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Math. Slovaca 34,1984, No. 3, 319—328 

ON TOTAL MATCHING NUMBERS 
AND TOTAL COVERING NUMBERS FOR 

fe-UNIFORM HYPERGRAPHS 

FRANTlSEK OLEJNIK 

In [3] P. Erdos and A. Meir investigate upper and lower bounds for a2(G) + 
a2(G) and j32(G) + j32(G), where G is an undirected graph without loops and 
multiple edges and G is the complement of G. a2(G) or a2(G) is the total covering 
number of G or G respectively and /32(G) or j32(G) is the total matching number of 
G or G respectively. In this paper these results are generalized for k -uniform 
hypergraphs. First let us introduce the necessary notions. 

(Cf. Berge [1].) By a hypergraph H we mean a couple (X, %), where X is 
a finite set of elements called vertices and g = {Eu ..., Em} is a finite system of 
non-empty subsets of X called edges, where £,=?-£,• for i, j e {1, ..., m}, i±j. 

A hypergraph is said to be k-uniform, k > 1, if all its edges have cardinality k. A 
k -uniform hypergraph with n ^ k vertices is called complete if its set of edges has 

the cardinality ( J. 

The complement of a k-uniform hypergraph H = ( X , %) is the hypergraph 

H = ( X , t) if | g u » | = ( " ) and g n f = 0. ( | 8 u f | denotes the cardinality of the 

set gu t . ) 
A hypergraph H ( N ) = (X, gN) is said to be a k-uniform subhypergraph of 

a /ouniform hypergraph H = (X, <£) induced by a set N if N c X and %N is the 
system of all edges E{ e % such that Et c N. 

A vertex JC of a k-uniform hypergraph H is said to cover itself, all edges incident 
with x and all vertices adjacent to x. An edge Et of a k-uniform hypergraph H 
covers itself, the vertices incident with E, and all edges adjacent to Et. 

A subset P of elements of X\J% is called a total covering of H = (X, %) if the 
elements of P cover H and P is a minimal set with this property. 

Two elements of the set X u ? are called strongly independent if they do not 
cover each other. A subset F of X u % is called a strong total matching if elements 
of F are pairwise strongly independent and F is maximal. 
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A subset N of X is called stable if for each edge E{e%, | F . n N | ^ k — 1. A subset 
S of X is called strongly stable if for each edge Ei9 | E , n S | ^ l . 

A subset T of Xu% is said to be a weak total matching if T is maximal and has 
the following properties: 

1° The elements of Tn% are pairwise independent (disjoint) 
2° No element of Tn% covers an element of TnX 
3° The elements of TnX form a stable set of H. 
The cardinality of a minimum set which is a total covering of H is called the total 

covering number a2(H) of H. 
The cardinality of a maximum strong total matching of H is called the strong 

total matching number /32(H) of. H. 
The cardinality of a maximum weak total matching of H is called the weak total 

matching number y2(H) of H. 
The cardinality of a maximum stable set of H is called the stability number a(H) 

of H. 
The cardinality of a maximum strong stable set of H is called the strong stability 

number a0(H) of H. 
In the sequel we supose that n^k^3. 

Theorem 1. For a k-uniform hypergraph H=(X, %) with n vertices and its 
complement H 

]f[ + 2^2(H) + MH)^f^[ (1) 

holds. 
Proof. Let F or F be a strong total matching of H or H with cardinality ft(H) 

or j32(H) respectively. Let F = FxuFy and F = FxuFy, where Fx or Fx is a set of 
vertices of F or F respectively and Fy or Fy is a set edges of F or F respectively. 
Thus j32(H)=|Fx | + |Fy | and j32(H)= |FX| + |Fy | holds. 

Let V(Fy) or V(Fy) be the set of vertices incident with edges of Fy or Fy 

respectively. Without loss of generality we can suppose that the sets Fy or Fy are 
maximal independent sets of H or H respectively, so that the subhypergraphs 
H(X- V(Fy)) and H(X- V(Fy)) have no edges. 

A. We prove the upper bound from Theorem 1. 

l32(H)=\Fx\ + \Fy\ 

holds, thus 
] | X - V ( F . ) | 

+ k\Fy\. 

Then 
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^H)^f^f^\[ 

p2(H) + p2(H)*í\Fx\ + \Fy\+]n- kJF>l[ + k\Fy\. 



Since 
\Fx\ + k\Fy\*ln, 

ß2(H) + ß2(H)^n + ]ţ[ = }Ҷ^[ 
holds. 

