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ON THE L’ DISCREPANCY OF DISTANCES
OF POINTS FROM A FINITE SQUENCE

OTO STRAUCH

ABSTRACT. The aim of this paper is to find a quantitative proof of the following:
Let o = (x,), ., be a given infinitive sequence of rcal numbers from [0, 1] and let
Q2= (|x,, — XD - be the sequence consisting of all the distances |x,, — x,|. m,
n = 1,2, ... and which are ordered such that the first N> terms are (|x,, — x,D) , _, for
all N =1,2, .... Then wis uniformly distributed if and only if £ has the asymptotic
distribution function 2x — x>

1. Introduction

Let in what follows

w, = (x,)Y_, be a finite sequence consisting of the N real numbers x,, ..., x,
from the interval [0, 1] and let

Q.2 = (Ix,, — x,|)¥ ,_, be the finite sequence consisting of the N* distances
|x,, — x,/, | £m, n < N, in some order.

The aim of this paper is to find relations between the L* discrepancies of the
two sequences. We shall also present a new method for finding quadrature
formulae. Our main tool to do this will be the theory of the Rieman-Stieltjes
integration. '

In Part 3 we shall apply our results to a quantitative proof of the following
probably known theorem: Let w = (x,)_, be a given infinite sequence of real
numbers from [0, 1] and let 2 = (|x,, — x,|).;,_ be the sequence consisting of
all the distances |x,, — x,|, m, n = 1, 2, ... and which are ordered such that the
first N? terms are (|x,, — x,|)Y,_, for all N=1, 2, .... Then o is uniformly
distributed if and only if £ has the asymptotic distribution function 2x — x?.
This result should be compared with the well-known theorem: Let o be as above
and let 2* = ({x,, — x,})x be the sequence consisting of all the fractional

m.on =1
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parts {x,, — x,} of x,, — x,, m, n =1, 2, ... and which are ordered such that the
first N?terms are ({x,, — X)), _,. Then wand 2* are simultaneously uniformly
distributed. This follows from the relations between the discrepancies of
oy = (x,))_, and Q% = ({x,, — x,})¥,_, was first obtained by I. M. Vino-
gradov [1]in 1926 and aother in 1939 by J. G. Van der Corput and C.
Pisot [2]. '

Before we state our results we require some notation to describe the distribu-
tion of the given sequence wy = (x,)Y_,. Let

A(0, x), wy) =card{n;  =n < N,0=x, < x}.

By the

Ry(x) = A(]0, Xx), wy) — Nx,

Ry:(x) = A([0, x), 2y:) — N’x,

ry:(x) = A([0, x), 2,:) — N’(2x — x?)
if0<x<1and

Ry(x) = Ry2(x) = ry2(x) =0

if x < 0 or x < 1, we denote the remainder functions and by the L* discrepancies
of the sequence wy and £2,: we mean the integrals LI Ry (x) dy, J;l R3:(x) dyand
J:)l ry2(x) dx, respectively.

Our main results can now be stated.

2. Main results

|
First of all we shall give the expression of the L- discrepancy J ry2(x) dyin
0

terms of Ry (x).
Theorem 1. For any finite sequence wy = (x,)N_, in [0, 1] we have

N

| 1
J‘O rlz\l:(x) dx = Z J; RN(,") (RN(_V - l-\‘m - .\',,') + RN(_" + I-\‘m - '\‘n')) d.“

mon =1\

N
PN S [ [ RGOI R =15, =)+ Ry, — ) dy do

n=1
1 1
+ N:j L Ry(x) Ry() (@)1 — x — ] + 2]x — 3] — 6) dx dy.
0
Proof. With a slight modification of [3, Theorem 5.3, p. 145] we have
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1 N B
j Rﬁ(x)dx:%NLkNZx—Nz X, + Z _m—‘I
0

n=1 ne=| mon = |

Using £, to instead of w,, we obtain

jR unh—%N*+N T N Y -

mon =1 mon =1

N - v — vy — v
+ Z _ ”'\m '\n‘ |'\'I‘ -\\” . (l)

monr.s = | 2

Obviously, we have

ry2(x) = Ry2(x) — N (x — x7).

