Mathematica Slovaca

Anatolij Dvurecenskij
Lorenzen's theorem for pseudo-effect algebras

Mathematica Slovaca, Vol. 54 (2004), No. 1, 23--42

Persistent URL: http://dml.cz/dmlcz/131798

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/131798
http://project.dml.cz

Mathematica
Slovaca

©2004
Math tical Institut
Math. Slovaca, 54 (2004), No. 1, 23-42 Slovak Academy of Sciences

Dedicated to Professor Sylvia Pulmannovd
on the occasion of her 65th birthday

LORENZEN’S THEOREM
FOR PSEUDO-EFFECT ALGEBRAS

ANATOL1] DVURECENSKIJ

(Communicated by Gejza Wimmer)

ABSTRACT. We present a variation of the Lorenzen theorem for pseudo-effect
algebras satisfying a kind of the Riesz decomposition property. We show that
the representability of pseudo-effect algebras as a subdirect product of antilat-
tice pseudo-effect algebras depends on the notion of the polar of a pseudo-effect
algebra.

1. Introduction

The famous Lorenzen theorem ([Lor], [Gla]) says that an £-group G is rep-
resentable, i.e., it is a subdirect product of linearly ordered groups if and only if
the polars of Gt are (-ideals.

Recently, new partial algebraic structures, called pseudo-effect algebras and
pseudo MV-algebras (as total algebraic structures), were introduced in [DvVel],
[DvVe2] and [Gelo]. They are a non-commutative generalization of effect algebras
and MV-algebras, respectively, which are studied in many branches of mathe-
matics and its applications. For example, such structures serve as models of
quantum structures ([DvPu]) as well as in mathematical logic. Under some nat-
ural conditions, supposing a kind of Riesz decomposition property, they are al-
ways intervals in unital po-groups, see [DvVel], [DvVe2]. Moreover, every pseudo
MV-algebra is an interval in a unital £-group, see [Dvul].
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A generalization of the Lorenzen theorem for directed interpolation groups
was presented by Glass [Gla; Theorem 42]; however in its proof, there are
some unclear points. The Lorenzen theorem for pseudo MV-algebras was proved
in [Gelo].

Inspired by these results, we present a variation of the Lorenzen theorem
for pseudo-effect algebras satisfying a kind of the Riesz decomposition property.
For this aim we introduce the notion of a polar and of a C-polar. The paper
is organized as follows. In Section 2, we introduce elements of pseudo-effect
algebras and pseudo MV-algebras. In Section 3, the polars for pseudo-effect
algebras are presented and some results are proved. C-polars, where C is an
ideal, are studied in Section 4. C-carriers are investigated in Section 5. Section 6
defines representable pseudo-effect algebras. Finally, the main result is given
in Section 7, showing when a pseudo-effect algebra is a subdirect product of
antilattice pseudo-effect algebras.

2. Pseudo-effect algebras

A partial algebra (F;+,0,1), where + is a partial binary operation and 0
and 1 are constants, is called a pseudo-effect algebra ([DvVel], [DvVe2)) if, for
all a,b,c € E, the following hold

(i) a+b and (a+b)+ c exist if and only if b+ ¢ and a+ (b+ ¢) exist, and
in this case (a+b)+c=a+ (b+c¢);

(ii) there is exactly one d € E and exactly one e € E such that a +d =
et+a=1;

(iii) if a+0b exists, there are elements d, e € E such that a+b = d+a = b+e;

(iv) if 14+ a or a + 1 exists, then a = 0.

If we define a < b if and only if there exists an element ¢ € F such that
a+c= b, then < is a partial ordering on E such that 0 < a <1 forany a € FE.
It is possible to show that @ < b if and only if b = a + ¢ = d + a for some
c,de E. We write c=a/b and d = b\a. Then

(bra)+a=a+(asb)=0b,

and we write a~ = 1\a and ¢~ =a/1 forany a € E.

For basic properties of pseudo-effect algebras see [DvVel], [DvVe2]. We recall
that if 4+ is commutative, £ is said to be an effect algebra. For properties of
effect algebras see [DvPu].
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For example, if (G,u) is a unital (not necessarily Abelian) po-group with
strong unit u (in fact it is sufficient to take a positive element u in G),! and

I'G,u):={geG: 0<g<u},

then (T'(G,u);+,0,u) is a pseudo-effect algebra if we restrict the group addition
+ to I'(G,u).

According to [DvVel], we introduce for pseudo-effect algebras the following
forms of the Riesz decomposition properties:

(a) For a,b€ E, we write acomb to mean that for all a; < a and b; <b,
a, and b, commute.

(b) We say that E fulfils the Riesz interpolation property, (RIP) for short,
if for any a,,a,,b;,b, € E such that a,,a, < b;,b,, thereisa c € £
such that a,,a, <c < by,b,.

(c) Wesay that E fulfils the weak Riesz decomposition property, (RDP) for
short, if for any a, b,,b, € E such that a < b, +0b,, there are d,,d, € E
such that d;, <b;, d, <b, and a =d; +d,.

(d) We say that E fulfils the Riesz decomposition property, (RDP) for short,
if for any a,,a,,b;,b, € E such that a; + a, = b, + by, there are
d,,d,,dy,d, € E such that d;, +d, = a,, dy +d, = a,, d, +d; =b,,
dy +d, =b,.

(e) We say that E fulfils the commutational Riesz decomposition property,
(RDP,) for short, if for any a,,a,,b,,b, € E such that a; +a, = b; +b,,
there are d,,d,,d;,d, € E such that

(i) dy+dy =0y, dy+dy=a,,d +dy=by, dy +d;, = by,
(ii) d,comd,.