B. We prove the lower bound from Theorem 1. 
For k^n^2k the theorem holds. 
Let n>2k. 
Since H(X- V(Fy)) or H(X- V(Fy)) are empty subhypergraphs of H or H 

respectively, 

|FV | + | R | > [f] « 
holds. 

Let us analyse five possibilities: 

I. If |F y | = Nr and n = 0 (mod k), then /3 2(H)^2, thus the assertion of the 

theorem holds. 

II. If \Fy | = | ^ 1 and n-£0 (mod k), then IF, | ̂  1 and fi2(H) ^ 2 , thus the assertion 

of the theorem holds. 

III. If 0 < | F y | < | | l and n---O(modk), then \FX\^1 and |F,| + | F y | ^ 

— - |Fy| + 1, thus the assertion of the theorem holds. 

IV. If 0 < | F y | < | j l and /iM-0 (mod k) and |Fy| + |F y |> 1^1, then \FX\^1, 

|F X |^1 , thus the assertion of the theorem holds. 

V. Let 0<|F y |<r | l and n#0 (mod k) and 

-[!]• <3> |F У | + |FУ 

then 

\FX\ + \FX\>2. 

Suppose in fact the assertion does not hold. 
Then 

|F,| + |F,| = 2, (i.e. |F,| = 1, |Ғ,| = 1). (4) 
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We will show that the hypergraph satisfying both the hypotheses of V and (4) 
does not exist. We can suppose that the sets V(Fy) and V(Fy) are disjoint, because 
H(X— V(Fy)) has no edges, hence as a maximal set of disjoint edges of 
H(X— V(Fy)) we can consider Fy. 

Let N = X-V(Fy)-V(Fy). 
The hypergraph satisfying both the hypotheses of V and (4) must have the 

following properties: 

(a) 0 < | 1 V | ^ k - l , because |V(Fy) | + |V(Fy)\ = k l ^ l and \N\ = 

\X-V(Fy)-V(Fy)\ = n-k[^. 

(b) H(V(Fy)uN) or H(V(Fy)uN) is a complete subhypergraph of H or H 
respectively. 
If H(V(Fy)uN) is not complete, then in H(V(Fy)uN) there exists at least 
one edge, which is a contradiction to (3). 

(c) Each vertex of X covers all vertices of both H and H. Let there exist vertices 
xi, x2, which are not incident in H. From (b) it follows that in the set N all 
vertices are incident, i.e. 

(i) xteV(Fy) and x2eV(Fy), or 
(ii) xi, x2e V(Fy) 

(in the case xteN and x2 e V(Fy) there would be a contradiction to \FX \ = 1). 
In case (i) all edges containing the vertices Xi, x2 are in H. Let us take such an 
edge E from H, which has (k — 1) vertices in the set V(Fy). From (b) it follows 
that in H( V(Fy)uN — {x2}) there exists an independent set of edges Fiy, for 
which |Fiy | = |Fy | . But in H we can add an edge E to FJy and obtain an 
independent set F2y whose cardinality is |F2 y | = |Fy | + 1. Then |Fy | + |F2 y | > 

— , which is a contradiction to (3). In case (ii) we take Fx = {xu x2}, which is 

a contradiction to \FX\ = 1. 
(d) Each vertex of V(F y )uN forms an edge with arbitrary ( k - 1 ) vertices of 

V(Fy) in H. Otherwise there exist ( k - 1 ) vertices x2, ..., xk in V(Fy) and 
x0e V(Fy)uN, that {x0, x2, ..., xk} forms an edge in H. But in H(V(Fy)uN-
{x0}) there exists an independent set of edges of cardinality |Fy | and thus in H 
there exist a set of disjoint edges of cardinality |Fy | + 1, which is a contradic
tion to (3). 

(e) Each vertex of V(F y )uN forms an edge with arbitrary (k — 1) vertices of 
V(Fy) in the hypergraph H, which follows from an analogous consideration to 
that in (d). 

For k = 3, (c), (d), (e) and (3) can not hold the same time, thus for a 3-uniform 
hypergraph satisfying the condition from V the Theorem 1 holds. 

Let k^4. By induction we will prove an assertion (A): 
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(A) In a hypergraph H which satisfies (3) and (4), there does not exist an edge 
which has exactly i vertices in V(Fy), for i = 2,3, ..., fc —1. This will be 
a contradiction to (e), because according to (e) each edge exactly (fc — 1) of whose 
vertices are in V(Fy) must belong to H. 

