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ON THE IDENTITY OF MINIMAL AND MAXIMAL
REALIZATIONS RELATED
TO FOURIER SERIES OPERATORS

JOUKO TERVO

ABSTRACT. The identity of the maximal and minimal realizations of the linear
Fourier series operators

(L(z,D)¢)(2) = (2m) ™" Y L(z, s 0D

lezn

in the appropriate subspaces of periodic distributions are studied. Specifically,
criteria for the equality of the realizations from B, into BJ , are established.

Here B; ¢ is the subspace of D} for whose elements u one has (ujk(l))iczn € I,
( D, denotes the space of all periodic distributions). In the case when p = 2 and
k = 1, one observes that B;k is the space of all periodic Ly(W)-functions

(where W := {z € R" | z; € ]—=,7[}). The equality of the realizations from
B7, into L, (W) N D} is also examined, where p € ]1,2] and p’ € R so that
1/p+1/p' =1.

1. Introduction

Denote by L(z,D) the linear Fourier series operator defined in the space
C of all smooth periodic functions @: R™ — C by the requirement

(L(z, D)p)(z) = (1) 3 Lz, l)pr . (1.1)

lezn
Here ¢; is the Fourier coefficient of ¢ . L(-,-) is a mapping R™ x Z™ — C so

that L(-,1) € C for any | € Z™ and that with the constants C, > 0 and
Lo € R the estimate

sup | (Dg L) (2, 1)] < Caky, (1) := Ca(l + 1)/ (1.2)
zeW
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holds (in (1.2) W denotes the cube {z € R" | x, € |—m,7[}).
This contribution deals with the equality of the minimal and mazimal real-
izations, say L7, , and L'ff,k’h, from By« into B;,”h . The spaces B;,k (where

p.k ,
p € [1,00[ and k liesin the class K of certain weight functions) are appropriate

scales of the space D! of all periodic distributions. The equality of the realiza-
tions Ly, , and L'f’p,,k from BJ into Ly(W)( D5 (p' € R; 1/p+1/p' =1)
are also studied, when p € ]1,2] and k € K..

The best known example of the operators, which can be defined by (1.1),
are linear partial differential operators with C2° -coefficients (cf. [4], [3], [1], [6]
and [7]). It follows from the well-known regularity results of solutions (cf. [4],
pp. 90-119) that smooth periodic elliptic operators are essentially maximal in
Hf = Bj, , s € R, that is the equality Ly, v, = L',ﬁk“k, holds. Some
criteria for the essential maximality in HY := Ly(W)[) D} can also be found
in [8], pp. 28-38.

Suppose that in (1.2) for any a € Nf, po = p+06|la| with p € R and § <1
and that for any |a| < [Ny +n+ €]+ n+ 3 one has

sup |(Dy L)(z,1)] < Cok(1)/h(1). (1.3)
zeW

Here N, is a constant depending only on h € K. We show that these as-
sumptions are sufficient to guarantee the equality L7y |, = L'ﬁkk_hh (cf.
Theorem 3.5). Specially, this equality implies that for any smooth periodic

partial differential operator L(z,D) = Z as(z)D?, m € N the equality
lo|<m

Ly k1 k= L’f,kk,,._,,k holds. Hence any first order partial differential opera-

tor with Cj -coefficients is essentially maximal in Lo (W) [ D’ (cf. Corollaries

3.6-3.8). In the case when po = p+élal; p € R, § <1, the estimate

sup (D7 L)(z,1)] < Cak()k1(1) (1.4)
zeW

holds for |a| < [n 4 €] + n+ 3 and when p € |1,2], we establish the identity
Lk = L'f,p,,k (cf. Theorem 4.2).