(f) We say that E fulfils the strong Riesz decomposition property, (RDP,)
for short, if for any a,,a,,b;,b, € E such that a; +a, = b, +b,, there
are d,,d,,ds,d, € E such that

(i) dy+dy=a,,d;+d, =0ay,d +dy=0b,dy+d, =0,,
(i) dy Ady =0.

We introduce analogical notions for po-groups. Let G be a po-group and for
a,b € G*, we write a com b if and only if, for all a;,b, € G* such that a; <a
and b, <b, we have a; +b, =0, +a,.

Let (G;+,0,<) be a directed po-group. According to [DvVel], [DvVe2], we
say that G fulfills (RIP), (RDP,), (RDP), (RDP,), and (RDP,), respectively, if

1We say that a positive element u of a po-group G is a strong wnit if, for any g € G, there
is an integer n > 1 such that g < nu.
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analogical properties as those for pseudo-effect algebras hold also for the positive
cone GT of G.

A mapping h: E — F, where E and F are pseudo-effect algebras, is said to

be a homomorphism if
(i) h(0) =0 and A(1l) =1,

(ii) h(a+b) = h(a) + h(b) whenever a + b is defined in E.

If h is injective and surjective such that also h~! is a homomorphism, then h
is said to be an isomorphism, and E and F are isomorphic. It is clear that a
one-to-one homomorphism f from E onto F' is an isomorphism if and only if
f(a) < f(b) implies a < b.

According to [Gelo], a pseudo MV-algebra is an algebra (M;®,”,~,0,1) of
type (2,1,1,0,0) such that the following axioms hold for all z,y,z € M with
an additional binary operation ® defined via

yozr=(z" @y )"
(Al) z0(y®2)=(zBY) D 2;
(A2) z00=0@z =z;
(A3) zl=1®z=1;
(A4) 17 =0; 17 =0;
(A5) (z=@®y™)~ = (s~ Y~)7;
(A6) 2@z~ Y=y yY " Or=10y Qy=y0z~ dz;
(A7) z0(z" ®y) =(z®y~) Oy;
(A8) (z7)~ ==.

If we define ¢ <y if and only if z~ @y = 1, then < is a partial order such
that M is a distributive lattice with zVy = z® (2~ Oy) and zAy = 2O (z~ Dy).
For basic properties of pseudo MV-algebras see [Gelo] or [DvPu].

If we define a partial binary operation + on M via: z+y is defined if and only
if £ <y, and in this case z +y: =z @y, then (M;+,0,1) is a pseudo-effect
algebra. Moreover, a pseudo-effect algebra E can be converted into a pseudo
MV-algebra such that the + derived from @ and the original + coincide if and
only if E satisfies (RDP,) ([DvVe2]).

For example, if u is a strong unit of a (not necessarily Abelian) £-group G,

['(G,u) = [0,u]
and

z@y:=(x+y)Au,
r =u-—x,

" i=—-xr+u,
zOy:=(x-u+y)Vo,

2® has a higher priority than @.
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then (I'(G,u); ®,~,~,0,u) is a pseudo MV-algebra ([Gelo]).
The basic representation theorem for pseudo-effect algebras is the following
result [DvVel], [DvVe2], and for pseudo MV-algebras see also [Dvul].

THEOREM 2.1. For a pseudo-effect algebra E fulfilling (RDP,), there is a
unique (up to isomorphism of unital po-groups) unital po-group (G,u) fulfilling
(RDP,) such that E =T(G,u).

If M is a pseudo MV-algebra, there is a unique (up to isomorphism of unital
£-groups) unital £-group (G,u) such that M = T(G,u).

A non-empty subset I of a pseudo-effect algebra E is said to be an ideal
of F if
(i) z+y €I whenever z,y € I and if z + y is defined in F,
(ii)ifz<yforze Eand yel,then z €.
Then E as well as {0} are ideals of E.

Let Z(F) denote the set of all ideals of a pseudo-effect algebra E. According
to [Dvu3] if E satisfies (RDP), then Z(FE) is a lattice with respect to the set-
theoretical inclusion with meets and joins denoted simply by A and V.

Anideal I of E is

(i) normalifa+I=I+a foralla€ E?

(ii) mazimal if I is a proper subset of E and it is not included in any proper

ideal of E as a proper subset,

(iii) prime if Iy(a) N I,(b) C I impliesa€l orbel forall a,be E.4

We denote by N (E), M(E), and P(E) the set of all normal ideals, maximal
ideals, and prime ideals, respectively, of E. Using the Zorn lemma, we see that
M(E) is non-void. Under some conditions on E, [Dvu3], we can prove that
M(E) CP(E).

We recall that if E satisfies (RDP), then an ideal I is prime if and only if
E/I is an antilattice, see [Dvu3; Proposition 4.6].

3. Polars and pseudo-effect algebras

For 0 # ACE,weset AL :={z €E: zAa=0 forall a € A}, and we
refer to AL as the polar of A. We define ot := {a}+ for a € E. Then

atnatt ={0}, «a€E, (3.1)

3If A is a non-empty subset of E, then a+ A4 := {a+z: z € A and a+z is defined in E}.
In a similar way we define A + a.
4By I,(a) and Ny(a) we define any ideal and any normal ideal generated by a € E.
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and, for 0 #ACE,

AtnAtt ={0}, AcAtt, Al =4ttt (3.2)
At =N{at: a€ A}, Bt C AL if ACBCE,and b* C at if a < b,
a,beE.

We recall that if E satisfies (RDP,) and I (a) is the ideal of E generated
by an element a € FE, and A is a non-void subset of E, then

at = I,(a)* and At =I,(A)*,
where I,(A) is the ideal of E generated by A.

PROPOSITION 3.1. Let E be a pseudo-effect algebra with (RDP,). If 0 #
A€ E, then At is an ideal of E. In addition, if a +b € E, then

(a+bt =atnbt.