Proof of (A): 
1. Let i = 2. Let there exist an edge Ei in H such that |Ein V(Fy)| = 2. According 

to (d), in H there exists an edge E2 such that |EinE 2 n V(Fy)| = 1 and |EinE 2 | = 
fc - 1. Let us consider a set of vertices R cz V(Fy)u V(Fy) such that \Rn V(Fy)| = 
fc - 2 , \Rn V(Fy)\ =2, £ n E i = 0and |-RnE2| = 1. Subhypergraph H ( R u N ) does 
not contain any edge (otherwise in H(Ru V(Fy)uEi) there exists an independent 
set of edges of cardinality |Fy| + l which is a contradiction with (3)), and so 
H(RuN) is a complete subhypergraph of H. But in this case 
H ( K u N u V(Fy)uE2) contains an independent set of edges of cardinality at least 
|Fy| + l, which is a contradiction to (3). Let veN. Then the set of vertices 
E3 = (R — E2)u{v} forms an edge in H and E3nE2 = 0, which is a contradiction to 
(3), thus for i = 2 the assertion (A) holds. 

2. Suppose that for i = r, 2 < r ^ fc - 2, the assertion (A) holds and for i = r + 1 it 
does not hold, then in H there exists an edge Ei such that |Ein V(Fy)| = r + 1 . 
According to the induction assumption there exists in H an edge E2 such that 
|EinE 2 | = fc-l and |EinE 2 nV(F y ) | = r. Let us consider a set of vertices R^ 
V(Fy)uV(Fy) for vhich \RnV(F,)\ = k-r, |RnV(F y ) | = r, RnEx = Q and 
|RnE 2 | = l . Then H(RuN) is a complete subhypergraph of H, otherwise we 
have a contradiction to (3). But in this case H(RuNu V(Fy)uE2) contains an 
independent set of edges of cardinality at least |Fy | + 1, which is a contradiction to 
(3). Thus the auxiliary assertion is proved. 

From (A) ft follows for i = fc — 1 that in H there does not exist any edge E for 
which |En V(Fy)| = fc — 1, which is a contradiction to (e). This completes the proof 
of the assertion for case V and therefore also of Theorem 1. 

Remark. The equality in the upper bound (1) holds for an arbitrary complete 
fc-uniform hypergraph. 

The equality in the lower bound (1) holds, e.g., for H=(X, %) with the 
following structure: 

1° There exists a vertex x e X such that H(X— {x}) is a complete subhypergraph 
of H. 

2° In H there exist exactly edges containing a vertex x, among which there 

exist edges such that any two edges have in common exactly the vertex 

x. 
3° The vertex x is adjacent to all vertices of H. 
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For such a hypergraph H 

02(H)=]|[ and ft(H) = 2 holds. 

This means that the upper and lower bounds (1) are the best possible. 

Theorem 2. For a k-uniform hypergraph H = ( X , %) and its complement 
H = ( X , t ) 

] ^ [ + ̂ «2(H) + a2(H)^]^±^[ (5) 
holds. 

Proof. The upper bound in (5) follows form the inequality 

a2(H) ^ $2(H), a2(H) ^ /32(H) 

and from Theorem 1. 
Let P = PxuPy be a total covering of H, where Px is a set of vertices and Py is 

a set of edges. 
If |P , | = 0, then n ^ k | P y | , thus 

a2(H)=\Py\^[. 

As a2(H)^l, the lower bound in (5) is satisfied. 
Let \PX\**1. Let us denote N = X-Px - V(Py). If | N | ^ k - l , then 

_i<r|p,| + |v(F, ) |r .^r 

holds and a2(H)^l, thus the lower bound in (5) is satisfied. 
If \N\^k, then H(N) is a complete k-uniform subhypergraph of H, thus 

It follows that 

a2(H) + a 2 ( H ) ^ | P , | + |P , | + ] ^ [ = ] i ( | P , | + fe|P,|+|N| + ( ^ - l ) | P , | ) [ . 

\Px\ + k\Py\ + \N\^n, 
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thus 

a2(H) + a2(m^]{(n + (k-l)\Px\)[ = ]^^[+\Px\^]^[ + l. 

The proof of Theorem 2 is now complete. 
R e m a r k . The equality in the upper bound (5) holds for an arbitrary complete 

k-uniform hypergraph. 
The equality in the lower bound (5) holds, e.g., for H=(X, %) with the 

following structure: 
1° There exists a vertex xeX such that the subhypergraph H(X— {x}) is 

complete. 
2° The vertex x is incident with exactly one edge of H. 