2. Notations and definitions of realizations

2.1. Denote by W the open cube {z € R™ | —m<z,<7m for j=1
,n} - By C> we denote the space of all smooth (with respect to W) periodic
functions »: R _, C.
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In C2° we set a standard Frechet space topology defined by the semi-norms
4o(p) := sup |(D? ¢)(z)|, o € Ng. The dual of C is denoted by D’ and
z€EW

its elements are periodic distributions. In D!, one uses the weak dual topology.
For u € D! and ! € Z™ we define u; € C by
up = u(e™ 1)), (2.1)
Then one has for u € D}, and ¢ € C

u(p) = (27)~" Z up—1, (2.2)
1

where

o1:= (e )y = /(p(x) e” D) gz, (2.3)
w
For ¢ and ¢ € C° we denote

o(h) = / o(@)(z)dz,

w
and so specifically one gets ¢(¢) = (27)™" Zgou,b_z.
1

Denote by K, the totality of all positive functions k: Z"™ — R such that for
any k € K, there exist constants
c>0, C>0, m,M €N such that

ck_m(l) < k(1).< Ckpm(1) for all 1€ 2",

where ky(1) := (14]1|?)*/2, s € R. Choose p € [1,00[. A subspace By of Dy
18 defined as follows:

A distribution u € D}, belongs to BT, if and only if

1/p
lullp i = ((mr)—" > |u1k(t)|") < co. (2.4)

lezn

One sees that the mapping u — [|u||, & is a norm in By ;. The linear space

B}, equipped with the || - ||,k -norm is a Banach space.
Define S, := { p € C | p(z) = (27)™" Z <p,ei("’) with some n, € N »,
{<n,

that is, S, is the space of all trigonometric polynomials. One sees that S, is
a dense subspace of By and so By, is (essentially) a completion of Sy with

1/p
resp~~t to the norm |||y % := ((ZW)_" Z |991k(1)|”> )

lezn
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2.2. Let L be a linear operator S, — C° such that the formal transpose
L': Sy — C exists, in other words, there ezists a linear operator L': S, — C°
so that

(Le)(@) = p(L'yp)  for all ¢,¢ € Sn. (2.5)

Define linear dense operators L,k and L'f’k,h ; pE[l,00[, k,h € K, by the
requirements

D(L =S,
(Zp.k.n) } (2.6)
Lp ke = Lo for o € Sz
and
D(L,ﬁk,h) ={ue B:‘k | there exists f € B:‘h such that
u(L'p) = f(p) for all p € Sz } (27)

L= f.

Let p' € ]1,00] so that 1/p+1/p' =1 and let kY € K, so that kV(l) =
k(=1). Since the inequality

|‘P(¢‘)l < ”‘P“p,knlr/’”p’,l/k" for @,peCl (2.8)

holds, one gets by (2.5) that L,z is a closable operator Bl — By, L'ﬁk h

is a closed operator B;’yk — B;;,h and that L, s C L’f’k’h. Let L;’k‘h be the
smallest closed extension of L, k,n . Then one has L;‘kah C L'ﬁk,h . The operator

L7 n 1s called the minimal realizatior and the operator L’fk n 1s called the
mazimal realization of L from B, to BJ,.

~

P,q
and L’f,q,k from B, to Ly(W) D5, where p € [1,00[, ¢ € [1,00[ and
ke Ky.

2.3. Let L(-,-) be a function from R"™ x Z™ to C such that L(-,!) € CX
for any ! € Z™ and that with some constants Cy > 0 and p, € R one has

Similarly, we are able to define minimal and maximal realizations, say L

sup |[(Dy L)(z,1)| < Cukp (1) for all le Z™. (2.9)
€W

Then the Fourier series operator L(z,D) defined by

(L(z,D)p)(x) = (2m) ™" Y L(z, i d™?),  peCy (2.10)
l

maps Cg° continuously into C3° (cf. [9]). Hence, specifically, the inclusion
C2 CD(Ly k) [\ DL )
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holds. In the case when po = p + 6|a| with some ¢ € R and § < 1 we know
that the continuous formal transpose L'(z,D): C* — Cg° of L(z,D) exists
(cf. [9]). When L'(z,D): Cg° — C° exists, then L'(z,D) is always continuous.
This follows from the Closed Graph Theorem.

Suppose that L'(z,D): C3° — C° exists. Then we are able to define the
continuous eztension L: D! — D! of L(z,D) by

(Lu)(p) = u(L'(z,D)y) for e Cy. (2.11)
Denote by A, the space of mappings L(-,-): R*xXZ"™ — C such that L(-,]) €

C for any | € Z™ and that for each L(-,-) € A thereexists u € R and § < 1
such that

su&/](D‘: L)(z,1)] £ Cakpysa(l) for le Z™. (2.12)
€
The space of operators {L(z,D) | L(z,D) is defined by (2.10), where L(-,) €
Ar} is denoted by A.. Then for any L(z,D) € A, the formal transpose
L'(z,D): C¥ — C exists.

