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NOTE ON MEASURES

KAROL BARON

Suppose that X is a non-empty set and & is a o-algebra of subsets of it. By

a measure on & we shall mean a countably additive function y from & into the set

of all complex numbers C. For the measure u by u* we shall denote the total

variation of it and by u* and u~ its positive and negative variation, respectively,

whenever y will be real. Moreover, if T is a self-mapping of &/, then we shall say

that it has the property (m) iff a ( U A,,.) = U T(A,.) holds for every sequence
m=1

m=1

(A..: m eN) of mutually disjoint sets from & and T(A)NT(B)=@, whenever A,
Besf and AnB=4.

Let a non-empty set X and a o-algebra & of subsets of it be given together with
measures v; on &, measurable functions f; ; : X — C and self-mappings S; and T,
of o with the property (m), i,je{l, ..., M}, ke{l, ..., N}, where M and N are
positive integers. The aim of this note is to give a sufficient condition for the
existence of exactly one sequence (i;, ..., tm) Of measures on & such that

w(A)= E E )fi.l.k dy; oSk +vi(A)

i=1 k=

holds for every A e and i€ {1, ..., M}.

In order to be brief we shall assume permanently that the indexes i and Jj (with or
without affixes) run over the set {1, ..., M}, k (with or without affixes) runs over
the set {1, ..., N}, n runs over the set of all non-negative integers and m runs over
the set of all positive integers.

Assume that

(i) X is a non-empty set and & is a o-algebra of subsets of it.

(i) v.. are measures on & such that lim (v, — v:.0)*(X) =0 for every i.

(iii) f.jxn:X—C are measurable functions such that lim sup {[fejn(x)

— fiiko(®)]:x € X} =0for every i, j, k and sup {|fi.,.x..(x)|: x € X} < a;; .« holds
for all i, j, k and n with constants a; ;. , such that all the characteristic roots of the

matrix (Ea,-_ i_k) are less than one.
k
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(iv) Sk and T, are self-mappings of & with the property (m).
We have the following

Theorem. Under the hypotheses (i)—(iv) there exists for every n exactly one
sequence (W, n, ..., tn,n) Of measures on o such that

Ul.n(A)zii: 2‘; ,L (A)fl',i.k.n diy,n oSk + vin(A)

holds for every i and A € #{. Moreover,
(D) lim (i, — ti,0)*(X) =0 for every i;

(II) if for a certain n all the f; ; «,. and v, are real, so are y, , for thatn and all i ;

(III) if for a certain n all the f, ; «.. and v; , are non-negative, so are y; , for that n
and all i;

(IV) if M is a subset of A such that S, (T, (M)) =M for every k and for a certain n

(*) ZVi,n*l\m:O,

then Zy,»,,.*lm=0 for that n.

Proof. Denote by € (resp. ®) the set of all measures (resp. real measures) on &
and define ||-||: €—[0, ©) by

lull=u*(X), nes.

It is known (cf. [3], §§ 43 and 44) that (€, || ||) and (@, || -|||=) are Banach spaces.
Defining, for every i, j, k and n, the (linear) operator I, ; «..: €—% by

Ii.i.k.n(u)(A)=J’ fiiknduoSe, ne€, Aed,
Ti(A)

we see that the inequalities

Lica()*<a,;u*ScoT., ueé,
and
(Ii,i.k.n(u)_li,i.kvo(u))*s
<sup {|fi;.c.n(X) = fojio(x)|: x €X}u*oSio T, pe,

are valid for all i, j, k and n. Therefore

) )| Sai.j,k"“” , MESE,
and
”li‘i.kvn(ﬂ) _li,j,k.O(”)Ssup{,fi,i,k_n(x)_fl'.i,kvo(x)l X E)(}”H” »UE €,

for every i, j, k and n. Hence, next, for %, ,: ¢" — € defined for all i and n by
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'%.n(“l; ERY) H'M)=E 2 Ii.fyk,n(ui)-*_vi,n’
7

(U1 ..., tn) € €™,
we have

”%.n(ul’ v v) = Fon(fns - s ﬁM)”SZ ;al’.i,k L “ﬁi’. >
1

(Hb crey HM)’ (!21’ ceey ‘2M)6 (6M9
and
N (s s tire) = Fotrs s tir)|| <

gsul’ {Ifeien ) = fisro(x)] 1 x e X Hlwll + 1Vi.n — vicoll,
([ll, ceey HM)E%M’