Applying the rule of integration by parts and of the familiar theory of the
Riemann-Stieltjes integration, we find

! o dee (X
L Rya(x) (x — x?) dx = L (2 3>dR A(x) =

z <|xm - xnlz l'\‘m - ‘\'n|1>
mon =1 2 3

Summing up these results we obtain

1 N
j r3a(x) dx:lSN“+2N2 Y v, — %)= N Z
0

mon =1 mon — 1

Hl -

——N Z Ix,, — x,,|3+ Z _H~\',,,—v\‘,,|—|.\‘,.—x\|| 2)

mon=1 mon.r.s=1 2

Let

l s X — 7 o N — 13 _ 3
F(x,y,u,v)=g+lx—y|2+|u—v|'——l\ }|;|“ q_h }|—3Flll o

=yl e =l
5 3)

Since

1 1 1 |
J J J j F(x, y, u,v)dxdydude =0,
0 Jo Jo Jo
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then, in virtue of (2), we have

. N
[ rmdy= % P v n.00 -

monros =1

[ 1 1
_ N4J J f [ F(x, v, u, v) dx dy du dv @)
0 0 0 Jo

We need some way of computing the difference on the right-hand side of (4)
and this leads us to the investigation of the Riemann-Stieltjes integral with the
integrands dR (). In order to do this we divide

dR,(x) =8,(x) — Ndx, (5)
where
1 if vew, .

Oy(\) = {

0 otherwise .

It follows from the theory of the Riemann-Stieltjes integration that we can set

n—

whenever f(x, v....) is continuous for all x, v, ... €[0, 1]. To illustrate this, take
f(x, v, ..) = f(x). Then

! !
[, rerar = [ e - vav = |

|
) 0

|
1) 84(x) — Nf“ f()dy =

o |
=Y f(x,) =N j fiv) dy.

n=1 )

With this notation we see, e.g. in the four-dimensional case, that the problem
of finding an expression of the difference

AY

Z ./-('\‘m‘ '\.H‘ ‘\‘I" '\‘\) - NAJ

moneroy =1 0

1 1 rl 1
J J J f(x, v, u, v)ydx dy dudo
0 0 0
as a linear combination of
1 1 | 1
J j J j £ v, 0) AR (x) dRy (1) dRy (1) R (0)
0 0 0 0
1 | 1 |
L] ey 0 ARG AR ARG du
0 0 0 0

is equivalent to the problem of finding the set of constants A4, B, ... such that
dn(x)8y(1)8p(u)Sy(v) — N*dx dy dudv =
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= ABy(x) — Ndx)(By(y) — N dy)(@y(u) — N du)(8y(v) — N dv) +
+ BNBy(x) — N dx)(8y(y) — Ndy) (1) — Ndu)dv + ...

Since we are viewing f concretely as (3), we arrive at an assumption that for
simplicity, let f'be a symmetric by

SOy, u,0) =y, x, u,0) = fu, v, x, 3) (6)
for all x, y, u, ve[0, 1]. Thus, we need to find 4, B, C, D, E such that
AdRy(x)dRy(y) dRy(u) dRy(v) + BN dRy(x) dR () dR(u) dv +
+ CN*dRy(x) dRy(y) dudv + DN* dR(x) dy dR(u) dv +
+ EN*dRy(x) dy du dv = §5(x) 85 (1) 85 (1) 8 (r) — N*dx dy du dr.

