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NOTE ON MEASURES 

KAROL BARON 

Suppose that X is a non-empty set and si is a a-algebra of subsets of it. By 
a measure on si we shall mean a countably additive function pi from sd into the set 
of all complex numbers C. For the measure JU by JU* we shall denote the total 
variation of it and by [x+ and pi~ its positive and negative variation, respectively, 
whenever \i will be real. Moreover, if T is a self-mapping of si, then we shall say 

that it has the property (m) iff a ( |J Am) = (J T(Am) holds for every sequence 
\m = l / m = l 

(Am: meN)of mutually disjoint sets from sd and T(A)nT(B) = 0, whenever A, 
Best and AnB = 0. 

Let a non-empty set X and a a-algebra .s/ of subsets of it be given together with 
measures v, on si, measurable functions /,,,*: X-»C and self-mappings Sk and Tk 

of si with the property (m), i, / e {1, ..., M}, k e {1, ..., N}, where M and N are 
positive integers. The aim of this note is to give a sufficient condition for the 
existence of exactly one sequence (jUi, ..., JUM) of measures on si such that 

M N r 

,̂(A) = S E fi.i.kdii,oSk + Vi(A) 
/ = 1 fc = l ^T k (A) 

holds for every Aesi and i e {1, ..., M}. 
In order to be brief we shall assume permanently that the indexes i and / (with or 

without affixes) run over the set {1, ..., M}, k (with or without affixes) runs over 
the set {1, ..., N}, n runs over the set of all non-negative integers and m runs over 
the set of all positive integers. 

Assume that 
(i) X is a non-empty set and si is a a-algebra of subsets of it. 

(ii) v,,n are measures on si such that lim (v,tn - vi,o)*(X) = 0 for every i. 
n 

(Hi) /,;,fc,n:X->C are measurable functions such that limjsup {|/,,,*,„(*) 

- /.,,fc,o(Jc)|:jcGX}=Ofor every i,/, ifcandsup{|/i./.*.»(*)|:-if eX} ^ au,k holds 
for all i, /, k and n with constants aiJtk such that all the characteristic roots of the 

matrix f 2fl-./.*) a r e ^ess ̂ an one. 
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(iV) Sk and Tk are self-mappings of sA with the property (m). 
We have the following 

Theorem. Under the hypotheses (i)—(iv) there exists for every n exactly one 
sequence (juln, ..., JUM,„) of measures on sd such that 

^,„(A) = 2 E /-./.*.* dft,no,S* + vI-,ll(A) 
/ k JTk(A) 

holds for every i and Aesi. Moreover, 

(I) lim (^,n - jU,,0)*(X) = 0 for every i; 
n 

(II) if for a certain n all the f.j.k.n and v,,„ are real, so are \ii>n for that n and all i; 
(III) if for a certain n all the fi,j,k,n and vin are non-negative, so are /i,,„ for that n 

and all i; 
(IV) if Wl is a subset of si such that Sk(Tk(W)) czTl for every k and for a certain n 

(*) 2vi.»*U=o, 
i 

then 2M«\«*U = 0 for that n. 
i 

Proof. Denote by % (resp. £%) the set of all measures (resp. real measures) on sd 
and define | | | | : <£-->[0, oojI by 

\=\i*(X), iie<€. 

It is known (cf. [3], §§ 43 and 44) that (<€, || • ||) and (31, \\ • || | a ) are Banach spaces. 
Defining, for every /, /, k and n, the (linear) operator I,,y,fc,„: (S—><# by 

lj.k.n(j*)(A)=( fu,k,ndiioSk, ixe<€, Aesd, 
JTk{A) 

we see that the inequalities 

li,i,k,n(li)*^au,kpL*oSkoTk, \ie%, 
and 

(li,i,k.n(ll)-lij.k0(li))*^ 

^sup{\fi,j,k,n(x)-fij,k,0(x)\:xeX}ii*oSkoTk, iie<e, 

are valid for all i, /, k and n. Therefore 

\\V,.*M\\^ai9lAl*\l . "€« , 
and 

| | l . .L*,n(ju)-I^, ,^ 

for every i, j , k and n. Hence, next, for y,. „:<£**-> * defined for all i and n by 
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&t.n(l*l, . . . , / - M ) = S I -t./.*.«(rt) + V4,n, / * 
Gi 1 , . . . , 0 M ) e« M , 

