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ON EXTENSION OF GROUP VALUED MEASURES
JAN SiPOS

ABSTRACT. Using the technique of additive functionals an extension of a partially
ordered, scparative group valued measure is obtained.

The measure extension problem is one of the basic problems of the measure
theory from its beginning. In paper [3], there are fifty four references concerning
the measure extension problem for vector measures. Lately some studies have
been published also for measures with values in vector lattices or even in
l-groups (see [1], [5]. [7]. /[8] and [9]). The extension process in the mentioned
paper is based on using some algebraic properties of vector lattices or /-groups
which are similar to some algebraic properties of real numbers.

Other techniques were used in papers [4] and [6]. In these papers the measure
extension problem is transfered by means of linear functionals to the measure
extension problem for real measures. In this paper we combine the technique of
linear functionals with the measure extension method from [2]. As a result we
extend a partially ordered, separative group valued measure. In contrast with [4]
we do not assume that our group is a lattice. We differ from [6], too, because
we do not use the transfinite induction and the extended measure is complete.

0. Preliminary

If {a,} 1s an increasing (decreasing) sequence of elements of a partially
ordered set M and v ,a, = a (A ,a, = a), we shall write a, # a (a, v a). In these
cases we shall write also lim,«a, = a.

We say that a sequence of elements of a partially ordered set A converges in

order to x (in symbol x, — x or x, - x) iff there exist sequences {#,} and {r,} in
M with u, < v,, u, » x and v, ™ x.
A partially ordered group is a set G endowed with a structure of a partially

AMS Subject Classification (1980): Primary 28B10.
Kcy words: Partially ordered group, Convergence group, Complete measure.

279



ordered space and a structure of a group satisfying the following compatibility
condition:
If x, y and z are in G and x < y, then

X+-=y+-:.

0 will denote the neutral element in G. By G, we denote the set of all non-nega-
tive elements in G.

1. Lemma. Let G be a partially ordered group. Let x,, 7~ x (x, N X) and y, 7 y
(¥, p). then

1 x,+r, 7 x+y (x, +1, N X +71)

(i) —x, N —x (—x, 7~ —X).

An easy consequence of the above lemma and the definition of the order
convergence is the following:

2. Theorem. Let G be a partially order group. Then G is a convergence group
with respect to the order convergence (i.e. the map (x, y)r—x — y is order
continuous).

As we shall deal with the extension of the measure, it is natural to assume
some sort of completeness of the range space. If the range space of the measure
is not complete, then, as the following example shows, the extension of the
measure need not exist.

3. Example. Let # be a ring of subsets of reals which are finite disjoint
unions of intervals with rational endpoints. Let G be the group of rational
numbers, and let u: # — G be the restriction of the Borel measure to #. Then
4 has no extension to the generated o-ring.

Our completeness property is the following: We say that a partially ordered
group G is monotone o-complete if every monotone increasing bounded
sequence [x,} has a limit in G, i.e.

llmll '\‘H =V H'\.Il

exists in G.
Let /- G — R (real numbers) be a functional. We shall say that fis additive
iff
Sx+p)=/(x)+ /),
/f1s monotone iff x < y implies f(x) < f(»),
fis o-céntionuous, iff x, — x iplies f(x,) = f(x).
It is easy to see that for an additive functional one has f(6) =0 and

J(=x) = =f(x).

If G is a partially ordered group, then by the order dual of G we mean the
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set G < of all order continuous additive functionals on G which can be represen-
ted as a difference of two monotone additive functionals.

For our extension process, one of the basic assumptions is that G < separates
points of G, i.e. for xe G, x # O there exists an x< in G < with x<(x) # 0. If this
is the case, we shall say that G is separative. It is easy to see that G = separates
points of G if and only if the set of all monotone elements from G < (denoted
by G ;) separates points of G.

To illustrate our definitions, we give now an example (see [6]).

4. Example. Let P, be the set of all polynomials of the form

ay+ax+..+a, x"'"+a,x"

(m fixed) with the pointwise ordering. Then P,
o-complete group.

It is easy to see that a separative group is always a Hausdorff topological
group with respect to the G <-weak topology on G. Moreover, every o-
continuous functional is continuous in this topology.

Let G be a partially ordered group and let .«/ be an algebra of subsets of X.
We shall say that u: .o/ - G is a partially ordered group valued measure on .o/
if

is a separative, monotone

n

(1) g(ANn B) + u(Au B) = u(A) + u(B) (additivity) for every A, Be .«/.
(ii) If 4, Be.«/ and A < B, then u(A4) £ u(B).
(i) If 4, ~ 0, then u(A4,) ~ 6.
It is easy to see that

A, » A implies u(A,) » p(A) and similarly

A, N A implies u(A4,) ~ pu(A) for every A,, A in /.

ns

1. The construction

Throughout the rest of the paper, we shall assume that G is a partially
ordered, separative, monotone o-complete group, ./ is an algebra of subsets of
the set X and y: o/ — G, is a measure.