Substituting (5) into here and comparing the coefficients we see that 4 =1,

B=4, C=2, D=4 and E = 4. Thus, the following quadrature formula we
have proved:

Let f: [0, 1]* > = be any continuous function such that satisfies (6). Then

N Lrlptopl
Z ./.('Ym’ .\‘"., '\‘1'7 'Yx) - NAJ j J‘ J f(-\:, }‘, u, U) d_\' d)' du dl' -
0 Jo Jo JO

monr.s =1

- Ll Ll f Llf (¥, 3, 1, 0) dRy(x) dRy (1) ARy (1) AR ()
+ 4N L ! L' L' L' £ v . 0) dR(x) dRy () AR () e
i 2N2Ll LI fol Llf (¥, ¥, 4, 0) dRy(x) dRy(¥) du de
w4V [ [ [ v ) R dr dR ) de

wan [ e w0 dR dy dude Y

for every finite sequence wy = (x,))_, in [0, 1].

Applying (7) to the two-dimensional case, we see that for any continuous
function f: [0, 1]° = = which satisfies f(x, ¥) = f(». x) for all x, y€[0, 1], we
obtain

X L
N-< Z ./.('\-m' '\‘n) - N- J;) J.O f(.\'. _") dx d}') =

_ N L' L' £ 1) dRy(x) dRy(3) + 2N° L' [ e ) ARy dr. (8)
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Now we turn to the proof of the theorem. Separating the sum (3) for Finto
two parts

where

1 , 2
Ex, p)=-—I|x—=yl+2x =y’ == |x =y
5 3
we see, by (4), that
! b ad 2 ! !
f r;':('\') d"’ - ( z E(xm* 'Yn) - N-f J‘ E(X, y) dx dy) +
0 m.n = 0 0
N

+ ( z . ”X,,, - xnl - Ixr — x.\‘” _

monr.s = 2

_N‘*JJJJ ““"' lu = ”dxdydudv). )

The first of these two differences has the representation

1l 1l
—ZNZJ J fj =A==l g p () dRy () dudo +
o Jo Jo Jo 2

et 1,
—4N3J f JJ —”x—”zl“ 4R, (x) dy dudo, (10)
0 0 0 0

where we have used (8) and the formula

Il

2
jI||x-y|*lu—vlldudU=E(X,J’)+—— (1
0 Jo 15

the proof of which follows from a direct computation. The second bracket on
the right-hand side of (9) may be computd in the manner of (7). Adding these
two expressions, we arrive at

1 1 1 1 1
j r,i:(x)dx=f f ” —”x‘y';‘“‘”” (AR () dRy( ) dRy(w) ARy () +
0 0 0 0 0

+ 4N dRy(x) dRy(p) dRy(u) dv + 4N? dRy(x) dy dRy(u) dv).
(12)

The computation of the Rieman-Stieltjes integrals in (12) as the Riemann
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integrals is based upon the integration by parts and some other ideas. For
example, consider now the third integral in (12). We show that

1 prlopl | - v — — D
J f J J ezl dR\(x)dy dR\(u) dr =
0 0 0 0 2

1 1
= J J Ry(X)Ry()(I1 = x —ul — |x — u|)dx du. (13)
0 JO
To see this, write
lx =y —|Ju—v 1 - 1 2k)! -
e N B (1= =21 = = el
2 2 T2k — 1) 2%k

(14)
Since

l (2k)' — O(k_":).
22k — 1) 2k k')

the series (14) is uniformly convergent in [0, 1]* and therefore we have to justify
the process of taking the integral of the individual terms in the series. Moreover,
by the binomial theorem

II J J j (I = (x =3 = lu = o)) dRy(x) dy dRy(w) dv
0o Jo Jo Jo

kl(—1)"te . 2n
- ¥ = e

f|+f:+/_~‘+i4=k il'Il!I.?!I.-i! J
iy iy 20

rl 1 . .
J v — " T AR () dy.
0 Jo

rl 1
. J [ — ¢/ dR () dr.
0 0

Substituing

rl

| |
f J Ix — P dRy(v)dy = — | Ry(v)(x* — (1 — x)*) dx (15)
0 Jo o

0

for all £ = 0, into the above formula and separating the sum for the resulting
series into four parts we deduce at once (13).