we have 

^.nfal* '••» l*M)-&i.n(fil> -»An)NS S ^ M . J U - A J > 

(jUl5 ..., jUM), (01, ..., A * ) € « M , 
and 

||y,.„(^li, ..., / / M ) - ^ . O ( ^ I , ..., M l l ^ 

2 2 sup {|/;L,.n(A:)-/,7,k,oWl:* e X } | | ^ | | + | |v .n - Vl,0||, 

(ji-, . . . , l iM)e«M , 

for every i, /', k and M. The last inequality gives 

^.oGuj, ...9iAM) = tim&i,n(iAl9 ..., iiM), 
n 

(^,...,^M)s^M, 

for all i. Now we see that the first part of the Theorem and the property (I) follows 
from Lemma in [1] and Lemma 1.2 (ii) in [2]. To obtain (II) observe that if for 
a certain n all the /,,,*,„ and v,,„ are real, then 5FLn(0l)<^gi for that n and all i. 
Passing to the proof of (III) fix an n such that all the /,,,*,„ and v,,„ are 
non-negative. Then jU,,„ = iit>n + ^7,n and 

# . . , = 2 2 I-./.*.n(A*/tn) + V i , B -2 2 !-./.*.*(-P/7n) 
/ * I fc 

for every i. Therefore 

-^.Tn^ES !-./.*.«(-P/7«) 
/ * 

for all / and so 
l l^nl l^SS^L fc l l^nl l 

/ k 

for every i. Hence and from Lemmas 1.3 and 1.2 (ii) from [2] we get ii7,n = 0 and, 
consequently, ju,,n ̂ 0 for all i. In order to obtain the property (IV) fix an n such 
that (*) is true. Since 

W.»* = (2Sl./ .*.»(W.-) + Vi.«)*^ 

^2S l . .L* ,n (^n )* + V,-,n*^ 
/ * 

^ S 2*-././ttt.n*oSKo7*+V-.„* 
/ * 
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for every i, 

jU,,n ^2J 2jai,i,kl*>j,n*oSkoTk 

s# i k 

holds for all i. By induction 

fr,n*\m^ 2 2 ai,iuk1'
ajl,h,k2'--

,Іm + \ *1 

'aimJm + ukm + 1frm + 1,n*°(Skm + 1oTkm + 1)o...o(Sk^ 

is valid for every i and m. Hence, recalling Lemmas 1.1 and 1.2 (ii) in [2] and 
choosing a # e ( 0 , 1) and r, e(li„„*(X), o°) for all / in such a manner that 

/ k 

holds for every i, Hi,n*\<m^ftmri for all / and m. Consequently ^mt„*\^=0 and the 

proof is finished. 
The just proved Theorem leads to the following 

Corollary. Suppose that the hypotheses (i) and (ii) are fulfilled and Tk are 
self-mappings of si with the property (m). If for the complex numbers s.,,,*,„ vve 

have Mm siJtktn = siJjk0 for every i,j, kand |s,,/,*,J ^ aiJtk for every i, j , kandn, 

where all the characteristic roots of the matrix (2 f l -.i *) a r e ^ess ^ a n one> t^ien f°r 
k 

every n there exists exactly one sequence (fii,n, ..., AW.,.) of measures on sd such 
that 

l^i,n = ZJ Z*iSi,J,k,nllj,noTk + V,,„ 
i k 

holds for every i. Moreover, we have (I) and 
(IT) if for a certain n all the siJtk,nand v,,„ are real so are [tit„ for that n and all i; 
(III') if for a certain n all the sM,*,„ and v,,n are non-negative, so are [iit n for that n 

and all i; 
( I V ) if Wl is a subset of si such that Tk (W) c Tt for every k and for a certain n we 

have (*), then ^[ii,n*lwi = 0 f°r ^ a t n-
i 

R e m a r k . Using our Corollary we may strengthen Theorem 6.6a) from [2]. In 
fact, suppose (i), assume v to be a measure on si and s to be a complex number 
such that |s | < 1. If / is a one-to-one self-mapping of X such that the image f(A ) of 
every set A e si is in si, then, by the Corollary, there exists exactly one measure \i 
on si such that 
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lx(A) = s^[/(A)] + v(A), A ^ . 

This measure is real provided s and v are real and it is non-negative whenever s 
and v are non-negative. Moreover, if 2)i is a subset of si such that f(Wl)aWl and 
v|siri = 0, then ^ = 0. 
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ЗАМЕТКА О МЕРАХ 

Карол Барон 

Резюме 

Предположим, что данно непустое множество X, а-алгебра бй его подмножеств, меры V, на зй, 
измеримые функции /..,.*: X—>С, далее фунции 5* и Тк отображающие семейство з1 в себя, /, 
/е{1, ..., М}, ке{1, ..., АГ}, где М и N являются некоторыми натуральными числами. 

Доказывается теорема о существовании, единственности и некоторых свойствах решений 
системы 

^(А) = 2 Ё [ ^^,^,к<^^^^о5к + V^(А), /е{1,...,М}, 
1-1 к = 1 ./Тк(А) 

в которой неизвестными функциями являются меры /*,, ..., цм. 
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