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ON THE CONSTRUCTION OF O U T E R MEASURES 
W I T H VALUES IN A U N I F O R M S E M I G R O U P 

A L E S S A N D R O T R O M B E T T A 

(Communicated by Miloslav Duchoň] 

A B S T R A C T . We give a new construction of a uniform semigroup valued outer 
measure s tart ing from an exhaustive finitely additive function. The result is ob
tained using a classical extension theorem . 

1. Introduct ion 

In the monograph [5], dedicated to the study of measure and integration 
for uniform semigroup valued functions, S i o n (see Theorem 6.1) has given a 
method to obtain a Caratheodory type outer measure starting from an exhaus
tive finitely additive function. Several mathematicians have used this tool (see 
also [6], [7], [2]). The aim of this note is to give a new construction of the S i o n 
outer measure using a classical extension theorem (see [9]). We obtain this result 
in a simple way. First we construct an outer measure starting from a countably 
additive function (see Theorem 2). Then we prove the theorem for an exhaustive 
finitely additive function using the countably additive case (see Theorem 3). 

2. Preliminaries 

A triplet (5, +, W), where 5 is a set, + is a binary operation on S and U is 
a uniformity on 5 , is a uniform semigroup if (5, + ) is a commutative semigroup 
and the function 

S x S 3 (a,b) \-+ a + be S 

is uniformly continuous. It is well known that the uniformity U can be gen
erated by the set *P of all uniformly continuous pseudometrics p on S such 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 28A12, 28B10, 28C10. 
K e y w o r d s : outer measure, uniform semigroup, semigroup-valued function. 
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that p(a+c, b+c) < p(a, b) for all a,b,c G S (semi-invariant property). For more 
details on uniform spaces and uniform semigroups we refer to [3], [5], [1]. [8]. 
Throughout this paper we will denote by 1Z a ring of subsets of a set Q and by 
1Za the family of all subsets of Q which are countable unions of elements of 1Z. 
From now on we will assume that Q is an element of 1Za . 

Moreover we will denote by (S,-\-,U) an Hausdorff uniform semigroup and 
by *p the set of all semi-invariant uniformly continuous pseudometrics p on S 
which generates the uniformity U. Let p G ̂ 3 and \a\ = p(a, 0) for each a G S. 
Let \i: V —r S be a function such that kt(0) = 0. Set 

pp(X) = sup{|/i(l% : Yen and Y C X} , 

for each X G na. Consider the function 

/I; : V(Q) ^X^ ini{fip(Y) : Y G Hff and X C F } . 

Note that /xp is monotone, /i*(0) — 0 and /x*(X) = jx (X) for each A" G 7?^. 
Moreover it can be proved that if /x is a -additive, then jx* is an outer measure. 
Now let / i : K - > 5 b e a finitely additive function. The function 

dl : V(n) x V(0) 3 (X,Y) ^ fp(XAY), 

where A denotes the usual symmetric difference, is a pseudometric on V(Q). Let 
U be the uniformity on V(Q) generated by the family {dp : p G ^3} . If T is 
the topology on V(Q) induced by U , then (V(Q), A, T ) is a topological group. 
Further observe that if //: n ~> S is a-additive, then jx is uniformly continuous 
in (n,U ) and, for each p G ^3, we have that //* is uniformly continuous in 

(V(Q),U ) . From now on, for each A C V(Q), we will denote by A the closure 
of A with respect to T . 

A function fx: 1Z -> S2 is said to be exhaustive if, for every disjoint sequence 
P U n E N m 7^, we have \im^fi(Xn) = 0. 

For more details on exhaustive functions with values in topological groups 
and uniform semigroups, see [5], [2], [8]. The following is a result, let us say. 
internal to the theory of semigroup valued measures and whose proof will not 
be given here. 

PROPOSITION 1. (cf. [8; p. 27, Proposition 2.12]) Let fi: 1Z -> 5 be an ex

haustive a-additive function and p G ^)3. Then '1Z is a a-ring and, for each 

decreasing sequence (A n ) n G N of n . 

js5.<A"\(.a-Y>))=o-
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THEOREM 1. (cf. [9; p. 418, Satz (4.4) (c)]) 17 (S,+,W) zs complete and 
/y: 7v —> S is an exhaustive a-additive function, then there is a unique ex
haustive a-additive extension of II on 1Z . 

Remark 1. Let (S,+,U) be complete and let LI: 1Z —» S be an exhaustive 
a -additive function. In the following we wTill denote by JI the unique exhaustive 
a -additive extension of kI on 1Z , which exists by Theorem 1. Observe that 
JI is the U -uniformly continuous extension of \i on 1Z (see also [3; p. 195. 
Theorem 26]). 

3. Generation of an outer measure 

Let H C V(Vt). Denote by &(%) the cr-ring generated by %. A function 
//: V(Vt) —>> S is said to be %-outer regular, or outer regular with respect to H, 
if for each X E V(Q) and for each U eU there is Y E U such that X C F and 

(MX),t I(rnz))Ec7, 

for each Z E U such that I C Z . 

A function /I: P(fi) -> 5 is a H-outer measure if LI is cr-additive in cr(H) 
and /I is % -outer regular. We say that /i is an outer measure if there exists 
H C P(f2) such that LI is a H-outer measure. 

Remark 2. For more details on outer measures in topological groups and uni
form semigroups see also [4], [5], [2], [8]. Observe that if S = K. and LI takes 
\alues in [0, +oo[, the above definition of outer measure coincides with the usual 
definition of outer measure in the sense of Caratheodory (see [2; p. 48, (4.5)]). 

Let X E V(Vt). Set 1ZX = {Y E 1ZG : X C Y}. The couple (1ZX, C) is an 
oriented set. 