We cannot obtain in a similar way the desired results for the first and second
integral of (12). Since

f f |x — " dRy(x) dR () =
o Jo
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0 ifk=0,

1
B —2J R3(x)dx ifk=1,
= 0

—k(k—l)j J Ry(x) Ry(»)|x — y|* 2 dx dy ifk>1,
0 JO
(16)

the order of summation into the above mentioned series cannot be interchang-
ing. Here we have to use another procedure.

From the decomposition (5) of dR,(u) and dR, (v) these two integrals can be
written as

J j J f S lem A= W= 0GR (v dRy () dRy() dRy() +
0 0 0 0 2

+ 4N dRy(x) dRy(y) dRy(u) dv)

1 1 1
=J f f j I AW 8l R () dRy () B (1) By (o) +
o Jo Jo 2

1
0

+ 2N dR(x) dRy(») 85 (u) dv—3N? dRy(x) dRy( ) du dv).

(17)
The integration by parts shows that

Jj -, dRu) -
0o Jo 2 A N

= J Ry(y)(Ry(y — |u—v]) + Ry(y + |lu—v])) dy — J Ry(y)dy (18)
0

0

and it is not difficult to calculate (17). Using (11) and (16) the third integral in
(17) can be represented also in the form

J«I J~IJ‘IJ‘| _”x_yl—lu—vll dRN(X)dRN(J’)d”dvz
0 Jo Jo Jo 2

1 1 1
=—2j j RN(x)RN(y)(lx—yl—l)dxdy—j RA®dx.  (19)
0 0

0

Collecting these results, our Theorem 1 is proved.
We can use the same method as in Theorem 1 to prove that
Theorem 2. Let f: [0, 1}* = = be a continuous function and assume that
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S =1y, x)=f(1 - x.y) (20)

for all x, ye[0, 1). Then, for any finite sequence wy = (x,)_, in [0, 1], we have
the integral formula

j j 6 3) dr(x) drya(y) =
0 0

— J‘ J\ j J f(lx — yl, lu - Ul) dRN(X) dRN(y) dRN(u) dRN(U) )
0 JOo JOo Jo

Proof. Suppose that f: [0, 1]* — 3 is continuous and let f(x, y) = f(y, X)
for all x, y€[0, 1]. We begin by giving a quadrature formula for the function f,
namely we have that

Y S = X = x,]) — N“J J S92 =202 = 2y)dxdy =
0 Jo

monr.s =1

=j j % 3) dry () drya(3) + 2N f f Flx 1) dre()@ = 20 dr - 21)
0 0 0 0

In the one-dimensional case we can write

N 1 1
S f(x— x,)) = N? f £ @ — 2 dx = f O dre®.  (Q2)
0 0

mon =1
The formula (21) can be proved in the following way.
Differentiating ry:(x) with respect to x we have

dry2(x) = oy2(x) — N?(2 — 2x) dx (23)
where
1 if x=|x, — x,| forsome m,n < N,

o9 = |

If we now consider
Adry:(x)dry:(3) + Bdry:(x) N°Q2 = 2y)dy =
= 0y:(X)oy2()) — N*(Q2 = 2xX) (2 — 2y) dx dy,

0 otherwise.

replace dr:(x) and dry:()) by (23), and observe by comparing the coefficients
that 4 = 1 and B = 2, we obtain (21).

Integrals which are more suitable for computation may be derived from three
following auxiliary results:

a) For continuous f: [0, 1] = =, we have

1 1 |
J j f(x =) dxdy = f f(xX)(2 —2x)dx. (24)
0 Jo 0
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The argument is that

1 1 1
J J v —fdydy = 2z J X*(2 = 2x) dx
0 Jo k+DKk+2) Jo

for all k = 0.
b) Similarly. we may deduce from (15) for continuous f: [0, 1] - -

1 1 |
j J SOy =) dRy(x) dy = —J Ry(x)(f(x) = f(1 —x))dx.  (25)
0 0 0 .
c) Finally. if
f(x) = Z a,x". f'(x) = Z a,nx"~"and f"(x) = i a,n(n — 1)x"=* (26)
n=>0

n=1 n=2

are uniformly convergent in [0. 1]. then we obtain using (16)