We denote by K| the subset of K, such that for any k¥ € K there exist
con tants Cx > 0 and Ny > 0 with which

k(I + 2) < Cikn, (Dk(z)  for 1,z € 2™ (2.13)

The smallest integer, which is greater or equal to a € R is denoted by [a].
Choose h from K. We denote Cp.pn = Ch. '7;'16,,'210_("“)(1), where
l

Yn,e,h € R so that

e > ’772:,5,hk[2N,.+n+e](l) for 1€Z".
lal<[Na+n-+e]

Theorem 2.1. Suppose that k,h € K} and that R 1s a subset of A, such
that

Isg‘;:/l(D;’ R)(z,1)] < Cok(D)/h(1) for all
|a] < [Np +n+e] and R(-,-) € R. (2.14)

Then one kas

1/2
| R@,D)pllpn < Cuen| S0 CZ| “lielpn for al
la|<[Nn+n+te]

p€eC® R(,)ER and pe[l,of (2.15)
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Proof. A. We shall show that

SIRC -y < @orcaa] Y el ame)

lezn || <[Nn+n+e] (2.16)

and that

ST RC D) lh¥() € @0 Coen| 3 C'f,]l/zk"(l). (2.17)

zEZ" |o|<[Nh+n+e]

Then the Theorem 4.4 in [9] (cf. also the relation (4.17) in [9]) implies that
(choose k « 1/kY and k™~ & (k/h)V)

IIR'(x, D)‘P”p',l/kv
1/2

S (<A B S o] I Kl PY PRy
|a|<[Np+n+e] (218)

1/2
=Coen| X CH lllyay

ol <[ k]
for any p' € ]1, 00[.

From (2.18) one gets that for any p € ]1,00[ (cf. [9], Lemma 4.3)

r 1/2 .
IRz, D)ol 2 S Cuen| 3 cg] 2l - (2.19)
o <[Na+n-+e]

Since for any ¢ € C'° one has
lellp.e = llellie  with p—1,

we see that the inequality (2.15) holds also in the case when p = 1.
B. We show the estimates (2.16)—(2.17). In virtue of (2.13) one gets

RY(2) < Crkn, (z — DRY(1) (2.20)

and

1/RY(1) < Crkn, (2 = D(1/RY(2)). (2.21)
For any |a| < [Ny +n+e¢] and R(-,-) € R we obtain
(1 = 2)*(R(:, =D)i—:] = [(DF R) (-, =), | < (2m)"Ca(k¥(1)/R¥ (1)) (2.22)
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and so

Vel (R, =1))i—z| < (27r)"[ >

1/2
2] kY OB @y mpa(z D)
la| [Nn+n-te]

(2.23)
Here we used the inequality

12 2 7r2¢,€,hkisz.+n+e](l)’
|| <[Na+n+te]

which implies by (2.22) that

731,5,hk[2N;.+n+5](z - l)l(R(> —l))l'—llz

< Y =R D=2 ]

|| <[Nh+nte]
<eo™[ Y cEHEvamor,
la|<[Nh+n+e]
and so we get (2.23).
In virtue of (2.20), (2.21) and (2.23) we obtain that

D IRC =D)i=:1(1/k¥ (1)
l

< ’7;,15,h(27f)n [ Z

|a|<[Nh+n+e]

sazacora] Y ) kwo®)am@)
l

la|<[Nh+n+e]

1/
ez PICACISINERY

(2.24)
and then (2.16) holds.
Similarly, we get

Y ICRC,=D)i=:1RY(2)

(2.25)
< 7;,;;;(2”)" [ Z C:] l/ZCh Z kV(I)k_(,,_,,E)(z =1),

la|<[Na+n+e]

which implies (2.17). This completes the proof.