Proof. 0 € At. If z,y € E and 7 < y € A, then z € A+. Assume
now z,y € At andlet r+y € E.Fixa€ A. If 2z <z+vy and z < a, then
z =1z, +vy,, where z, <z, y, <y, and z,,y, € a*. While z,,y, < a, we have
z, =z, ANa=0=y, Aa=y,, which proves z =0.

In a similar way we prove the equation. O

PROPOSITION 3.2. If A is an ideal of a pseudo-effect algebra E with (RDP),
then AN A+ = {0} and A' is the greatest ideal of E whose intersection with
A is the null ideal.

Proof. The first statement follows from (3.2). Assume that I is an ideal
of E such that INA = {0}. Let z € I and a € A, then z Aa = 0, which yields
T e AL, a

PROPOSITION 3.3. Let E be a pseudo-effect algebra with (RDP). If A and
B are ideals of E, then
(AnB)tt = At nB*L. (3.3)
In particular, if a,b € E, then

(I(a) NI, (b)) " = a* L nbtt.

Proof. It is necessary to verify that A++ N B+ C (AN B)*++. Choose
re At nBtt  ye (AnB)t,and a € A, b € B. Assume w < z,¥,a,b.
Then w € AN B, and since w < w,y, we have w = 0. So if g < z,y,a, then
g € bt therefore, g € B+ . Since z € B+ and 0 < g < g,z, we have g = 0.
Hence, if v < z,y and w < v,a, then w = 0, i.e., v € at and v € A+. But
v <z € AL+, which by (3.1) gives v = 0, consequently, z € (AN B)++. a
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PROPOSITION 3.4. Let A and B be two ideals of a pseudo-effect algebra E
with (RDP,). Then
(ANB)* = (4t uBYH)tE.

Proof. Since ANB C A,B, we have A* U B! C (AN B):. Hence,
(AnB)t+ C (At U BY)L. By Proposition 3.3, A*+ n B+ C (At U BL)L
Hence, if z € (A* UB*)! and y € AL UB*, then Ay =0.If now y € A+,
then z € A*+;if y € BY, then z € B ie., z € A** NBLL. O

4. C-polars in pseudo-effect algebras

According to [Gla], we generalize the notion of a polar as follows. Let C
be an ideal of a pseudo-effect algebra E. The C-polar of a non-void subset A
of E is the set A*¢ := {g € E: (Va € A)(c < gja = c€ C)}. We
set gtc := {g}t¢ if g € E. We define Atcic = (ALC)LC. For example, if
C = {0}, then Aty = AL,

Many analogical properties as those for polars hold also for C-polars. We
recall that C-polars for interpolation groups were studied in [Gla].

PROPOSITION 4.1. Let E be a pseudo-effect algebra, O # A C E, and
CeI(E).

(o) Ate =N{atc: a€ A}.
C C Ate.

i)
ii)
11) Atctole = gle
iv) AC Atcte,
(v) AlcnAtete =C.
Let E satisfy (RDP,).
(vi) Ate e I(E)
(vii) (I, (A)) = Atec,
(viii) If z +y € E, then (z +y)tc =ztc nyte.
(ix) If C C A € I(E), then AN Atc = C, and Atc is the largest ideal of
E whose intersection with A is C'.

Proof. It follows he same ideas as those for polars. O

PROPOSITION 4.2. If A is a non-void subset of a pseudo-effect algebra E
the following statements are equivalent.
(i) ACC.
(i) Ate =E.
(iii) A C Ate.
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Proof. The implications (i) = (ii) = (iii) are evident. Assume now
(iii). Then A C At¢ and, for any a € A, we have a € 41c C al¢. Therefore,
ifc<a,then ce(C,ie,aceC. O

As a consequence, we have gi¢ = E if and only if g € C. The following
statement is direct.

PROPOSITION 4.3. Let E be a pseudo-effect algebra and A a non-void subset
of E.

(i) If C,,C, € I(E), C, C C,, then Atc1 C Atcz,
(ii) If C,,C, € I(E), then Atcin Alecs = gLcciney) |
(iii) If A,C € I(E), then Atc = Atwno),

PROPOSITION 4.4. If A,B,C € I(E), where E is a pseudo-effect algebra
with (RDP,)), then

(AﬂB)J‘CJ‘C = Atclc nBlclc,
(AN B)*c = (Atc y Bio)tcteo,

Proof. It follows the proof of (3.3), where we change w =0 and v =0 to
w € C and v € C, respectively. a
PROPOSITION 4.5. Let {A,}, be a non-void system of ideals of a pseudo-effect
algebra E satisfying (RDP,). If A=JA,, then Atc = N A4ie.

1 t
Proof. Since A D A, for any t, we have A*c C A; ¢, ie, At C N A;°.
Tt
Choose now z € () AL¢ and a € A, and assume w < z,a. Then w € AtJ‘C for
t

any t and simultaneously w € A4, for some t,. Hence, w € C proving z € Ate,
a

Let C be an ideal of E. We denote by
Pol,(E):={ACE: A= AJ'CLC} .
By (i) of Proposition 4.1, we have C C A C E for any A € Pol,(F).

THEOREM 4.6. Let E be a pseudo-effect algebra with (RDP). Then
(Polg(E); C,-¢,C,E) is a complete Boolean algebra such that for the corre-

. . c c Ltele
sponding meets and joins we have \'A, = NA4,, VA4, = (UAt)
t t t t

ANC (\t/CAt) =VI(AACA).