Let J# be a family of subsets of X. # () is a system of all sets expressible
as a union (intersection) of an increasing (decreasing) sequence {4, } of elements
in . Sometimes we shall write ¥ ;= () ,); and # 45, = (),

We define g, on &/, = o/ U &/ ;and u, on &/, = &/ ;U ./, as follows.

Let Ae.o/, (Ae.«/,) and let {A4,} be a monotone sequence of sets from .o/ (/)
such that lim, 4, = A4.
We put

#(A) = hmy (A, (u>(A) = limy py(Ay)).
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We shall show that the definition of x4, and g, does not depend on the sequence
{Ay}.

Now we add to the system .7, all sets which differ from a set in .o/, “a little”.
And on this new system we define the set function which, as we shall see, will
be a reqired extension.

Denote by (/) the system of all subsets of X for which there exist sets
Aed s, Aye A 5, Ay < A < A, with (A, — A)) = 0(A, — A, isclearly in o7 )
and put g(A4) = u,(A4,). We shall prove that the definition of (A4) does not
depend on A4, and 4,.

In paper [2], it was proved that if y is a finite real measure, then ¥, (/) is a
o-algebra and 4 is a continuous extension of u to the ¥, (.«7).

The main result of the paper is the following:

5. Theorem. Let u be a measure defined on an algebra 7. Let the range space
of u be a separative monotone o-complete partially ordered group G. Then &, (/)
is a o-algebra which contains </, and [ is the unique complete measure on ¥, (.54 ),
which extends p.

2. The proofs

We shall now show that the definitions we have given above are all right.
Also, we give some assertions which are necessary for the proof of Theorem 5.

The proofs of the following two lemmas are similar to the real case. For that
case they can be found in [2].

6. Lemma. y, is an additive set function on s .

7. Lemma. y, is monotone on /.

The proof of the continuity of g, is based on the separativity of (G, +, ).
Note that if fe G, then fo u is a real measure on .¢7.

8. Lemma. Let fe G and let v be a o-additive extension of the real measure
feu from the algebra <f to the c-algebra generated by 7. Then v(A) = fou,(A)
for every A in .

Proof. Let A€/, then there exists a monotone sequence {4,} < .&/ with
A, 7 A. By the continuity of fwe get lim, fo u(A4,) = f(lim, u(A,)) = fo u,(A).
Hence v(A4) = lim, v(A4,) = f y,(A). The other case is similar.

9. Lemma. The function p, is continuous on 7.

Proof. If A, # A and A,, A are in </, then u,(A4,) < u,(A4). By the mono-
tone o-completeness of (G, +, <), there exists an element zeG, with
u(A,) 7 z. Let fe G7 and let v be a continuous extension of the real measure
f- u,. Then

f(:) =j(llmn,ul(An) = hmn/(,ul(An)) = hmn V(A,,) = V(A) :/(“I(A))
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Since G | separates points of G and f(z) = f(u,(A)) for every fin G T, we get that
- = u,(A). The case 4, \v A is similar.

10. Lemma. Let A, and B, be in </, with A, ~ A, B, ~ B and A = B, then
lim, p,(4,) < lim, p,(By).

Proof. If there exists a subsequence {B, } of {B,} with B, €.o/;, then the
proof is trivial. In the other case we may assume that B, € </ for every k. In this
case for every B, there exists a sequence of sets C,, in .«/ such that C,, » B,
(n—-o0).PutD,, =4, —C, ,then D, , e/, and D, , \ 0 (n > ). By the last
lemma, lim, y,(D, ;) = 6.

Since

lul(Au) - ﬂI(Cu./\) é yI(An) — H (An N CVLA')

§ ljl(Au - Au N Cu,l\) = ”I(An - Cn.l\) = ,uI(Dn.A)
and
lin]u(.ul(An) - /‘ll(Cn,l\')) = limn/ll(Au) - lul(Bk)~
we have
]imluul(An) - ‘uI(BA) = ]imu.ul(Dn.l\) = 9
This implies
]imn#I(An) é /‘II(BK)-
hence

lim, 4,(A4,) = lim, 41,(B;).

In a similar way, one can get the following result:
11. Lemma. If A, and B, are in /| with A, » A, B, ~ Band A < B, then

]imn.ul(An) é hmk lul(Bk) .

Let us now turn our attention to the set function u.. If E€ </, and {E,} is a
monotone sequence of sets from ./, such that lim, E, = E, then clearly
lim, u,(E,) exists.

According to lemmas 11, 12 and the additivity of u, we have:

12. Lemma. u, is well defined.

Similarly as in the case of the set function y,. one can prove the following
properties of the set function y,.