THEOREM 2. If (5, +,ZY) is complete and ji: 1Z -» 5 zs exhaustive and 
a-additive function, then the function 

(ji(X) ifxen11, 
S : P(f.) 914 U m - ( F ) - ; ^ p ( f i ) ^ ^ 

is an outer measure. 

P r o o f . We start observing that, since Ji is exhaustive in 1Z and (S, +, U) 
is complete, for each X G V(£l) the net 

(ß(Y)) Уe(iгx,ç) 
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is convergent in S (see [2; p. 26, (1.2)]). This implies that the function /I* is 
well defined. Now we want to show that /I* is 7^-outer regular. Let p G $ , 
e > 0 and X £ 1Z*1. By Proposition 1 we can find Y £ 1Za such that X C Y 
and fi*(Y \X) <£. Then, if Z £ 1Za and X C Z C F , we have that 

p ( A I*(X) , A I*(Z) )< | /7 (Z\X) | p 

< ^ ( z \ x ) < l I ; ( y \ x ) < £ . 

Now let X G V(Vt)\1Z^. By the definition of LI* there exists Y £ 1Za such 
that X C Y and such that, for each Z £lZa with I C Z C F , 

P(V*(X)^*(Z)) =p(ii*(X),Jl(Z)) <£. 

Then /I* is 7*^-outer regular. Moreover, since /I* is clearly a cr-additive exten-

re. 
D 

sion of /I on 1Z and 7£ is a a-ring, we have that /I* is an 1Za -outer measure. 

Now we want to construct an outer measure starting from a finitely additive 
function. Define 

Vx = J P C TZ : P is countable, disjoint and X C |J Y\ 
I Y<EP J 

for each X £ V(tt) and, for every P,Q £ Vx, let P < Q if Q is finer than 
P (i.e. every element of Q is contained in some element of P ) . The couple 
( P x , <) is an oriented set. Let 2) be the set of all functions which associate to 
each countable disjoint subfamily P of 1Z a finite subset A(P) of P . Set 

VX = {(P,A): P£VX, A G S ) } , 

and, for every (P, A) , (Q,T) G F>x, let (P, A) < (Q, T) if P < Q and A(P) C 
T(P) for all countable disjoint subfamily R oi 1Z. The couple (DX,<) is an 
oriented set. We need the following proposition. 

PROPOSITION 2. (cf. [5; p. 28, Theorem 5.2]) Let LI: 1Z -> 5 6e an exhaustive 
finitely additive function. If (5, +,ZY) is complete, then for each X £ V(fl) the 
net 

/ £/W) 
YGA(P) / (P,A)G(Dx,<) 

Z5 convergent in S. 

Now we are able to prove our main result (see also [5; p. 34, Theorem 6.1]). 
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THEOREM 3. Let lx: 1Z —r S be an exhaustive finitely additive function. If 
(5, +M) i<s complete, then there exists an extension of the function 

/z* : 11 3 X ^ lim V fi(Y) 
(PA)e(vx,«)y^{p) 

on P(-l) which is an outer measure. 

P r o o f . Since Proposition 2 holds, the function //* is well defined. By The
orem 2 it is sufficient to show that li* is a-additive and exhaustive. We start 
to show that /L* is a-additive in 1Z. Let (Xn)neN be a disjoint sequence of 11 
and set X — | J Xn. Let U eU. Choose V G U and ( ^ n ) n 6 N in U such that 

neN 
V o V C U and 

( Ľ «„, £ Ü є У0 
4 nЄІ nЄІ J 

for each finite J C N and ( a n , 6 n ) £ Vn (n e I). Let (P, A) G (X>x,<) such 
that {Xn : n G N} < P and 

yer(Q) 

for each (Q,T) G (£>x ,<) with (P, A) < (Q,T) . Moreover, for each n G N let 
(P n , A n ) G VXn such that {F G P : F C XJ < P n and 

v yer(Q) J 

for each (Q,T) G (X>Xn,<) with ( P n , A J < (Q,T) . Set P ' = [J P n , let 
nGN 

J0 = {n G N : A(P ' ) fl P n / 0 } . Besides, fixed a finite J C N such that J0 C J , 
consider the function 

f A(P ' ) U ( U A n ( P j ) i f Q = P ' , 

I A ( Q ) i fQ^i" , 
and, for each n G J , let 

д , ; Q r t | Л ( П n p „ i fg .ғ . , 
A n ( Q ) if Q + Pn. 

Then (P, A) < ( P ' , A ' ) , ( P n , A n ) < (P„, A n ) (n G N) and we have that 

U*(X), E KY))ev, 
v yeA'(P') J 

0-*(*n), E /-00)eYn. 
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it follows that 
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£ KY) = £ £ KY) , 
YeA'(P') nel YeA'n(Pn) 

U*(X),z^(xn))eVoVçu. 
v nel ' 

/X*(A') = £>*(A'n). 
nGN 

Now we prove that the function /I* is exhaustive in 72. Let (A"n)nGN be a 
disjoint sequence in 72. and let U £ U. Since /i is exhaustive in 72, there is 
m £ N such that (/x(F),0) E U for every n > m and F £ 72: with F C A n̂ . 
For each n > m choose (P n , A n ) £ X>Y such that F C Xn for each F £ Pn . 
Then, since /I is finitely additive, for each n > m, we have 

( £ / i ( n o ) = fr( U ^ ) ,0 )£c7 . 
KYeAn(pn)

 y V V Y G A n ( P n ) / 7 

Hence, for each n>m, 

(»*(XJ,0)€U. 

This show that //* is exhaustive in 72 and the proof is nowr finished. • 
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