365



2.4. Let © bein C§°(B(0,1)) so that [ O(z)dz = 1.
Define O, € C° := C(R") by "
Om(z) = m"O(mz), m e N.
Furthermore, define ©,, € S (here S denotes the Schwartz class) by
Om = (21 F~1(BY,),
where F': S — S is the Fourier transform. Define a Fourier series op rator
Om(D) by

(Om(D)p)(z) = (2m) ™" > Om(Dpre®?. (2:26)
lezZn

Let ©,,: D), — D’ be the continuous extension of O,,(D) (cf. (2.11); note that
©!,.(D) exists). Then one sees that for any u € D! one has

(Opu)= ((:)mu)(e_i("') ) = u(@'m(D)( e () )) = u(@m(l)e_i(l") ) = On(Duy.

(2.27)
Thus we obtain for p < oo
Lemma 2.2. Let u be in B, . Then one has
Omu € Cr and |©mu — ul|px — 0 with m — oo. (2.28)

Proof. One has (recall that F~1¢ = (21)""F¢V)
On(l) = (FOR)D) = [ m"O(my) e~ dy = (FO) (i/m).
R
Furthermore, we obtain for any ¢ € C° (cf. (2.2) and (2.27))
(Omu)(p) = (21 Y Om(Durp—r = [20)" Y On(ure ™) ().
1 ]

Thus O,,u — (27)~" Z(Fé))(l/m)ulei(" ) € . In addition, one gets
1

[(Omulilk(l) = [(FO)(I/m)uik(D)] < 1O |1, (w)luik(1)]
and

(Omu)ih(l) = (FO)(0)uik(l) (/é x)dz)ulk(l) urh(1).
w

Thus
1Omu—ul?,  (27)™ > [((Omu)i —u)k(l)] -0  with m — oc,
1

which finishes the proof.

366



3. On the equality L7, , = L’f,k,h

3.1. For the first instance we shall deal with the composition

(Om o L)z,D):= Onp(D)o L(z,D).

Lemma 3.1. Let L(-,-) be a mapping R"® x Z" — C so that L(-,l) € C¥

for any 1 € Z™ and that (with Cq > 0 and po € R) the estimate
sup |(D§ L)(z,1)| £ Cokpu, (1) for 1eZ™
zeW
holds. Then one has
O,(D)o L(z,D) = L(z,D) 0 O,,(D) + Rn(z, D),
where
1
Ru(z,l)= ) / Y (070m)(1 +t2)(D] L)(-,1)): 57 dt
|v|l=1p =z€2Zn
Proof. For any ¢ € C we obtain

[(OmoL)(z,D)¢l(x) = (21)™" 3 Om(2)(L(z, D)), €9

z€EZ™

=(2m)™" Z G)m(z)[(27r)"" Z(L('vl))z—l#?l ei(2,7)

z€EZ" lezr

=) @0 Y Om(@)E(1))emr €T D),

lezr zZEZ"

(3.1)

(3.2)

(3.3)

where the order of summation is legitimate to change, since ©,, € S. In the

third step we used the relation

lezZ»

(L(z,D)p). =(27)"" / S Lz, i =5 da
w

=(2r)™" Z /L(z‘,l)wei(l_z’z) dz,

1€z

which is valid, since the sum Z L(z, ) €*75%) s by (3.1) uniformly con-

lezn
vergent in R"™.
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From (3.4) we see that

(Om o L)(@,0) = 2m)7" 3 Om(l+ 2)(L(-,1): €57
ZEZ"

(note that (©,,0L)(,) is a function R® x Z" — C so that (O,,0oL)(:,1) € C
for any 1 € Z" and that |D3(0, o L)(z,l)| < Cikyu (1)). Due to the Taylor

formula we obtain

(Om 0 L)(a,1) = (2™ 3" Om(D(L(, 1)) €50

z€Z"

