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NONLINEAR BOUNDARY VALUE PROBLEM 
FOR SECOND ORDER DIFFERENTIAL 

EQUATIONS DEPENDING ON A PARAMETER 

SVATOSLAV STANEK 

(Communicated by Milan Medved') 

A B S T R A C T . By means of the Leray-Schauder degree theory, sufficient condi
tions are given for the existence and uniqueness of solutions of the boundary 
value problem x" = f(t,x,x', A), a(x) = A, xf(0) = H, x'(l) = C, depending 
on the parameter A. Here / G C°([0, l ] x R 3 ) , a: X —> R is continuous increasing, 
I m a = R, X is the Banach space of C°-functions on [0,1] and A, £?, C G I . 

1. Introduction 

Let X be the Banach space of C°-functions on [0,1] with the norm ||x|| = 
max{|x(£)|; 0 < t < l } . 

Consider the boundary value problem (BVP for short) 

x" = f(t,x,x',\), (1) 

a(x) = A, xf(0) = B, x'(l) = C, (2) 

depending on the parameter A. Here / G C°([0,1] x R 3 ) , a: X —» R is con
tinuous increasing (i.e. x,y G X , x(t) < y(t) on [0,1] ==> a(x) < a(y))} 

I m a = R, where I m a is the range of a , and A^B^C ^ R. 
We say that the pair (x, A0) G C2([0,1]) x R is a solution of the BVP (1), (2) 

if x is a solution of (1) for A = A0 satisfying (2). 
In this paper, sufficient conditions are given for the existence and uniqueness 

of solutions of the BVP (1), (2). The existence theorem is proved using the in-
variance of the Leray-Schauder degree with respect to a homotopy (see, e.g., [2]). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34B10, 34B15. 
K e y w o r d s : one-parameter boundary value problem, nonlinear second-order differential equa
tion, functional boundary conditions. 
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The proof of the uniqueness of solutions is based on methods of classical mathe
matical analysis. We note that the BVP (1), (2) for A = B = C = 0 was studied 
in [9] under the assumptions that / satisfies sign conditions and at the same 
time conditions of monotonicity. The results were proved using a combination of 
the coincidence degree theory and the shooting method. Our results generalize 
those in [9]. 

We observe that second-order (ordinary and functional) differential equations 
depending on a parameter were studied under various boundary conditions, e.g., 
in [1], [3] and in [5] - [9], usually under linear boundary conditions. The existence 
results were proved using the Schauder linearization and quasilinearization tech
nique, the technique of Green's functions, the Schauder fixed point theorem, 
a surjectivity result in W1, the Leray-Schauder degree method and a suitable 
combination of the above methods. 

2. Lemmas 

R e m a r k 1. Let 4 G R and a(b) = A for some 6 G -XT. If a(x + b) = A for 
x G X, then there exists £ G [0,1] such that x(£) = 0. Otherwise, x(t) + b(t) ^= 
b(t) on [0,1], and then a(x + 6) ^ a(x) since a is increasing. 

R e m a r k 2. One can easily verify that the functionals 

max{a:(t); 0 < t < l } , min{x(t); 0 < t < l } , 

b 

x3 (s) ds (0 <a < b < 1 ) , 
/ • 

Ylakx\h) K > o , o<tfc<tfc+1<i) 

defined on X have the same properties as the functional a. 

Let A G R and a(b) = A for some b G X . Let h G C°([0,1] x R 3 ) , and 
consider the BVP 

x" = /i(£,.z,z',A), (3) 

a(x + b)=A, x /(0) = 0, x ' ( l ) = 0 (4) 

depending on the parameter A. We shall assume that h satisfies the following 
assumptions: 

There exist constants M > 0, \x > 0 and a nondecreasing function 

wx: [0,oo) —> (0,oo) 

440 



NONLINEAR BOUNDARY VALUE PROBLEM 

such that 

(Aj) h(t, x, 0, fx) > 0 for (t, x) € [0,1] x [0, M ] , 
h(t, x, 0, - / i ) < 0 for (t, x) e [0,1] x [ -M, 0]; 

(A2) h(t, -M, 0, A) < 0 < h(t, M, 0, A) for (t, X) e [0,1] x (-^, fi); 
(A3) \h(t,x,y,X)\ < Wl(\y\) for (t,x,X) e [0,1] x [-M,M] x [ - ^ / x ] , y € 

and 
OO 

5 ds 
oo. / Wl(s) 

LEMMA 1. Let assumptions (Aj)- (A 3 ) be satisfied for positive constants M, 
fi and a nondecreasing function Wl: [0, oo) —» (0, oo). Let (x, A0) be a solution 
of the BVP (3), (4) such that 

| | x | | < M , \X0\<fi. 