13. Lemma. y, is an additive, monotone and continuous set function on </ ,.

Let us note that when proving the continuity of x4 one has to use the
following fact (similarly as in the case of y,): forevery 4 in .«/,, v(4) = f u.(A).
where fe G and v is a continuous extension of the real measure f- u to the
o-algebra generated by .. Now similarly as we defined 4, on .«/, and u, on ./,
we can define (/. u), and (f+ p), on </, resp. .«/,, namely if A€ .o/, (4€.</,) and
{4,} is a monotone sequence of sets from .o/ (./,) such that lim, 4, = A, we put

(S (A) = lim, fou(d) — ((f+ p)y = lim(f- )i (A)).
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Directly from the definition of (f°u), and (f°u), we get:
14. Lemma. (fou), = fou,.
Let us turn now our attention to the family %, (7).
15. Lemma. ¥, (<) is a o-algebra.
Proof. We shall show that

Fud) =Sy () f€GT}.

The definition of the set ¥, ,(27) is similar to the definition of ¥, (.27 (see “The
construction™). Since f u is a real measure, we get (see [2]) that & (/) is a
o-algebra for every fin G .

Let Ae.¥,(o7), then there exist sets A, € (5, and 4, €. s with 4, c 4 < A4,
and i,(A4, — A4,) = 6. By Lemma 14, (fou),(4, — A;) =0. Thus Ae.¥, (o)
for every fin G 7, hence

F(A) = S} (A); f€GY.

Now if 4 ¢ .7,(<7), then for every 4, € o/ s;and 4, € o ;;with A, € A < A, there
holds (4, — A4,) # 0. Since G is separative, there exists an f in G with
S, (A, — A))) # 0. Because (fop), = fou,, we have 4¢.%, ,(«/) hence

SA) =S (A); [€GT].

16. Corollary. o/ < %, (o).

Proof. Since .o/ = &, (o) for every fe G see [2], the proof is trivial.

17. Lemma. /i is an additive set function on &,().

Proof. First we show that f is well defined. Let A€ %, («/) with 4|, B, e
€ ;5 Ay, Byed 5, Ayc A< Ay, By A< B, and i,(4, — A)) = u,(B, —
— B)) =0. Itis clear that y,(4,) = i,(A4,) and u,(B,) = u,(B,). Since 4, < B,
and B, © 4,, we get i, (A4,) < p,(By) and p,(B)) = p,(4,). Hence p,(4,) <
< i(By) and p5(B)) < 1r(A4,)), thus py(4)) = iy (B,).

Let us turn our attention to the additivity of u,. Let A, Be ¥, («/) with A4,
B e sy, Ay, Bye s 5, Ay = A= Ay, By = B By and (A4, — A)) = (B, —
— B))=0.

Since

(A, B, — A U B) = (A4, — A)) v (B, — B)))
= (A4, — A)) + i,(B, — B))
:0’

we have i,(4, U B)) = (A, U By). Similarly, (,(4, N B)) — u,(4, N B,).
Hence,

JH(AY B) + fi(An B) = (A, U B)) + 1,(4, " By)
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= (A4) + 1 (B))
= {(A) + ji(B).

18. Lemma. [ is a monotone set function.

Proof. Let A, Be S (s7), A\, B, € o, A;, B, € o/ ;5 with 4, c A < A,,
B cBc B, u(4, — A)) = (B, — B)) =0 and 4 = B. Since 4, € B < B,,
(A4)) = 1y (B,) and so fi(A) = ,(A)) = p1,(B,) = fi(B).

19. Lemma. /1 is continuous on &,(</).

Proof. It is sufficient to prove that 4, \ 0 (4, € ¥,(<7)) implies fi(A4,) ~ 0.
By the monotone o-completeness of G, there exists a z = lim, ji(A4,). Let fe G|
and let v be a continuous extension of the real measure f° 4 from ./ to %, (.<7).
Then

f(2) =f(im, ji(4,)) = lim, fe i(4,) = lim, v(4,) = 0,

where we have used the o-continuity of fand the fact that f< g = v. Since G is
separative, we get lim, ji(4,) = 0.

Proof of Theorem 5. By Lemmas 14, 15, 16, 17, 18, and 19 we have
that 4 is a measure on the o-algebra %, (.<7). It is easy to see that uis a complete
measure. If A€ ¥, (/) p(4) = 0and 4 €. 4,, A€/ ;With A, = 4 = A, and
(A, — A)) =0, then B < 4 implies = B < A4,, hence Be .¥,(.</). Let tbe a
continuous extension of u from .o to #, (/). Let {4, } be a monotone sequence
in .o/ with lim, A, = A (A € o/,), then by the continuity of rand by the definition
of u,

T(A) = limn T(An) = llmn.u(An) = /‘II(A) .

Analogically, 7(4) = u,(A) for A4 in ,. If Ae¥, (/) with 4,, A€/,
A, c Ac A, and f(A) = u1,(A)) = ur(A4,), then f(A) = 1(4,) = 1(A4,), hence

A(A) = 7(A).
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