HCORDIDY /(G’Om)(l+tz)]z7(L(.,z)),ei<m>dt
‘ez 1y

= L(z,)0m (1) + (2m)™™ 3 / > (870m)(1 +t2)((D] L)(-, 1)), €7 dt

I“/l:l 0 zEZ"
= (Lo On)(z,1) + Rm(z,1),

as required.
From (3.3) one sees casily that R,(-,-) is a function R" x Z"* — C,
R.n(-,1) € CX for any [ € Z" and that

sup |(DF R )(z,1)] < Cakyy (1).
€W

A more careful study of the rest operator R,,(z,D) yields

Lemma 3.2. Suppose that for any a € N} there ezists a function ka € Ky
so that

sup (D2 L)(z, )| < Caka(l)  for 1€ 2" (35)
€W

and that R,.(-,-) is defined by (3.3). Then one has

sup |(DS Ry )(z,1)| < C(kak-1)(1) for 1lez™, (3.6)
reW
where
ko = ko 3.7
|/3'1|2F)i2{ +8+7} (3.7)
7I=1
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Proof. A. Define ¢g7(z,l,t) := z (870,)(1 + t2)(DY L)(-, 1)), 2.

z€EZ"
We shall establish that
|(Dg g-y) (Z,I,t)l < Cﬂ.“((kﬂv‘/k—l)(l)v (38)
where kq,y := max {ko4p++}- (3.8) implies immediately the estimate (3.6).

18|<n+2
Since O := FO € S we obtain that with some Ci,' >0

[(070)(z)| < Ck—y(z) forall zeR"
and so one has (note that 0,, = O(l/m))
[(870m)(1 + t2)| = (1/m)|(37O)((! + tz)/m)|
< (CY/m)A+ |1+ t2)/m*)™? = Ch(m? + |1 +t2|*)7 /2 (3.9)
S C-,Y,k—l(l + tZ).
B. For any |3| < n+ 2 one gets
2#[(870m)(I + t2)((DT* L)(-, 1)):|
=(870m)(I + t2)(DF++P L), 1)) |

< Cf,'(27r)"Ca+ﬂ+.,k_1(l + t2)kat g++(1)
< Cagak—1(l +tz)ka 5(1)

and so with a suitable constant C; , >0

1(070m)(1 + t2)(DI*® L)(-, 1))
< Ch k(14 12 ka3 (Dk—(ny2)(2).

Specifically, the estimate (3.10) implies that the series (note that k_,(I+tz) < 1)
>.D: [(6’®m)(l +t2)((DY L)(-, 1)), €52 ]

=3 (070,)(1 + t2)((DI L)(-, 1)) 2* €=

(3.10)

= Z(a‘yem)(l + tz)((D-Z‘“’ L)+, 1): el(52)

is (absolutely) and uniformly (in R"™) convergent for any a € N . Hence
g'(-,1,t) € C° for any | € Z™® and t € [0,1] and (DT g")(-,[,t) is given
by

(D2 g")(,1,8) = ) (07Om)(I + t2)(DTT* L)(-, 1)), &) (3.11)

z
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C. To obtain the estimate (3.6) we decompose the sum in (3.11) as follows

2(3’@",)(1 +t2)((DYF* L)(-, 1), € =

Z (070, )1 +t2)(DYF* L)(, 1)), €
20z|> 1|

+ Y (@701 +t2) (DY L)(-, 1)), €7
2|z|<|

=: 53 1(z,1,t) + 57 5(z,1,t). (3.12)
C; . In the case when [ < 2|z| one gets by (3.10)

(07@m)(1 +t2)(DT2 L), 1) |
< Cl ke (Dk=1(2)k_(ni1)(2) < 2C% (Ko nke1)(DE— (1) (2)

and so
San(@,5,) £ 2C0 1 (3 k- (n41)(2)) (kayk-1)(D). (3.13)
C;. In the case when |{] > 2|z| one finds that
1+ 22| > 1] = 2] = (1/2)l1]
and so for |I| > 2|z| we have by (3.10)
[(070m)(1 + t2)(DIT* L), 1)):| < 2C4 yk-1(Dka,y (D (at1)(2).
This yields the estimate

152202, 1,8)] £ 2C0 (3 ko nan(2)) (hayk-2)(D) (3.14)

and so by (3.11)—(3.13) we get
I(DZ 9™)(z, 1, 8)| < Cay(ka,xk-1)(1),

as desired.