, and
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In addition, the mapping 7 : Z(E) = Pol,(E) given by m(A) := Atelc,
A € I(E), is a lattice homomorphism of Z(E) onto Pol,(E), and C is the
largest element of the set {A € Z(E) : m,(A) = C}. If ¢ is a lattice homomor-
phism of Z(E) into a lattice X with 0 such that C is the largest element in the
set {A€I(E): ¢(A) =0}, then ¢(I,) = ¢(I,) implies wo(I,) = mo(1,).

Proof. According to Proposition 4.4, Pol(F) is a de Morgan lattice with
AAN°B = AnB and AVY B = (AUB)*ctc and A AC Alc = C and

Lol
AV Ate = E. In view of Proposition 4.5, VcAt = (UAt) e Pol(E)
¢ 7
and A, = N(A}°)"° € Poly(E). Hence, N\CA, = 4,.
t t ¢ ¢

)J.c.l_c

Further, An° (V°4,) = 4n (U4, = atoren(,(U4,)) 7 =
t

(An (YAt))LCLC = (\t/(AnAt))LCL" - (Io(LtJ(AnAt)))LCLC _

lole C c e
(U(A n At)) = \/(A AC 4,), where we have used distributivity in the
t t
lattice Z(E), see [Dvu3; Proposition 3.2].

Finally assume that X is a lattice with 0 and that ¢ : Z(E) — X is a lattice
homomorphism with C' the largest element of the set {4 € Z(E) : ¢(A) = 0}.
Let I be an ideal of E and define I = {M € Z(E) : ¢(M) Ay ¢(I) = ¢(C)}.
If M € I, then M NI C C, which yields M C Itwenn = [lc by (iii) of
Proposition 4.3. In addition, ¢(I+¢ NI) = ¢(I+enn n]) = $(INC) = ¢(C).
Hence, I1¢ € I, and so is the largest element of I. Consequently, if ¢(I;) =
¢(I,), I;+° = I;° yielding 7,(I,) = 5(1,). O

In the rest of the present section, we show the relation among prime ideals
and C-polars.

We say that an ideal C' of a pseudo-effect algebra E is prime in an ideal A
of E if

(i) CcA,
(ii) for a,b € A, Iy(a)NI,(b) C C impliesa € C or beC.

Using ideas from [Dvu3], we have that an ideal C' of a pseudo-effect algebra E
with (RDP) is prime in A (C C A) ifand only if INJ C C for I,J C A,
I,JeZI(E), implies ICC or JCCorifandonlyif INJ=C for I,J C A,
I,JeZI(E), implies I =C or J=C.
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THEOREM 4.7. Let C and A, C C A, be ideals of a pseudo-effect algebra E
with (RDP). The following statements are equivalent.

(i) C is prime in Atctc,
(ii) C is prime in A.
(iii) ALc is a prime ideal of E.
(iv) Atec =qatc forallac A\C.
(v) Atc is a mazimal C-polar of an ideal containing C'.
(vi) Atcle is a minimal C-polar of an ideal containing C'.
(vii)) Atcle is an ideal mazimal with respect to the property of being C prime
in it.

Proof.

(i) = (ii). Since C C A C Atctc the implication is evident.

(ii) = (iii). Let I,J € Z(E) be such that INJ = AL¢. Then (ANI)N
(ANnJ) = C. Therefore, ANI = C or ANJ = C. Hence, I C AL¢ or J C Atc
(by (ix) of Proposition 4.1), which proves A*¢ is a prime ideal of E.

(iii) = (ii). Let A1¢ be a prime ideal of E and let I,J € Z(E) be subsets
of A such that INJ = C. Then (IVA*c)N(JVALe) = ALc where V denotes
the join in the lattice Z(E), which yields I vV Ate C A*+c or JVv Atc C Ate.
Hence, I C A+c and in view of hypothesis I C A, we have I C Atc N A =C.
In a similar way we proceed in the second case.

(i) = (iv). Assume that C is a prime ideal of A. Then, for all a € A,
Ate C ate | If there exists a € A\ C such that A+¢ # a*, then we can choose
an element z € a*¢ \ Atc. Since Atc ={a'c: a € A}, there exists ay € A
such that = ¢ aé‘c. Consequently, there exists y € E\ C such that y < ag,z.
Then y € at¢ N A. But C is prime in A, so we have by (v) of Proposition 4.1
C = atonatcte = (ate N A) N (atete N A), so that C = a*c N A or
C =atctc N A. However, y € (et NA)\C and a € (a*ctcnA)\C, which
is absurd.

(iv) = (ii). Suppose now that Atc¢ = gtc for all a € A\ C, and let
z,y € A\ C satisfy Iy(z) NI,(y) C C. Then y € y-¢1¢ and y € ztc = Alc
= ytc which yields y € yt¢ Nnytelc = C, a contradiction. Hence, C is prime
in A.

(iv) = (v). Suppose C C D € I(E) and let Atc C Dic. We claim
Atc = Dtc. We have D ¢ A'c, otherwise D = DN Atc C D C D+e =C,
a contradiction. Hence, there exists d € D\ A*¢ and by (o) of Proposition 4.1,
there exists an element v € E \ C such that u < a,d. Consequently, u €
(DN A)\ C. By (iv), D¢ Cutc = Ate ¢ Dic.

(v) = (vi) and (vii) = (i). They are evident.
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(vi) = (vii). First, we prove C is prime in A+cLc . If not, there are two
ideals I and J of E such that C C I,J C At¢ic and C =T C J. There
exist two elements a € I\ C and b € J\ C, and define D = C'V I,(a). Then
Atcic ¢ D and C C D while a € Dicle = glclo je. Dlic = Alc. Let
z € D,and as b € A*tc N J C Atc n Atele = C, we have a contradiction.
Hence, C is prime in A+ctc,

Second, assume there exists an ideal B of E such that B D Alc1c and C is
prime in B. Therefore, for C and B the statement (vi) holds, i.e., B¢ = At
and, consequently, B C B+cic = Alcle C B, which gives B = Alclc. 0O

THEOREM 4.8. Let P be an ideal of a pseudo-effect algebra with (RDP). The
following statements are equivalent.
(i) P is prime.
(i) P=a'? forallac E\P.
(ili) Polp(E) ={P,E}.

