ( ( 2 П + 2)/2„ + 2n-/2 n + 2) 
П = l , 

nis odd 

hk + E Шn + 4)/2„+2 + (2n + 2)/2n+4) . 
П = l , 

nis odd 

If x ^ o, then we may assume that a 5 ^ 0, fit ^ 0. Then 2s + 2 (resp. 2t + 4) 
is the greatest index for which the coefficient fi in the first sum (resp. second 
sum) is distinct from 0. But 2s + 2 = 2t + 4 and 5, t are odd — a contradiction. 

• 
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PROPOSITION 5. Let K = (Fx + (p) + B) and L = (F\ + (p) + D). Then 
both K, L belong to E(S) and, moreover, K n L = Fx + (p). 

P r o o f . We have shown that K,L e E(S). Suppose that z G KnL. Then 
z = x + b = y + d, where x,y G F1 + (p) and b G B, d G D. Then b — d = y — x£ 
Fx + (p). But B,D C F2 and therefore b-d = y-xeF2n(Fl + (p)) = {o}. 
Thus, b = d and since B n D = {o}, we see that b = d = o. We see that 
KHL = F1 + (p). D 

PROPOSITION 6. Let 

G = S p a n { ( 2 n - l ) / 2 n _ 1 - ( 2 n + l ) / 2 n + 1 : n G N, n odd}, 

i^ = Span{(2n + l ) / 2 n + 1 - ( 2 n + 3 ) / 2 n + 3 : n G N, n odd}. 

Then G C Fx, H C Flr p G G 1 , p G H1, and both G, H belong to E(S). 
Moreover, G + H + fx = Fx. 

P r o o f . Let us show the required properties of G. Obviously, p G G1. Let 
J = Span{(2n + l)f2n^ + (2n - l ) / 2 n + 1 : n G N, n odd} . Then G © J = F\ 
and therefore G 0 (F2 + (p) + J) = S. Thus, G belongs to E(S). D 

Let us now prove our Theorem 1. We want to show that i?(c00) does not enjoy 
the RIP. It is sufficient to prove it for E(S), where S = c00 + (p). Consider the 
definition of RIP and take for c the space H+(p) + (f1), where H is constructed 
in Proposition 6, for d the space G of Proposition 6, for a the space K of 
Proposition 5 and for b the space L of Proposition 5. As shown before, all 
spaces a, 6, c, d belong to E(S) (H + (p) + (/x) G E(S) because H G E(S)). 

Further, aDb = F1 + (p)£ E(S) (Proposition 5). But Span(cUd) =FX + (p) 
(Proposition 6) and therefore there is no e G E(S) such that c C e, d C e and 
e C o f l d . This proves that E(S) (and therefore also E(c00)) does not satisfy 
the RIP. D 

Let us test the RIP for C(S) (obviously, C(c00) is a (modular) lattice which 
is therefore RIP). Inspired by [18], let us be as ambitious as to construct an S 
such that C(S) = E(S) and C(S) does not satisfy the RIP. 

THEOREM 2. Let H be a Hilbert space. Then there is a dense hyperplane S 
in H such that E(S) does not have the RIP. Since in this case E(S) = C(S) 
([18]) we see that the orthomodular poset C(S) of complete-cocomplete subspaces 
of S does not have the RIP. 

P r o o f . Again, we use some of the technique of [18] (Statement 3). However, 
the final part of the proof of the Theorem 2 presents an explicit novelty — it in 
fact gives a simpler proof of the non-lattice property. 

Let us divide the proof in a few statements. 
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STATEMENT 3. Let Hx be a Hilbert space, d imi^ = oo. Then there are closed 
subspaces C0, D0 of Hx such that C0 + D0 / C0 + D0 = Hx. 

P r o o f . As is known, there are closed subspaces C, D in H1 such that 
C + D is not closed (see e.g. the construction in [18; Proposition 2.2.5]). Then 
we take C0 = C and D0 = D + (C + D)L. • 

Let us return to the proof of Theorem 2. 
Let H be the Hilbert space obtained as the orthogonal sum of two infinite 

dimensional closed subspaces H0 and Hx. Let C0, D0 be closed subspaces of 
Hx taken such that C0 + D0 is not closed and C0 + D0 ^ C0+ D0 = Hx 

(Statement 3). Let S1 be a hyperplane of Hx containing C0 +D0 and let xx be 
a vector of Hl\S1. Thus, H1 = 5X + (xx) and 5X is dense in Hx. Analogously, 
let A0, B0 be closed subspaces of H0 taken such that A0 + B0 is not closed 
and A0 + B0 ^ A0 + B0 = H0 (Statement 3). Let S1 be a hyperplane of H0 

containing A0 + B0 and let x0 be a vector of H0\ S0. Thus, H0 = S0 + (x0) 
and 50 is dense in H0. 