For such a hypergraph H 

a 2 ( H ) = ] ^ [ and a 2 ( H ) = l 

holds. This shows that the upper and lower bounds in (5) are the best possible ones. 

Lemma 1. For a k-uniform hypergraph H=(X, %) and its complement 
H=(X, %) ^ ^ 

a ( H ) + a ( H ) ^ n + k-l (6) 
holds. 

Proof. Let a(H) = r. Then in H there exists a complete subhypergraph with r 
vertices, thus a(H) ^ n - r + /c — 1. From this, the assertion of the lemma follows. 

Theorem 3. For a k-uniform hypergraph H=(X, %) and its complement 
H=(X, f ) 

y 2(H) + r 2 ( H ) ^ [ ( / c + 1 ^ + 1 ] + k-2 (7) 

holds. 
Proof. Let a(H) be the cardinality of the greatest stable set of vertices in H. 

Then 

Y2(H)^a(H)+[^й] n - a ( H ) l 

holds. Also 

holds. After the addition of these inequalities we get 

Y,(H) + y2(H)^a(H) + a(H)+[2n-<"<*> + a ™ ] . 

325 



By using Lemma 1 we get 

y2(H) + y2(H)^n + fc-l + [n~^ + 1 ] , 

after appropriate modifications we get the assertion of Theorem 3. 
R e m a r k . The equality in (7) holds for an arbitrary complete k-uniform 

hypergraph H. 
A k-uniform hypergraph H= (X, %) is connected if for each non-empty set of 

vertices S c=X the following holds: %\\J%2± %, where %\ or %2 is a set of edges of 
the subhypergraph H(S) or H(X—S), respectively. 

Lemma 2. For a connected k-uniform hypergraph H= (X, %) 

a2(H)*=g[ (8) 
holds. 

Proof. From a hypergraph H = ( X , %) we construct an undirected graph 
G = (X, E) without loops or multiple edges, by which the vertices xi9 x, e X form 
the edge in G, if in H there exists at least one edge which contains them. G is 
connected and a2(H)^a2(G). For a connected graph with n vertices, the 
inequality 

a2(G)^]l[ 

holds [2]. From this, the assertion of Lemma 2 follows. 

Lemma 3. For a connected k-uniform hypergraph H= (X, %) 

a2(H)^n-a0(H) + 2-k (9) 

p2(H)^a0(H) + n~a
k
o(H) (10) 

a2(H)^n-a(H) (11) 

Y2(H)^a(H)+^fV (12) 

holds. 
Proof. The above follows directly from the definition of the characteristic 

numbers treated and from the connectivity of H. 

Theorem 4. For a connected k-uniform hypergraph H = (X, %) 

a2(H) + /32(H)^n + [ i ( ] | [ - 2 ) ] + 3-fc (13) 
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a 2(H) + y 2 ( H ) ^ n + [ i ] | [ ] (14) 

/32(H)+y2(H)=S2n-fc (15) 

holds. 
Proof. From (10) it follows that 

a o ( H ) ^ _ _ ^ _ _ _ _ _ 

and after substitution into (9) we get 

and further 

a 2 ( H ) ^ n - ^ _ _ p + 2 _ f c , 

a2(H) + / 3 2 ( H ) ^ n - ^ ^ + 3 - f c + | 

After substitution for a2(H) from (8) we get the assertion (13). 
From (11) and (12) it follows that 

« 2(H)^n-^p 
and after a modification we get 

a2(H) + y 2 ( H ) ^ n + ^ p . 

From this and (8) we get the assertion (14). 
For .the connected hypergraph H 

p2(H)^n-k + l 
y2(H)^n-l. 

After addition we get the assertion (15). 
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O ЧИCЛE TOTAЛЬHOЙ HEЗABИCИMOCTИ И TOTAЛЬHOГO ПOKPЫTИЯ 
ДЛЯ k-УHИФOPMHЫX ГИПEPГPAФOB 

Františeк O l e j n í к 

P e з ю м e 

B этoй paбoтe пpивeдeны вepxниe и нижниe oцeнки для cyммы чиcлa cильнoй тoтaльнoй 
нeзaвиcимocти, (чиcлa cлaбoй тoтaльнoй нeзaвиcимocти, чиcлa тoтaльнoгo пoкpытия) для /c-yни-
фopмнoгo гипepгpaфa H и eгo дoпoлнeния H. 
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