Proof.

(i) <= (ii). It follows from Proposition 4.7 while E+? = P.

(i) = (iii). Let I € Polp(E) and P be prime. Since P = I+r 0 [+rir,
we have P=J1? or P=1,ie., I=FE or I = P.

(iii) = (i). Assume that a € E\ P and P C a'”. Since al? € Polp(E),
we have a'? = E, i.e.,, a € atP1P = ELP = P, a contradiction. O

5. C'-Carriers of pseudo-effect algebras and C-regularity

Let a be an element of a pseudo-effect algebra E and let C be an ideal of E.
The C-carrier of a, a™©), is the set

aMO) = {b €E: bte = a‘LC} .
In particular, if C = {0}, we call a” := a"({%}) the carrier of a.
The following basic properties of C-carriers can be easily proved.

PROPOSITION 5.1. Let E be a pseudo-effect algebra and let a € E and C €
I(E). Then
(i) a™C) =C for any a € C. In particular, 0" = {0}.
(ii) ac€ a™MO) C atclc , alc = (a/\(C))-’—C )
Let E satisfy (RDPg).
(iii) If by, b, € a™©) and b, +b, € E, then b, +b, € N9,
(iv) If a € E\C, then CNaN9 =7,
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We say that a pseudo-effect algebra E is C-regular if C' is a normal ideal
of E, and a'¢ is normal for any a € E.

PROPOSITION 5.2. Let E be a pseudo-effect algebra with (RDP,) and let C
be an ideal of E. Then E is C-regular if and only if a+xz € E and y +a € E
imply a™9 = (z/(a+ r))A(C) = ((y+a)\ y)A(C) .

Proof. Let E be C regular, and let z € a'¢. Then a € z+¢ and the
normality of z1¢ yields z/ (a+z), (y+a)\y € 2%° ,ie., z € (z/ (a+x))J'C and
z€ ((y+a) y)lc . Conversely, if z € ((y+a)\ y)LC , then z € (7 ((H-ac))Lc ,
ie, a€zt¢, z €atc, and similarly z € ((y +a)\ a)J'C implies z € a*¢.

Assume now a™M® = (z/ (a+x))/\(c) = ((y+a) \y)A(C) . Let z, € a*¢ and
let yo/ (2o +y,) € E. Then a € z1¢ = (y,/ (z, +y0))J'C . Hence, v, / (z + y,)
€ a*¢, and similarly we can prove (yj + z,)\y, € atc for some y; € E for
which yg + z, is defined in E. a

Let C be an ideal of a pseudo-effect algebra E. Let us set
Ko(B) = {aM9: ac E},
and define a partial order < on K(E) as follows: ¢"(¢) < bM©) if and only if
blc Cate. Then, for all a,b € E such that a < b, we have
O/\(C) S a/\(C) S b/\(C) S 1/\(0) .

THEOREM 5.3. Let E be a pseudo-effect algebra with (RDP).
() If ¢ = a + b, then MO is the join of a™C) and bMC) in the space
Ko(E).

(i) a™©) v MO s defined in Ky(E) for all a,b € E. Moreover, there
erists an element d € E such that d > a,b and dMO = oM v MO,
For an element e € E, we have eN© = oNCO) v pNO) if and only if
et¢ =atcnbte,

(iii) If a V b is defined in E, then (aV b)MO) = oNO) v A  If a Ab is
defined in E, then (a Ab)NC) = aNCO) APNO)

(iv) If dte = (ate ubte)tete | then dMNC) = MO A PNO)

(v) Let a™©) < bMO) | Then, for any a, € a™C) there exists b, € A
such that a; < b, .

(vi) If a™©) A DMD s defined in Ko(E), then so is (a"(c) \Y C/\(C)) A
(WM v MO | and it is equal to (@O AWNOY) v MO, and if also
aMO NN egists in K (E), then so does a™ A (0ME) v dNOD)) and
it is equal to (a™() ABNO)) v (MO A d/\(C)) _

(vii) If Ko(E) is finite, then it is a Boolean algebra.
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Proof.
(i) Let ¢ = a + b. According to (viii) of Proposition 4.1, we have ctc¢ =
alc nble | which proves easily ¢MC) = qMC) v pNO) |
(ii) Let a and b be arbitrary elements of E. (RDP) implies that there are
three elements a,,b,,c € E such that a=a; +c, b=b, +cand a; +b, +c=
bi+a,+c€E. Let d:=a;+b=b, +a.Then dte —alcﬂblc —blCnalc
ie., d/‘ (@) < MO MO = glon blc Assume y™NO) > MO pA( C) Hence
yJ‘C Catenbte =dMNO) e, dMCO) < yNO) |
The rest is evident.
(iii) Assume aVb € E. Then a,b < aVb<d, where d is the element from
(ii). This gives a™(©),bMC) < (a v b)MO) < dNO) = gMNO) v pNO) |
Assume now a Ab € E. Hence, (a A b)) < a™O) pMO) | Suppose 2 <
a™MO) MO | Since Iy(a A b) = I,(a) N I,(b), according to Proposition 4.4, we
have (a Ab)te = (atc uble)lele C glo. This gives (a A b)MNC) > MO
(iv) Suppose d*+¢ = (a‘c UblC)Lch Then dtc D ate,bte  ie., dMO) <
aMO pMO) | Assume zMC) < aMO) MO | Then zte D ate Ubte, 1e rte D
(a LCUbJ'C)lCLC = d+¢ | which gives = AO) < dM9 and dMC) = g" (CY AN
(v) By (ii), there exists b; > a,b such that b] MO = af(c v )NO) =
aNC) v pNE) = pNMO) | Wthh gives b, € bMO).
(vi) Put z (C) = a™MO) AYME) | Then obviously z(E) v MO < gMO) v MO
and 279 v MO < MO v MC) | Assume that uMC) < aMO) v MO and
uMO) < pMO) Vc’\(c) but it is not less than M) v MO | By (v) and (i), there
is a uM©) such that
gNC) v MO < yNO) (%)