Let 5 = 50 + 5X + (x0 + xx). Then 5 is a dense hyperplane of H. It is easy 
to see that H1f)S = 5X and H0 fl 5 = 5 0 . Further, 50 is orthogonal to Sl and 
the vector x0 + x1 is not orthogonal to either 50 or 5X. Therefore S0

S = Sx 

and S^s = 5 0 . 
Let Ax = A0

H, A = A0
S = Ax n 5 and, analogously, Bx = B±H, B = 

B±s =B1C\S. Then, A1f)B1 = (A0 + B0)
±H = H±H = Hx. Further, AnB = 

Ax n Bx n 5 = H! n 5 = Sx. In particular, C0 + -D0 is a subspace of both A 
and i?. Moreover, C0, JD0 are complete and A, B are cocomplete in 5 . Thus, 
all these four spaces belong to C(S). Suppose now that there is E in-between 
C0 + D0 and An B. Then, J5 cannot be a splitting subspace of 5 . Indeed, if 
£" is splitting, then E is closed in 5 . Since C0 + D0 is dense in S1 = A fl J3, 
it follows that E = S1. This space is closed as a complement of 50 but it is 
not splitting because S0

S = 5X and Sis = 50 but 50 + 5X is strictly smaller 
than 5 . The proof is complete. • 

The previous result shows that E(S) may be far from being a lattice in the 
sense of RIP. Let us ask how far it is in the sense of being regular (each lattice 
OMP is regular — see [17]). Recall that an OMP P is said to be regular if the 
following implication holds true: 

If a, 6, c G P and a, 6, c are pairwise compatible, then {a, b, c} is a 
distributive triple (i.e. {a, 6, c} generates a Boolean subalgebra in P). 

It should be noted that the E(S) part of the following theorem can be obtained 
from [10] and [11] as a consequence of a rather complex algebraic reasoning. We 
provide a simple linear algebra based proof. 
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THEOREM 3. If S is an inner product space, then both E(S) and C(S) are 
regular OMPs. 

P r o o f . Let us first consider E(S). Let us suppose that A,B,C G E(S) are 
pairwise compatible. We first have (in view of A <-» B) A = (AnB)U(AnBL) = 
(AnB) + (An BL). Then S = A + AL = (A n B) + (A n BL) + AL = 
A n B + A n BL + AL n B + AL n BL. Let us now show that AnB ^ C. 
Suppose x e AnB. Then there is exactly one pair x1 G C, x2 G CL such that 
x = xx +x2. Since A = (AnC) + (AnCL), B = (BnC) + (BnCL), we infer that 
{x^x2} C AnB. It means that AnB C (AnB)nC+ (AnB)nCL and since 
the reverse inclusion is evident, we obtain AnB = (AnB)nC + (AnB)nCL . 
Analogously, AnBL = AnBL nC+AnBL nCL . Then S = J^A^nB^nC^ , 
where the meaning of the latter symbols is M^ = M x , M^ = M. We see 
that {A, B, C} is a distributive triple and hence E(S) is regular. 

In order to show that C(S) is regular, suppose that A, F?, C G C(S) are 
pairwise compatible. Since {A,B,C} is a distributive triple in E(S), we can 
(in S) write .5 = £ - 4 W n B W ) H C^ as before. But in the latter sum all but 
one summand must be complete. Thus, the last one must be complete and this 
finishes the proof. D 

In our third note we want to mildly contribute to the study of order properties 
of E(S) that are linked with (topological) completeness of S. This question was 
thoroughly analyzed in [4] and many papers ([9], [6], [2], [3] e t c ) . Though we 
also use the standard mechanism based on the A m e m i y a - A r a k i technique 
[1] and thus only complement the known results, our condition seems to differ 
from the used ones and, in the line of weak a -completeness, looks natural . Let us 
say that an orthomodular poset P has the atomistic subsequential interpolation 
property if: 

For any two sequences of atoms in P, (an)n^, (bn)ne^, such that 
ai < bj for any i,j G N . there are infinite subsequences (^nfc)/ceN^ 
(bnk)ke^ such that an element a G P can be found with the following 
property: For each k G N we have a„ < a and bn < a'. 

"k '''k 

(The original version of this condition first appeared in measure theoretic con­
siderations of Boolean algebras, see e.g. [7] and [21]. The condition generalizes 
the O"-completeness.) 

THEOREM 4 . Let S be an inner product space and let E(S) satisfies the atom­
istic subsequential interpolation property, then S is complete (i.e., S is Hilbert). 

P r o o f . Suppose u e S \ S (S is the completion of S). Then there is 
w G S such that (w,u) ^ 0. Let /? = ||ti||2(u7,ix)-1 and define a vector v G S by 
letting v = u — (3w. Obviously, u _L v in S. Using the standard inner product 
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procedure (see e.g. [1]), we can construct sequences (a.)-EN and (bj)jen in 5 
such that a- i . b- for any ij G N, and (a-)-GN converges to u and (bj)jen 

converges to v. We can view the vectors a{, bj as atoms of E(S). Applying the 
atomistic subsequential property to (^ ) ; 6 N> (kj)jeN> we conclude that there are 
infinite subsequences (aik)keN, (bjk)keN o f (a*)i€N> (bj)jen such that, for some 
A G E(S), ank G A and bnk G AL for all k G N. Since A®A±=S,we see 
that ~A®~A^ = 5 . Then we can easily obtain a contradiction — the element /3w 
would have two distinct orthogonal decompositions. This completes the proof. 

• 
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