Remark 3.5. From the proof of Lemma 3.2 one sees that the constants
C! in (3.6) obey

cL< Yy, ( > (C$Ca+ﬂ+7)2)l/2(zk—(n+1)(z))-

lvl=1 " |8]<n+2
Combining Theorem 2.1 and Lemma 3.2. we get
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Theorem 3.4. Suppose that L(-,-) belongs to Ax and that for any
|a| < [Np +n+e]+n+3 the estimate

sup (D2 L)(z, )] < Cak(1)/h(1) (3.15)
zEW

holds. Let Ryu(-,-) be defined by (3.3). Then one has
|Rm(z,D)ellp,h < Cllpllpke-,  for all ¢ € C, (3.16)
where C does not depend on m € N and p € [1,00].
Proof. A.Any Rm(-,-) belongs to Ar: In virtue of (3.6) one sees that
sup |(DS Run)(z, 1] < Ch(Fak-1)(1). (3.17)
TEW

Since
sggVI(Di L)(z,1)| £ Cakyisia(D),

we can choose ko = k,46)a) and so

ko < Kyys(n+3)+olal-
Thus Rp(-,-) € Ax.
B. For any |a| < [Nn +n + €]+ n+ 3 we can choose ko = k/h and so
kotp4y < k/R forany |a| <[Npn+n+¢], |B|<n+2, |y|=1
This implies that
ko <k/h for any |a| < [N +n+¢€]
and so by (3.17)
sg‘%KD: Ry)(z,1)| < C'(kk—y/R)(D), for |a| < [Np+n+el.

Applying Theorem 2.1 to the set R := {R,.(+,-) | m € N} one gets that
| Bm(z,D)¢llpn < Cllellpke.  for ¢ € CF,
where C does not depend on m and p. This finishes the proof.

3.2. Suppose that L(-,-) belongs to Ar. Then the formal transpose of
L(z,D) and Rn(z,D) exists (cf. the proof of Theorem 3.4). Furthermore, the
formal transpose O (D) of O,,(D) exists. Thus we can define the continuous
extensions ©,,, L and R,,: D' — D' . From (3.2) one sees that

R (z,D)=L'(z,D)0®' (D) — ©',(D)o L'(z,D) (3.18)

and so

Rpu = 0,,(Lu) — L(0,,u) for ue D). (3.19)
We are ready to establish
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Theorem 3.5. Suppose that L(-,-) belongs to Ar and that for any |a| <
[Nn +n+e]+n+3 the estimate (3.15) holds. Then the equality

Lo on=LTu n pellLool, kheKkK, (3.20)

holds.

Proof. Let u bein D(L kk_y.h) C By xx_, - Due to Lemma 2.2 one has
O,u € C¥ and so

L(Omu) = L(I,D)(ému) = ;,kk_,,h(ému)-
Furthermore, in virtue of (3.16) we get
[ Rmullp,n < Cllullp,ke_, (3.21)

and so by (3.19) one has (note that Lu = L,;#f,kk_l,h“)

#
”L kk_y, h(em“) Llp kk_ lhu”;uh
< ”Om(kaA 1 Al) — pkk 1,h“”ph+Cl|“[|1n,kk . (3.22)

forall m € N and u € D(L pRk_1,h) -
Let ¢ be a positive number. Choose ¢ € Sp so that ||u — ¢|lpr_, < €.

Furthermore, choose my € N such that (cf. Lemma 2.2)
10m(L p, kk_, p(u—@)) — f,kk_l,h(u —@)lpn <e (3.23)

and that
1Ome —@llpk <€ for m > my.

Due to Theorem 2.1 one has with some constant C' > 0
IL(@,D)pllys < C'llgllpe forall o e CZ

and so

|L(z,D(Om¢) — L(z,D)p|lp,n < C'e for m > my. (3.24)
Using (3.22)-(3.24) we observe that

IlL;kk_l #(Omu) — p kk l,hu“p,

<Om(L'¥ Lk_l (=) = L' i au = @)llpn
+||L(z,D)(Omep) — L(z,D) pllpn + Cllu — @llpik_s
<e+(C+Ce for m > ma.



Hence _ M
"L;,kk_,,h(@mu) - Llp,kk_l,hu“l’.h —0 with m — oo

and since (cf. Lemma 2.2)
®mu —ullp ik, =0  with m — oo,

one sees that u € D(Lpkk_,,n) and that L),  ,u= L'f,kk_l,hu7 as required.