(we change u(©) to uMO) v zANO) v MO if necessary). As in the proof of (ii),
we have 2, < =, a; < a and b, < b such that (z; + )" = zMO) v MO =
uM < (a; + )MNO) = gMO) v MO and wMND < (by + )M = pNO) v NO)
By (iv), we can assume that they satisfy also z;,+c < u < a;+c, u < b; +c. Since

(C) < (u\e)MO) | we have z7 MO < (ur e)MO), otherwise the equality x/\(c)
(u \ )M would imply, by (i), (z, + )€ = zND v NO) = 219 v O =
(u\ c)MO) v NMO) = yMO) against (x). Since u\c < ay,by, ie, urc<a,b, we
have (u\ )M < a9 A BMO) | which contradicts the choice of uMC).

For the second equality. Let af(c) = aMOAVME) and a9(0> = aMCO) AGNMO)
Then a;\(c) Va;\(c) < a™©) and af(c) Va;\(c) < oM v dMO) | Assume zMO) <
aMO) pACOvdNO)  Then zte D ateu(btendte), which gives by Theorem 4.6,

gte D glo VO (bte AC dle) = (ate vObte) AC (ate VO dte) =a° Nay©.
Then zN©) < a/\(c A(C)
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(vil) Since K (E) is finite, for any two elements a,b € E, there is only
a finite number of elements ¢ of K,(E) such that ¢M© < oM pNO),
Hence, the element \/¢©) is the infimum of a”(©) and ).

By (vi), Kg(E) is distributive.

Let a}‘?, ... aNO be the atoms of Ky(E). Let b™®) e K,(E) and

let (9. .. ,a,’c\(c) be the atoms which are less than bMY) . Then dM9) =

k n

V a2 and the element ¢M©) := \/ M is the complement of bM(©) . In-

i=1 i=k+1

deed, BNCIANO) = (MO Aa)D) = MO and MOV AO) = v aN©)
i=k+1 i=1

= 1MO) O

PROPOSITION 5.4. Let E be a pseudo-effect algebra with (RDP) and let C be
an ideal of E. The mapping ¢ : E — Ko (E) defined by ¢(a) = a"©), a € E,
is an order-preserving mapping of E onto K(E) preserving all ezisting finite
suprema and infima which exist in E, and {a €E: ¢(a)= OA(C)} =C.

Proof. It follows from Theorem 5.3. g

6. Representable pseudo-effect algebras

Let {E;},c; be an indexed system of pseudo-effect algebras. The Cartesian

product ] E; can be organized into a pseudo-effect algebra with the partial
i€l
addition defined by coordinates. Each E; has the property (RDP) ((RDP,),
(RDP,)) if and only if ] E, has this property.
i€l

We say that a pseudo-effect algebra E is a subdirect product of pseudo-effect

algebras {E;},.; if there is an injective homomorphism of pseudo-effect algebras

f: E = [] E, such that f(a) < f(b) if and only if a < b (a,b € E), and for
i€l

every j€ I, m;o f is a surjective homomorphism from E onto E;, where m; is
the jth projection of [] E; onto E;.
i€l

We say that a po-group G is a subdirect product of a system {G,},.; of po-

groups if there exists an injective group homomorphism f: G — [] G, such
i€l

that f(a) < f(b) if and only if a < b (a,b € G), and forevery j € I, m;0 f is
a surjective homomorphism from G onto G ;» Where m; is the jth projection of
[l G, onto G;.
i€l

We recall that a poset (E;<) is an antilattice if only comparable elements
of £ have an infimum or a supremum. If E is a pseudo-effect algebra, then
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E is an antilattice if and only if a Ab = 0 implies ¢ = 0 or b = 0, while
(a\(aAb)) A (br(aAb)) =0, see [Dvu3].

We say that a pseudo-effect algebra E is representable if E is a subdirect
product of antilattice pseudo-effect algebras such that all finite suprema and
infima which exist in E are preserved in the subdirect product.

In the paper [Dvu], we have proved that the system of all representable
pseudo-effect algebras forms a variety. Not all pseudo MV-algebras are repre-
sentable, but every effect algebra with (RDP) is representable, as it was proved
in [Rav] and [Dvu2].

THEOREM 6.1. Every effect algebra E with (RDP) is a subdirect product of
antilattice effect algebras with (RDP), and all existing meets and joins in E are
preserved in the subdirect product.

PROPOSITION 6.2. Let a pseudo-effect algebra E with (RDP,) be repre-
sentable. Then every polar AL is a normal ideal.

Proof. Let E be a subdirect product of a system {E;},c; of antilattice
pseudo-effect algebras. Assume z € A and let z +y be defined in E. We show
that y/(z +y) € At. Let z < y/(r+y) and z < a for any a € A. Write
2= (2)icr> ¥ = Widier> © = (#)ie; and a = (¢;);¢;, where 2;,y;,7;,a; € E,,
i €I.Then z; <y, /(x;+y;) and z; < a, for any ¢ € I. Since a; Az, =0
for each i € I, if a;, = 0, then 2, = 0, if a; > 0, then z; = 0, which yields
z; <y;/(0+y,;) =0. Hence z = 0, which proves (y/(z + y)) Aa =0 for any
a€A.