Then 
| | x | | < M , | | x ' | | < T , \\x"\\<Wl(T) + l, \X0\<n, (5) 

where T > 0 is a positive constant such that 

T 

I 
s ds 

—r^>2M. 6) 
Wl(s) 

P r o o f . By Remark 1, x(f) = 0 for some £ € [0,1], hence 

0 < max{x( t ) ; 0 < t < l } = X(T) , 0 > min{x(t); 0 < t < l } = x(v), 

where r, «v G [0,1]. Assume |A0| = /i , say for example, A0 = —/i. Since x(v) G 
[-M,0] and x'(v) = 0, we have (cf. (A-J) x;/(iv) = /i(i/,x(i/),0, ~/i) < 0, a 
contradiction. 

Thus |A0| < / i . 
Assume x(g) = M for g e [0,1]. Then x^g) = 0 and (cf. (A2)) x"(g) = 

/i(e, M, 0, A0) > 0, a contradiction. Similarly, x(rj) = -M for r? e [0,1] leads to 
a contradiction, and consequently, \\x\\ < M. 

Using (A3) , (6) and a standard procedure (see, e.g., [4]) we obtain H '̂H < T 
and then \x"(t)\ = \h(t,x(t),x'(t),\)\ < wx(\x

;(t)\) < wx(T) < wx(T) + 1 on 
[0,1]. • 

LEMMA 2. Let assumptions (AX)-(A3) be satisfied for positive constants M, /z 
and a nondecreasing function Wl: [0, oo) —> (0, oo). Then there exists a solution 
of the BVP (3), (4). 

P r o o f . Let k = M/fj, and consider the differential equation 

x" = c-h(t,x,x',X) + (l-c)(x + kX), c e [ 0 , l ] . (6C) 
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Setting pc(t,x,y,\) = c-h(t,x,y,\) + (l-c)(x + k\) for (t,x,y,\) G [0,l]xR3 

and c € [0,1], then pc is continuous and 

pc(t,a;,0,At) = c-/i(t,a:,0,M) + ( l - c ) ( x + fc/x)>0 for (t,x) G [0,1] X [0,M], 

p c( t ,x ,0,- /x) = c - / i ( t ,x ,0 , - M ) + ( l - c ) ( x - f c / . ) < 0 for ( t , x ) e [ 0 , l ] x [ -M,0] , 

pc(t, - M , 0 , A) = c-h(t, -M,0,X) + (1 - c)(-M + kX)<0 for (t, A) S [0,1] x (-/x,M), 

pc(t,M,0,A) = c-/i(t,M,0,A) + ( l - c ) ( M + fcA)>0 for (t, A) 6 [0,1] x ( - M l M ) , 

\pc(t,x,y, A)| < c\h(t,x,y, A)| + (1 - c)|x + fcA| < c • t^fly.) + 2(1 - c)M < ̂ ( M ) + 2M 

for (t,x,A) 6 [0,1] x [-M,M] X [ - M , M ] , J /SK. 

Hence, by Lemma 1, 

I K | | < M , K | | < T 1 , | |< | |< U ; 1 (T 1 ) + 2M + l , |AJ < /x (7) 

for any solution (xc,\c) of the BVP (6C), (4) satisfying | | x j < M, |AJ < M, 
where Tx is a positive constant such that 

Ti 

/ 

5 ds . . . . 
> 2M. wx(s) + 2M 

o 

Let Y = Cx([0,1]) and Z = C2([0,1]) be the Banach spaces endowed with 
the norms \\x\\x = ||x|| + Hx'H and ||x||2 = \\x\\x + ||x"||, respectively; Y0 = 
{x; x e . K , x,(0) = x ,(l) = 0 } , Z0 = ZnY0. Let X x R = {(x,A); xeX, 
A G R} , Y0 x R = {(x, A); x G YQ , A G R} and Z0 x R = {(x, A); x G Z0 , 
A G R} be the Banach spaces with the norms ||(x, A)|| = ||x|| + |A|, ||(x>^)Hi = 
Hxllj + |A| and ||(x,A)||2 = ||x||2 + |A|, respectively. Define the operators 
K,H,L: Z0 x R -> X x R by 

(K(x, A))(t) = (x"(i) + x(t) + fcA, a(x + b) - .A - 2A) 

(fr(x,A))(0 = (fc(*,x(t) lx
/(t) lA),-A) 

(L(x,A))(t)=(x(t) + fcA,-A). 