We obtain the next corollaries

Corollary 3.6. Suppose that L(-,-) belongs to Ar and that for any
la| < [Nk +n+e]+n+3 the estimate

sup |(Dg L)(z,1)| < Cakm(1) for leZ” (3.25)
zeW

holds, where m € R. Then one has

Pokkm_1k = L,f,kkm_,,k for pe(lo0] ke€K,. (3.26)

Proof. In view of (3.25) one sees that

sup |(DZ L)(z,1)| < Calkkm)(D)/ k(1)
TEW

for |a| < [Nk +n +¢]+n+ 3. Hence by Theorem 3.5 we obtain L7y, 4 |, =

1#
L'} kkomk_y i » aS we asserted.

Corollary 3.7. Let m € N and let

L(z,D) = Z a,(z)D?

lo|<m

be a linear partial differential operator with smooth periodic coefficients (that is,
as € C® ). Then for any p € [1,00[, k € K. one has

pokkm ik = L ke (3.27)
Proof. The mapping L(-,-) obeys
sup |(D7 L)(z,1)| < Cakm(l)
TeW
for any a € N7 . Hence the proof follows from Corollary 3.6.
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Corollary 3.8. Let L(z,D) be the first order linear partial different’al op-
erator with coefficients a, € C°. Then the equality

~ex=LTc for pellioo| k€KL (3.28
holds.

Apply Corollary 3.7 with m =1.

Remark 3.9. We have BJ; = Ly(W)[ D= {u € Lo(W) | u is periodic}
Due to Corollary 3.8 for any first order smooth periodic partial differential
operator L(z,D) the relation L~ = '# holds, where L~ = LY, x and

L'# = Ll'ﬁko,ko' Hence for any weak solution of L(z,D)u = f; u,f € Bj;
there exists a sequence {p,} C Sy so that

lon —ull +[|L(z,D)pn — fl| = 0 with n — oo,
where |||l := [ ll2 ko = | - [|o(w) -

4. On the identity L}, , = L'p ok

We recall that L7, and L'} # » x denotes the minimal and respective the
maximal realization of L(z,D) from B7, into Ly(W)(D;. We need the
following lemma

Lemma 4.1. Suppose that L(-,-) € A such that

sup |(D® L)(z,1)| < Cok(Dky(I)  for leZ" (4.1)
zeWw

for any |a| < [n+el+n+3. Then one has for p€ [1,2], 1/p+1/p' =1,
| Rm(z, D)ol < Cllellp. forall € C2, (4.2)

where C does not depend on p and m. Here R, (-,-) is defined by (3.3) and
we denote || - || = || - ”L,,I(W)'

Proof. A. In virtue of (4.1) one sees that

sup (D3 L)(z,1)| < Ca(kk1)(1)/ko(1)
zeW

for any |a| < [Ny, +n + €] +n + 3 (note that Ni, = 0). Hence we obtain by
Theorem 3.4 that

| Rm(z, D)ol (wy = |Rm(z,D)ell2,ke < Cillell2,k, (4.3)
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where C; does not depend on m.
B. Furthermore, we get by (3.6)

[ Rm (2, D)l Lo (w) = Sgg/l[Rm(w,D)v](x)l

<Y Rm(@ Dl il £ C3 Y Ik ()] = Collelle  (44)
l l

(since ko = l;nla)i {kg4++} = Imla)i {k1k} = k1k ). Hence one obtains that the
= 7=

|8|<n+2 [B]<n+2
operators

Rin(z,D)o T7': Ly(Z",dv) — L2(W,dm)

and

Rn(z,D)oT7': Ly(Z",dv) = Loo(W,dm)

are bounded. Here dm denotes the Lebesque measure in W and dv denotes
the counting measure in Z™. The operator T is an injection

Cy® — Ly(Z",dv)( ) Lo(Z", dv)
such that

(To)(1) = oik(1).