1 1 1 1
j J fx =) dR(x)dR(y) = -—j J Ry(x)R:(») f"(Ix — »]) dx dy
0 0 0 0

1

- 2/"(0)j Ri(x) dx. (27)

Returning our attention to the integrals in (21) and (22) we see, with the help
(25). that their left-hand sides can be written as
\

| ! | |
S fx, = XLy, = x]) = A j J j j £(x = 1. lu = o) dx dy du dv
0 {] 0O 0

monros =1

and

\ 1l
> fUx, = x,D = N:j j Slx =D dxdy,
0 Jo

mon =1
to which the quadrature formulae (7) and (8) may be applied, respectively. We
consider first the case (22).
Substituing f(Jx — v|) into (8) we can expres (22) as

nl 1ol

f(\) dl‘\:(.\') = [ J f(|\_‘l) dR\(\) dR\(‘)Jf'

ot Jo

1 |
+ 2.\'j j,/'(].\'—_ﬂ)dR\-(.\‘) dy (28)

which. by virtue of (24) and (27) and assuming that the conditions of (26) are
satisfied. can be represented in the form
~] rlopl |

"\:(.\')_/"(.\‘)d.\‘=' | R\(»\‘)R\(_\‘)./"'(|-\‘—,“|)d~\‘d.\'+2/"(0)J Ri(x) dy+

0O

oh vt
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|
+f Ry(x) (f(x) — f(1 — x)) dx. (29)
0
In a similar way, consider the case (21). It is the function f(Jx — y|, |u — v|)
that can be used as the funcstion f(x, y, u, v) stated in (7). Assuming the
symetricity (20) and applying (25) we thus obtain the alternative expression of
(21), whose the second, fourth and fifth integrals are equal to zero. So we arrive
at
| | I 1
J J S(x, y) drya(x) dry2(p) + 2NZJ J S, ) dry:(x) (2 = 2y)dy =
0 Jo 0 Jo
1 1 1 1
= [ = o= o dRu) 4Ry(0) dR ) ARy +
0 JO JO JO

+ zNZJI f f J S0 = 3, lu = o) dRy(x) dRy(y) du do.
0 JO JO JO

But, according to (28) and (25),

j f S G y) dry(0) (2 = 2p) dy =
0 Jo

= J‘l J«l fl J"Af(lx — 3, lu—v]) dRy(x) dRy(») du dv.
0 JOo JO JO

The proof of Theorem 2 is complete.
In connection with Theorems 1, 2 and [4, (1 1)], where

[ =] [ -

the following integral identity may also be of interest.
Theorem 3. Let w, = (x,)_, be N real numbers from [0, 1]. Then

Ji\(\)d\—f j lld'\(\)dr\(l)

Proof. First, denote

. , 3 3 L
G(x, 1) = l + 32 _}_"'2 N + X + _ [x _1].
5 2 3 2

Direct computation shows that
| |
J j Gy, (2 —=2x)2—-2v)dxdr=0.
0 0
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Observing that in (3)
F(x,yvu, vy =G(x — |, lu—1))

and applying the expression (4), we obtain

| N
j rue()d) = Y Gx, =X,y —x])—
0

monr.s =1

el
—N‘J f G(x, )2 —=2x)(2 —2y)dxdy
0 Jo

The result follows from (21) and from

bt R S U g 1"‘)
x4 = - ) dr () dre(3) = 0,
L L (5 2 3 \ o

1ol . . 3 3 L
J j (l L4 .‘.: x4y x4 Jx 1|> dry:(x)(2 — 2y)dy = 0.
o Jo \S 2 3 2

3. Application

Theorems 1 and 2 has the following application:

Theorem 4. 4 necessary and sufficient condition for the sequence ® = (x,),_ ,,
N,€[0. 1), to be uniformly distributed in [0, 1] is that the sequence
Q= (|x,, — x5, -, have the asymptotic distribution function 2x — x°.