In a similar way, if z € A+ and u +z € E, then (u+z)\u € A*. O

We recall that every polar is normal in E if and only if at is normal for
every a € E. In addition, in [Gelo], it is proved that a pseudo MV-algebra

L
is representable if and only if every polar is normal, while A+ = ( U {a})

= n a-L_ a€A
a€A

7. Regular pseudo-effect algebras and Lorenzen’s theorem

We say that a pseudo-effect algebra E is regular if at is a normal ideal for
any a € E. This is equivalent with the statement A is a normal ideal for any
0 # A C E. We recall that if a regular E satisfies (RDP,)), then for any a € E,
we have Ny(a)t = at = I,(a)t, where N,(a) is the normal ideal of E generated
by a. Indeed, we have I,(a) C N,y(a) C att. Hence, at C Ny(a)* C at.

We say that a pseudo-effect algebra FE is finitely irreducible if, for any two
ideals I and J of E with I nJ = {0}, we have I = {0} or J = {0}.
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We recall that according to [DvVel], if a and b are two elements of a pseudo-
effect algebra E with (RDP,), then a Ab =0 implies a + b, b+ a, aV b are
defined in E, and

a+b=aVb=b+a. (7.1)

PROPOSITION 7.1. Any antilattice pseudo-effect algebra with (RDP,) is
finitely irreducible and reqular.

Proof. If a pseudo-effect algebra E with (RDP,) is not finitely irreducible,
then there exist two non-zero ideals I and J such that I N J = {0}. Hence, if
a €I and b € J are non-zero elements, then a Ab = 0, whence F cannot be an
antilattice.

Assume T € a* and let z+y be defined in E. We show that y/ (z+y) € a*.
Let z <y/(zx+y) and 2 < a for any a € A. Since a Az = 0, then if a =0,

then z=0,if a > 0, then z = 0, which yields z <y/(0+y) = 0. Hence 2 =0,
which proves (y/(z+y)) Aa=0.

In a similar way, if z € a* and u+z € E, then (u+ z)\u € at, which
proves E is regular. O

PROPOSITION 7.2. Any regular finitely irreducible pseudo-effect algebra E
with (RDP) is an antilattice.

Proof. Assume that there are a,b € E \ {0} with a Ab=0. Then a € b*
and b € a*. In view of (7.1), 0 #a+b=aVb € E, so that a- Nb*+ = (a+b)*.
While (a+b)* N(a+b)tt = {0} and a+b € (a+b)*L, the irreducibility implies
(a+0b)* = {0}, ie., at Nbt = {0}, which gives b € a* = {0} or a € b+ = {0},
ie., b=0 or a =0, a contradiction. )

PROPOSITION 7.3. Let E be a pseudo-effect algebra with (RDP) and let P
be a proper normal ideal of E'.
(i) If I is an ideal of E, so is I/P in E/P. Moreover, if I is a proper
ideal of E containing P, then I/P is a proper ideal of E/P.
(ii) If M is an ideal of E/P, then
k(M):={z€FE: z/Pe M} (7.2)
is an ideal of E, and k(M)/P = M . If M is a proper ideal of E so is
k(M) in E.
(i)
N(E/P)={N/P: N e N(E) and P C N}.
(iv) If P is an o-ideal of a directed po-group G with (RDP,) and if M is
an o-ideal of G/P, then k(M) := {x € G: z/P € M} is an o-ideal

of G, and k(M)/P = M. In addition, O(G/P) = {N/P: N € O(G)
and P C N}.
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Proof.

(i) 0/P € I/P.Let /P < y/P, where y € I. There exists z, € [z]p such
that z, <y, which gives z; € I, and z,/P =z/P < y/P. Assume z/P +y/P
is defined in E/P for some z,y € I. There are z, € [z]p, y; € [y]p and
e, f,u,v € P such that z;\e=z\fel, yy\u=y\vel, z,+y, € E. Then
/P +y/P ==z/P+y/P=(z;,+y,)/P=(\f)+e+ (y\v) +u)/P =
((z\f)+ (y\v))/P and (z\ f) + (y\v) € 1.

Let now I D P and 1/P = z/P, where z € I. There are e, f € P such that
Ive=zx\f,ie,x/1= fse€e P CI, which gives a contradiction.

(i) We have k(M) D P.If z <y € k(M), then z/P < y/P € M, so
that z € k(M). Let now z,y € k(M) and z +y € E. Then (z + y)/P =
z/P+y/PeM,ie, z+ye€r(M).

Finally, assume M 1is a proper ideal of E/P. Then 1/P ¢ M, hence,
1¢ k(M).

(iii) It follows from (ii).

(iv) It follows the same steps as (iii). O

PROPOSITION 7.4.

(1) Let I and J be two normal ideals of a pseudo-effect algebra E with
(RDP,) such that INJ = {0}. Then E is a subdirect product of E/I and E/J
with the embedding f: E — E/I x E/J defined f(a) = (a/I,a/J), a € E.

(2) Let I and J be two o-ideals of a directed po-group G with (RDP,) such
that INJ = {0}. Then G is a subdirect product of G/I and G/J with the
embedding f: G = G/I x G/J defined f(a) = (a/l,a/J), a € G.

Proof.

(1) The mapping f: E — E/IXE/J givenby f(a) = (a/I,a/J),a € E,isa
homomorphism of pseudo-effect algebras. If f(a) = f(b), then there are e, f; € I
and u;,v € J such that ave = b\ f; and a\u; = b\v. If we now take the
addition and subtraction in the corresponding unital interpolation group (G, u)
such that E =T'(G,u), then a—b=e—f;, € ¢(I) and a —b =u; — f; € ¢(J),
ie., a—b=0, and f is an injective homomorphism.