1

for every i, j, k and n. The last inequality gives

Fro(ss - thre) = WM F, (s, .., pira),
(“1’ e HM) € (gM’

for all i. Now we see that the first part of the Theorem and the property (I) follows
from Lemma in [1] and Lemma 1.2 (ii) in [2]. To obtain (II) observe that if for
a certain n all the f; ; «., and v, , are real, then %, ,(R) < for that n and all i.
Passing to the proof of (III) fix an n such that all the f;,,,. and v,, are
non-negative. Then &, = u;, + ui, and

i =Z 2 Ljion (W) + Viin = Z 2‘; Ljn(— 150
i )
for every i. Therefore
-[l,_,,sz z Ii.i.k.n(_ui_.n)
)
for all i and so

(|2l Sz ;ai,i,k”ﬂi_,n”
1

for every i. Hence and from Lemmas 1.3 and 1.2 (i) from [2] we get u;, ,=0 and,
consequently, . , =0 for all i. In order to obtain the property (IV) fix an n such
that («) is true. Since

i (i 2 li.i.k.n(ui,n)+vi,n)*s
2

>

i

N

Ljn(in)*+vin*<
i

N

a ,i,k""i,n*OSKOTk + V,",.*

2
-
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for every i,
Wi, n éZ zai‘i‘k“i.n*°sk°Tk
m ik

m

holds for all i. By induction

ui,n*lms E Z aivil-kl‘ail-il-kZ"".

J1s oo dma1 K1 oo kmat

) aimvim+]»km+luim+l.n *o (Skm+l ° T’(mu)o' . 'O(Skx ° Tkl)llm

is valid for every i and m. Hence, recalling Lemmas 1.1 and 1.2 (i) in [2] and
choosing a # € (0, 1) and r; € (:,.*(X), ) for all i in such a manner that

2 Za,-‘,-,,‘r,- <V
k

]
holds for every i, .. *|w<®"r: for all i and m. Consequently > p, ,*|w= 0 and the
proof is finished.
The just proved Theorem leads to the following

Corollary. Suppose that the hypotheses (i) and (ii) are fulfilled and T, are
self-mappings of s{ with the property (m). If for the complex numbers s ; «., we

have lim s, ; x.. = Si;«.0foreveryi,j, kand |s, ;.| < a.«foreveryi,j, kandn,
n

where all the characteristic roots of the matrix ( >ai, k) are less than one, then for
k

every n there exists exactly one sequence (W, -.., Unm.») Of measures on s such
that

Wi,n =2 Zsi,i‘k,nlli.n oTi+Vi.n
ik

holds for every i. Moreover, we have (1) and
(I') if for a certain n all the s; ; .., and v, , are real so are y; , for that n and all i ;
(II1") if for a certain n all the s, ; « . and v, , are non-negative, so are W; , for that n

and all i;
(IV'") if Pt is a subset of s such that T, () = IN for every k and for a certain n we

have (x), then Z“""*'”R:O for that n.

Remark. Using our Corollary we may strengthen Theorem 6.6a) from [2]. In
fact, suppose (i), assume v to be a measure on & and s to be a complex number
such that |s| < 1. If f is a one-to-one self-mapping of X such that the image f(A) of
every set A € & is in &, then, by the Corollary, there exists exactly one measure p

on & such that
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u(A)=sulf(A)l+v(A), Aed.

This measure is real provided s and v are real and it is non-negative whenever s

and v are non-negative. Moreover, if I is a subset of & such that f(IN) = I and
v|m=0, then p|p=0.
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Poland

3AMETKA O MEPAX
Kapon bapon
Pesome

Ipeanonoxum, 4TO JAHHO HEMYCTOE MHOXeCTBO X, g-anre6pa & ero NOAMHOXECTB, MepbI V; Ha A,
n3Mepumble dyukumu f;; : X —C, nanee dyHuun S, u T, orobGpaxarouiue cemeictso o B ceb4, i,
je{l, ..., M}, ke{l, ..., N}, rne M u N 4BnSIOTCA HEKOTOPbIMH HATYPAJIbHBIMU YHCIAMM.

Moka3bIiBaeTcs TEOpPEMA O CyLIECTBOBAHWUM, €IHHCTBEHHOCTH U HEKOTOPBIX CBOMCTBAX pClUCHMiI
CUCTEMbI

u,-(A)=ii fiie A oS +vi(A), ie{l,..., M},

i=1 k=1 JT(A)

B KOTOPO# HEM3BECTHBIMU DYHKUMAMHU SABISIOTCS MEPBI [, ..., Hy-

383



		webmaster@dml.cz
	2012-07-31T21:51:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