Proof. Befre we prove this theorem we shall need some preparation:

a) As we have already defined r:(x) in the introduction, let

) = A([0. x). 2,) — N(2x — X7) ifos<vy<l1,
= {O otherwise ,

for all N = 1. 2. .... where the section £, consisting of the first N element of Q.
Here. as already mentioned. the terms |x,, — x,| of £2 are ordered in such a way
that 2.: = (|x,, — X, -, for all N = 1.2, ... and the ordering in which the
terms of Q. _,: — ,: are given. is arbitrary.

b) The sequence €2 is said to have the asymptotic distribution function

ov — T if

im 2 g
\'— IV

(30)

for all xe[0. 1]. Since
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ry2 1 w(¥) = ry2(0)] = mand lim ((V + 1)’ = N3)/N* =0

we have that this limit is equivalent to the following

im 22D _ g

(31
Nz NZ
for all xe[0, 1].
c) Finally, (31) is equivalent to the condition that
l 1
lim — | ri:(x)dx=0. (32)
N-— 7 1\/4 0
The proof is based on the estimate
1
,Sup [Fy2 ()]} < |2N2j rya(x)dx, (33)
svsl 0
which can obviously be compared by the well known (see [5])
1
sup |Ry(x)|* £ 3NJ Ri(x)dx. (34)
o<yl 0

From this, as a trival corollary, we have that the sequence w is uniformly
distributed if and only if

ljm Lj Ri(x)dx =0. (35)

N—s N2 o
To get (33) we let
A([0, x), £2,:]
h(x) = N?
1 ifx=1.

fosx<1,

Consider the function

L rya(x) = h(x) — (2x — x?%).
NZ

Here the right-hand side is the difference between these two functions, the
step-function A (x) and the convex function y = 2x — x’. Take
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and assume that /1 is attained in x,€[0, 1] or xy + 0 or x, — 0. Let y, = 2x, —
and consider the inverse function x =1 — ] — y. Evidently, as geometncal
considerations show,

Yo+ h ] 1
J (x —xp) dy< o J rya(x) dx.
v 0

Yo

The left-hand side of this inequality is equal to

o+ h It y )
| Gt
. v

and thus =/?/12, as is not difficult to verify. Hence our statement c¢) has been
proved.
We can now proceed to prove the theorem. It will therefore suffice to prove

that a necessary and sufficient condition for the limit (35) is that the imit (33)
holds.

From Theorem 1 we derive

| 1
J ri(v)dx £ 12N2J R} (x) dx (36)
0 0

and the necessity part of the theorem is therefore proved.

In other words, we shall consider only the one-dimensional case of Theo-
rem 2. Take f(x) = x — x7 in (29). This gives

1 1 1 2
J ro(X)(1 = 2x) dx = ZJ Ri(x)dx — 2<J Ry (x) d.\'> 37
0 0 0
According to [3, p. 110], we have

| b4
j ro(x)(1 = 2x) dx = 2 g
0 =
Moreover, by an estimate from the LeVeque [6], the right-hand side of (38) is
greater or equal than

L (38)
n .

n=1

1
— sup |Ry(x)
on SR IR ( I*

and therefore, an application of the Cauchy—Schwarz inequality yields

|
j ryv2(x) dx = 121 sup |Ry(x)|°. (39)
0

20gve

Hence, the sufficiency part is easy.
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Finally, we notice that:
a) If a sequence o is uniformly distributed in [0, 1], then, using (1) for the
usual L? discrepancy of £,., we have

limL4 R} (x)dx——+JJ‘(A—y) dxdy — J'J.[x—yldxdy

N=2 N%Jo
jJJJ llx — )’I |u— ”dxdydudv——-
30

b) Let wy be a symmetric sequence by the

(xn)n—] —(l n 117I
Then

|
J Ry(x)dx =0
0

and from (37) we derive

1 1 2
J ry:(x) dx = 12<J R3(x) dx) )
0 0
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