Assume f(z) < f(y) for some z,y € E, ie., z/I < y/I and z/J < y/J.
There are two elements a € I and b € J with a,b < z such that z\a < y
and z\b < y. Since a Ab =0, then z = z\(aAb) = (z\a) V (x\b) (while
all existing meets in E are preserved in the corresponding representation group
(G,u)), which gives z < y.

Hence, E is a subdirect product of F/I and E/J, as claimed.

(2) The second statement follows the same ideas as the first one. a
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PROPOSITION 7.5. Let E be a pseudo-effect algebra with (RDP,). The fol-
lowing statements are equivalent:

(i) E is finitely irreducible.

(ii) If E is a subdirect product of E, and E,, and if f is an injective
homomorphism from E into E; x E, such that f(z) < f(y) whenever
z <y, and 7, o f and m, o0 f being surjective, then Ker(m o f) = {0}
or Ker(m, o f) = {0}.

Proof.

=(i) = =(ii). Suppose FE is not finitely irreducible, i.e., there are two nor-
mal non-zero ideals A and B of E such that ANB = {0}. By Proposition 7.4, E
is a subdirect product of E/A and E/B with the embedding f(a) = (a/4,a/B),
a € E. Hence, for the mappings f,: a — a/A and fgz:a = a/B, we have
Ker(f,) = A # {0} and Ker(fg) = B # {0}, so that E does not satisfy (ii).

=(ii) = =(i). Suppose E is a subdirect product of E; and E, and let
f: E — E| x E, be an injective homomorphism with f(z) < f(y) if and only
if < y such that, for every 4, = {a € E: 7,0 f(a) = 0} # {0}, i = 1,2.
Then A, and A, are normal non-zero ideals of E. Assume ¢ € A, N A,, then
f(z) = (0,0), and the injectivity of f gives = 0, which proves A, N4, = {0}.
Hence, F is not finitely irreducible. O

THEOREM 7.6. Every pseudo-effect algebra E with (RDP,) is a subdirect
product of finitely irreducible pseudo-effect algebras with (RDP,) preserving all
finite joins and meets from E .

Proof. Without loss of generality, we can assume that E = I'(G, u), where
(G,u) is a unital po-group with (RDP,). Let g € G, g £ 0, and set U(g) :=
{h € G: h > g}. We denote by A(g) a proper normal ideal of E which
is maximal among normal proper ideals A of E with respect to the property
U(g)NA=0. Since 0 ¢ U(g), A(g) exists due to the Zorn lemma. Moreover,

DA(Q) = {0}.

We assert that E is a subdirect product of {E/A(g)}g. Let f(a):={a/A(g) }g

<{b/A(9)}, =: f(b), a,b € E. Then (a — b)/$(A(g)) <0 for any g £ 0. Set
go =a—"b.1If gy £ 0, there is an element e € A(g,) such that a — b < e, which
implies e € U(g,) N A(g,), which is absurd.

Therefore, E is a subdirect product of {£/A(g)},, moreover, the embedding
a f(a) (a € E) preserves all existing finite joins and meets from E.

To prove the finite irreducibility of E/A(g), assume that I and J are normal
ideals of E/A(g) such that I nJ = {0}. By Proposition 7.3, the sets x(I) =
{a € E: a/A(9) € I} and k(J) = {b € E : b/A(g) € J} are normal ideals
of E containing A(g) such that x(I)/A(g) = I and x(J)/A(g) = J. Since
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I = {0} if and only if x(I) = A(yg), assume &(I) D A(g) and x(J) D A(g). The
maximality of A(g) implies there are a € k(I) NU(g) and b € x(J) NU(g).
Hence, 0,9 < a,b. (RIP) holding in G entails there exists an element ¢ € G
such that 0,9 < c<a,b. Then c€ E, ce U(g), c ¢ A(g), and ¢ € k(I)Nk(J),
ie., 0# c/A(g9) € I and ¢/A(g) € J, which is a contradiction. Hence, I = {0}
or J = {0}. a

THEOREM 7.7. Let E be a pseudo-effect algebra with (RDP,). If E is repre-
sentable, then E is regular.

If E is C-regular for any normal ideal C of E, then E is representable.

If E is a pseudo-effect algebra with (RDP,), then E is representable if and
only if E is regular.

Proof. The first statement follows from Proposition 6.2.

Suppose now that E = I'(G,u) for some unital po-group (G,u) with
(RDP,). For any element g € G, g £ 0, let A(g) be a normal ideal of E
having the same sense as that in the proof of Theorem 7.6. If E is C-regular
for any normal ideal C of E, then A(g) is prime. Indeed, set C = A(g), and let
A(g) =INJ, where I,J € Z(E). Then A(g) = A(g)*tcte = [tete n Jlote
by Proposition 4.4. Since I+c1¢ and Jtc¢lc are normal ideals of E, we have
A(g) = I*cte =T or A(g) = Jt¢te = J. Applying the proof of Theorem 7.6,
we have that F is a subdirect product of {E/A(g)}g, and the embedding
a+— f(a) (a € E) preserves all existing finite joins and meets from E.

Finally, let E satisfy (RDP,). Then E is a lattice. Assume a/A(g) Ab/A(g)
= 0. Hence, if aAb = 0, then a € b+ C A(g) or b € b++ C A(g), i.e., a/A(g) =0
or b/A(g) =0.If anb € A(g), then (a\(aAbd)) A (b\(aAb)) =0, which gives
again a/A(g) = 0 or b/A(g) = 0. Consequently, A(g) is prime, which yields
that E is a subdirect product of {E/A(g)}g. o

We note that we do not know whether the condition E is C-regular for any
normal ideal C of E can be replaced by the condition E is regular in order to
be E representable.
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