Consider the operator equation 

K(x, A) = cH(x, A) + (2 - c)L(x, A), ce [0,1]. (8C) 

We see that the BVP (3), (4) has a solution (x,A0) if and only if that is a 
solution of (8j). 

Now, we shall prove that K: Z0 x R —> X x R is one to one and onto, and 
K_1: X x R —> Z0 x R is continuous. Let ( u , r ) e ! x R and consider the 
operator equation 

that is, the equations 
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where x G ZQ, A G R. The function x(t) = c1sin(t) + c2cos(t) — k\ + 
t 

v(t) is general solution of (10') with v(t) = fu(s)sin(t — s) ds. So, x(t) = 
o 

^/( l)cos(£)/sin(l) — fcA + v(t) is the unique solution of (10') in ZQ. Setting 

p(\) = a(v
f(l) cos(t)/sin(l) - k\ + v(t) + b(t)) - A - 2\ 

( =a(x + b)-A-2\), A G R , ^ 

p is continuous decreasing, lim p(\) = oo, lim p(\) = —oo. Therefore the 
A—> —oo A—+00 

equation p(\) = r has a unique solution, say A = A0; hence 

( t / ( l ) cos(t)/ sin(l) - k\Q + v(t), \Q) 

is the unique solution of (9). This proves that K~~l exists and K~x(u, r ) = 
t 

(x, \Q), where x(t) = t / ( l ) cos(t)/ sin(l) — k\Q + v(t), L>(£) = f u(s) sin(t — s) ds 
0 

and a(x + b) — A — 2\Q = r . To prove the continuity of K~l, we assume 
that {(un,Tn)} C X x R is a convergent sequence, lim (un,Tn) = (U,TQ). Let 
^ _ 1 K ^ n ) = K > A n) . * e N, and K~1(U,TQ) = (x,\Q). 

Then 

*n(*) = < ( ! ) c o s ( 0 / sin(l) - A:An + V f l( t ) , 

x(t) = v'(l) cos(t)/ sin(l) - k\Q + v(t), 

a(xn +b)-A-2\n = Tn, a(x + b)-A- 2\Q = r0 

for t G [0,1] and n G N, where 

t t 

„„(«) = /«.(•)-»(« - ) * . »W - / " W - C -)<«.. 
0 0 

Evidently, lim vn
l\t) = v^(t) uniformly on [0,1] for i = 0 , 1 , and {A } is 

n—>oo n 

a bounded sequence. Assume, on the contrary, that {An} is not convergent. 
Then there exist convergent subsequences {Aj, } and {\t } of {An} such that 
lim A, = £, , lim A; = Q7, Q, < Q7, and consequently 

n—>-oo n n—»-oo n 

lim xk (t) = v'(l) cos(t)/ sin(l) — kQx + v(t), 

lim xt (t) = v'(l) cos(t)/ sin(l) — kg2 + v(t) 

uniformly on [0,1]. Therefore a(v'(l)cos(t)/s'm(l)-kg1+v(t) + b(t)) -A-2gx 

= r 0 , a(L ' / ( l )cos( t ) /s in( l ) - kg2 + v(t) + b(t)) - A - 2g2 = r 0 , and then 
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P(Q\) — P(Q2) w ^ h P defined by (11) which contradicts the fact that p is de
creasing on R; hence {An} is convergent, lim An = /I0. Since 

n — • o o 

lim xn(t) = v'(l) cos(t)/ sin(l) — fc/I0 + v(t) 
n—• o o 

uniformly on [0,1] and a(v'(l) cos(t) /sin(l) — kfiQ + v(t) + b(t)) — A — 2jiQ — T0, 
we have /i0 = A0, lim xn = x, and consequently, lim K~1(unJ T ) = (x, A0) = 

n—»oo n—^oo 

K-\u,r0). 
Equation (8C) can be written in the equivalent form 

(x, A) = K-1 (cHj(x, A) + (2 - c)Lj(x, A)), ce [0,1], (12c) 

where j : ZQ x R —> 7 0 x R is the natural embedding, which is completely 
continuous by the Arzela-Ascoli theorem and the Bolzano-Weierstrass theorem. 