The application of the Riesz-Thorin Theorem (cf. [2], p. 2) yields that the op-
erator

Rm(z,D)o T ': L,(Z",dv) — Ly(W,dm)

is bounded and that with 0 < ©® < 1 one has
|Rm(z,D) o T7}|| < C{7(Cy)® < max{C1,Cy}

(note that when 1/p = (1-0)/2+0/1 and 1/¢ = (1 — 0)/2 + ©/c0, then
g=p and 1< p < 2). Thus we obtain

|Bm (2, D)¢llp = [[Rm(2,D) 0 T~ )(T0)||
< max{Cy, Cg} | Toll, = max{C1,Co} llellpk,  (4.5)

where C := max{C1,C}} does not depend on m and p. This proves the asser-

tion.

We establish the next theorem for the equality of realizations
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Theorem 4.2. Suppose that L(-,-) € Ax and that the estimate (4.1) holds
for any |a| < [n+¢€]+n+ 3. Then one has

Lyo=L%. . for pell,2, keK.. (4.6)
Proof. A. From (3.19) one gets
~ A # D
Lp,p:’k(emu) = @m(L'pyp,,ku) - Rmu (47)

for any u € D(Llf,p',k)7 since Opu € C C D(L s ;) - Similarly as in the proof
of Lemma 4.1 one gets that

IL(z,D)¢llpr < Cllellpkr,  for .o € C, (4.8)
and by Lemma 4.1 we obtain
|Rmullyy < Cllu|lpx  forall meN. (4.9)
We shall verify that for any f € Ly (W)[ D) the approximation
16m(f) = flly =0 with m — oo (4.10)

holds. Then the assertion follows with the same kind of conclusion as we made
in the proof of Theorem 3.5.

B. Let ¢ be in C§°(W). Define a function ¢™: R® — C by the relation

$7(z) = (2m)™" Y (F)(1) ). (4.11)
l

Then one sees thst ¢™ € C2°. Furthermore, for any ¢ € C§°(W) one has (cf.
[10], pp. 86 88)

/ ¢ (2)p(z) do = (21) " S (F)(1)(Feo)(~1)
w

1

=(2m)™" Y (6,€) Ly (e, e ) L)
{

- [ ¢@rela)d,
w
and so ¢™ |W — ¢. For any | € Z" one gets

(Om$™)i = Om()($™ )i = (FO)D)(F$)(1) — F(Om + $)(1), (4.12)
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where x denotes the convolution of functions Om and ¢ € C(,°°(W).~We find
that supp(Om * ¢) C supp Om + supp ¢ C B(0,1/m) +supp¢ and so O, + ¢ €
CP(W) for m large enough, say m > mo . Thus we get by (4.12)

10m(6™) = ™[l = [1(Om * 8)™ — $" [l

=[|Om * ¢ — ¢l = (Om * 8)¥ — ¢l (4.13)
= |F(Om * ¢) = Follp1 = |OmF$ = Fgllpr1 — 0
with m — oo (cf. [5], p. 42; the norm ||-||pr,1 = || |lp,k, denotes the Hormander

norm). In addition, one has
for m > my

10m (@)l = 16 * ¢ll* < 10Nz, ) ll87 - (4.14)
Since C§°(W) is dense in L,(W) one gets from (4.14) that
1Om(Hllpr < NOzywyllfllr  forall f € Ly(W)nD;. (4.15)

Let € be a positive number. Choose ¢ € C§°(W) so that

o™ = flly = llé — fllr <€

and choose m, > mg such that
1Om(¢™) — 4|y <€  for m >m,.
Then we obtain for m > m,
19n(£) = Flly < 1Bné) = 4"l + 1Ouls =Wl 187 =y,
<e+ O], w)e +e
Thus ||©m(f) — fll;» — 0 with m — oo, which completes the proof of (4.10).

Theorem 4.2 yields immediately
Corollary 4.3. Let L(z,D) = Z a,(z)D? be a partial differential opera-

o<m

tor with coefficients a, € C. Then the identity

L;,p',km-, = L'jp',km_l for any pe€]l,2] (4.17)
holds.
Remark 44. Let L(z,D) = Z a,(z)D? be the first order, partial differ-
o<1
ential operator with coefficients a, € C2°. Then the identity Ly, := Ly, =

L'ff,p', holds (p € ]1,2]). Hence for any solution of L(z,D)u = f; u € By, ,
f € Lpy(W) N D, there exists a sequence {p,} C Sr so that |[pn — ul|p ko +
| L(z,D)pn — fll;r = 0 with n — oo.
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