Define 

0 = {(x,A); ( : r , A ) e Z 0 x R , | | x | | < M , ||&'|| < Tx, 

\\x"\\<w1(T1) + 2M + l, |A| < Li} . 

Then O is a bounded open convex subset of ZQ x R which is symmetric with 
respect to 0 € 0 . Let V: [0,1] x 0 -» Z0 x R be given by V(c,x}\) = 
K~x (cHj(x, A) + (2 — c)Lj(xy A)) . Then V is a compact operator and (cf. (7)) 
V(c,x, A) ?-: (x,A) for all (x,A) G 9 0 and c € [0,1], hence (cf., e.g., [2]) 
D(I - K-x(Hj + LJ),fi,0) = 29(7 - K~1(2Lj),ft,0), where 29 denotes the 
Leray-Schauder degree. In order to prove our lemma, it is sufficient to show that 
D(I - K~1(2Lj),n,0) T-: 0. Let P = I - K~x(2Lj). 

Assume P(—xQ,— e0) = aP(xQ,eQ) for some a > 1 and (xQ,eQ) G 9 0 . Then 

( - £ 0 , - e 0 ) - K~x(-2xQ - 2fce0, 2E 0 ) = a (x 0 , e 0 ) - ajfT"1(2x0 + 2fce0, -2eQ) 

and 

(a + l ) (x 0 , eQ) = aiT~1(2x0 + 2fc£0, -2eQ) - K~l(-2xQ - 2fce0,260). (13) 

So, since 

K"1(2xQ + 2fce0, - 2 e 0 ) = (w'(l) cos(t) /s in(l) - fcA0 + w(t), XQ) , 

K~1(—2xQ — 2keQ,2eQ) = (—ti/(l)cos(£)/sin(l) — k/j,Q — it;(£),/i0), 

where w(t) = 2 J(xQ(s) + keQ) sin(t — s) ds , and A0, fiQ are (unique) constants 
o 

such that 

a(w'(l) cos( t ) /s in( l ) - fcA0 + w(t) + b(t)) - A - 2A0 = - 2 e 0 , 
(14') 

a ( - i O ; ( l ) c o s ( t ) / s m ( l ) - fc/I0 - w(t) + 6(f)) - A - 2\i0 = 2e0 , 

(14") 
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we obtain (cf. (13)) 

xQ(t) = w'(l) cos(t)/ sin(l) + w(t) + k(nQ - a\Q)/(l + a), 

eQ = (aA 0-/x 0)/(l + a) , 

and therefore 

1 t 

X°® = sWl) J X°^ C°S^ ~ S) d s + 2 / X°^ S i n ^ ~ S) d s + T + ^ a A ° ~ ^o) 
0 0 

because of 

k 
xQ(t) = w'(l) cos(t)/ sin(l) + w(t) + ^ ^ ( M o ~ a A o) 

l t 

2cos(t) / ж0(í)cos(l — 5) ds+2 / ж0(5)sin(t — з) ds+2fcє0 sin(l) 
0 0 

k 

+ YY^(vo~aXo) 
1 t 

= sinfl) / xo(*)cos(l - 5) ds+2 / xQ(s)sin(t ~ s) ds 
0 0 

k 
+ J - ^ ( a A o - / i o ) -

Then xQ(t) = xQ(t) + k(a\Q — M0)/(l + a ) o n [0,1]? hence x0(t) = c1e* + 
c2e~f — k(aX0 — /I0)/(l + a ) , where c x , c2 are suitable constants. Since xQ E Z0, 
cx = 0 = c 2 , and therefore £0(i) = —&£0 on [0,1], which implies (cf. assumption 
(x0,sQ) E dn) that |A0| + |/x0| > 0. Next, we have (cf. (14)) 

a(-fcA0 + 6) - A = 2A0 - 2e0 = % ± ^ 1 , 

a(~-fcMo + 6) ^ A = 2Mo + 2s0 = 2 a ^ o + ^ o ) ? 

thus 

0 > \0(a(-k\0 + b)- a(b)) = \0(a(-k\0 + b)-A) = 2VV*-."o) 

for A 0 ^ 0 , 

0 > »0(a(-k»0 + 6) - «(&)) = .-H, ("(-*/-o + &) - A) = 2 a ^ o + Mo) 

for Mo # °» 

445 



SVATOSLAV STANEK 

and then 

A > Q 0
 2 Ao(Ao + Mo) . 2aMo(Ao + Mo) =

 2(QMQ + AO)(AO + ^Q) 
M o ° - ' 1 + a 1 + a 1 + a 

Since (a/x0 + A0)(A0 + /I0) = (a1/2/i0 + A0) + /i0A0(l + a -2a 1 / 2 ) and /xQA0(l + 
a — 2a1/2) > 0 for a > 1, we obtain (ajiQ + A0)(A0 + fiQ) > 0, a contradiction. 
Therefore P(—x, — e) ^ aP(x,s) for all (x,e) G <9fi and a > 1, and hence 
29(7 - K~1(2Lj), fi, 0) is an odd integer by [2; p. 58, Theorem 8.3]. • 

Remark 3. Let A, B, C E K. Then a(t) = aQ + Bt + (C - B)t2/2 (t e [0,1]) 
is a function satisfying the boundary conditions (2), where aQ £ R is the unique 
solution of the equation 

a(a + Bt + (C~B)t2/2) = A, a e R . 

3. Existence theorem 

THEOREM 1. Assume that the following assumptions are satisfied: 

(HT) For each positive constant E there exist constants K > 0 and A > 0 
such that 

f(t,x,y,A) >E 

for (t, x, y) e [0,1] x [-E, K + E] x [-E, E], 

f(t,x,y,-A)<-E 

for (t, x, y) € [0,1] x [-K -E,E]x [-E, E], 

f(t,x,y,X) <-E 

for (t, x, y, X) € [0,1] x [-K -E,-K + E]x [-E, E] x (-A, A), 

f{t,x,y,X) >E 

for (t, x, y, X) e [0,1] x [K - E,K + E] x [-E, E] x (-A, A); 

(H2) A nondecreasing function w(-, V0): [0, oo) —• (0, oo) exists for any 
bounded subset V0 of R2 such that 

\f(t,x,y,X)\<w(\y\;V0) for (t,x, X) G [0,1] x V0 , y eR, 

and 

/

s ds 
w(s; V0) 

446 



NONLINEAR BOUNDARY VALUE PROBLEM 

Then the BVP (1); (2) has a solution for each A,B,C € R. 

P r o o f . Let A , B , C G K , and let a E C2([0,1]) satisfy boundary condi
tions (2) (see Remark 3). Set El = max{||a||, ||a'||, ||a"||} and 

h(tJx,y,\) = f(t,x + a(t),y + a\t),\)-a"(t) for (*,x,y, A) 6 [0,1] x R3 . 

We see that (x0, A0) is a solution of the BVP (3), (4) (with b — a) if and only 
if (x0 + a, A0) is a solution of the BVP (1), (2). Hence to prove Theorem 1, it 
is sufficient to show that the BVP (3), (4) (with b = a) has a solution, which 
occurs if h satisfies assumptions of Lemma 2. Let K > 0, A > 0 be constants 
corresponding to E = Ex in (H1). Then 

h(t, x, 0, A) = / ( t , x + a(«), a'(t), A) - a"(*) > Ei ~ °"(0 > ° 

for (t,x)e[0,l] x [0,#] , 

/*(t, x, 0, -A) = f(t,x + a{t), a'(t), -A) - a"(J) < -Ex - a"(t) < 0 

for (<,x)G[0, l ]x[- iT,0] , 

/*(t, —7T, 0, A) = /(*, - i f + a(t), a'(*), A) - a"(*) < -Ex - a"(t) < 0 

for (t,A)e[0,l] x(-A,A), 

h(t, K, 0, A) = f(t, K + a(t), a'(t), A) - a"{t) > Ex - a"(t) > 0 

for (*,A)e[0,l] x ( - A , A ) . 

Set V1 = [-K — EX,K + Ex] x [—A, A]. By (H2), there exists a nondecreasing 
CO 

function (^V^: [0,oo) -* (0,oo) such that / w^8^ = oo and 

If^x^X^Kwdy]^) for (t,x9\)e[0,l]xV1, i /GR; 

hence 

|/i(t,x,y,A)| = | / ( t , x + a(t),y + a'(t),A) -a"(t)\ 

<w{\y + a\t)[,V1)+El<w(\y\ + E1',Vl)+E1 

for (t,x,A) e [0,1] x [ - # , # ] x [-A,A], j / G R . 

The function /i satisfies the assumptions of Lemma 2 with M = K, /x = A and 
w lvu) = w(u + E^V^) + Et on [0, oo) . • 

EXAMPLE 1. Theorem 1 can be applied to the differential equation 

x" = p(t, x) + q(t, x, x') + k(t, x, x')A , (15) 

with p G C°([0,1] x R) , g,fc € C°([0,1] x R 2) , liminf sign(x) -p(£,x) = oo 
\x\—>oo 

y2 + i 
uniformly on [0,1], limsup 2* ^ ' < oo uniformly on [0,1] x R, a < 

447 



SVATOSLAV STANEK 

k(t,x,y) < b on [0,1] x R2, a,b e R, 0 < a < b. Indeed, let E > 0 be a 
positive constant. Set A1 = ini{p(t,x); 0 < £ < 1, x > - £ } ( > - o o ) , 
B1 = sup{p( t ,x) ; 0 < t < 1, x < E} (< oo), L = sup{\q(t,x,y)\; 
0 < t < 1, x £ R , |S/| < £ } ( < o o ) , A = i ( L + P; + m a x { 5 1 , - 4 1 } + l ) , a n d 
let i^ be a positive constant such that 

p(t,x) > E + L + bA for (t,x)e [0,1] x [K-E,oo), 

p(t, x) <-E-L-bA for (t, x) e [0,1] x ( -oo , -K + E]. 

We see that (Hx) is satisfied, and (H2) holds with w(w,V0) = Au2 + B, where 
A = .A(X>0), J5 = B(V0) are suitable constants. 

4. Uniqueness theorem 

THEOREM 2. Let the assumptions (H x ) ; (H2) be satisfied, and, moreover, 
suppose that 

(H3) f(t, *, y, A) i8 increasing on R /or eac/i /ixed (t, y, A) E [0,1] x R2 ; 
(H4) / ( t , x, y, •) is increasing on R for each fixed (t, x, y) € [0,1] x R 2 . 

Then there exists a unique solution of the BVP (1), (2) for each A, B, C G R. 

P r o o f . Let A,B,C € R. By Theorem 1, there exists a solution (xvXx) 
of the BVP (1), (2). Assume that (x2, X2) is another solution of the BVP (1), 
(2), A2 > Xx. Set w = x2 - xx. Then wr(0) = wr(l) = 0 and w(£) = 0 
for a £ E [0,1] since in the opposite case, x2(t) > xx(t) or x2(t) < xx(t) on 
[0,1], and therefore a(x2) > a(xx) or a(x2) < a(xx), a contradiction. Hence 
0 < max{w(i) ; 0 < t < l } = W(T), 0 > m i n ^ ( i ) ; 0 < t < l } = w(v) 
for some T,V E [0,1]. Then U; ' (T) = 0, W"(T) < 0; on the other hand (cf. 
(H3) , (H4)) , 

*>"(*) = Sir, X2(T), X1
2(T), X2) - / ( r , x x ( r ) , ^ ( T ) , \ ) > 0 , 

and therefore W"(T) = 0, which occurs if and only if W(T) = 0 and A2 = Ax. 
Next we see that wr(v) = 0, wrr(v) > 0, and with respect to (H 3 ) , wrr(v) = 
f(v,x2(v),x2(v),X2) — f(v,xx(v),xl

2(v), A2) < 0; hence w"(v) == 0 and then 
w(i/) = 0. This proves w = 0; that is, (a?x, Ax) = (x2, A2). D 

EXAMPLE 2. Consider the differential equation (15), where p, q, k are as in 
Example 1, and, in addition, p(t, • ) , q(t, • ,y) are increasing on R for each fixed 
(t,y) e [0,1] x R, and k(t,x,y) = kx(t,y) does not depend on the variable x. 
Then, by Theorem 2, there exists a unique solution of the BVP (15), (2) for each 
A,B,CeR. 
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