
Mathematica Slovaca

Anna Avallone
Lattice uniformities on orthomodular structures

Mathematica Slovaca, Vol. 51 (2001), No. 4, 403--419

Persistent URL: http://dml.cz/dmlcz/131921

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/131921
http://project.dml.cz


Mathematica 
Slovaca 

©2001 
» A ^L 4-1 r-» /0/-.01 \ IM A >»,-.-» A i rv Mathematical Ins t i tu te 
Math. SlOVaCa, 51 (2001), NO. 4, 403-419 Slovák Aeademy of Sciences 

LATTICE UNIFORMITIES 
ON ORTHOMODULAR STRUCTURES 

ANNA AVALLONE 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. We prove that every lattice uniformity on an orthomodular lattice 
is generated by a family of weakly subadditive functions and that every modu­
lar measure on a difference-lattice generates a topological structure as modular 
functions on orthomodular lattices. 

Introduction 

Starting from the seventies, many authors, a s L . D r e w n o w s k i , Z. L i -
p e c k i , H. W e b e r and others (see for example [D-J, [L], [W-J), introduced, 
in classical measure theory, topological methods based on the theory of Frechet-
Nikodym topologies, which gave many contributions to the study of measures 
on Boolean algebras. 

In the last years, similar topological methods have been developed for the 
study of modular functions on orthomodular lattices in non-commutative mea­
sure theory (see for example [A-J, [A2], [A-B-C], [A-D], [A-L], [W4], [W5], [W6], 
[W8]) and for the study of measures on fuzzy structures in fuzzy measure the­
ory (see [B-W], [B-L-W], [G]). In this context, the theory of Frechet-Nikodym 
topologies is replaced by the theory of lattice uniformities — i.e. uniformi­
ties which makes the lattice operations uniformly continuous — developed in 
[W2], [W3], [W4], [W7], [A-W], starting from the fact that every modular func­
tion on an orthomodular lattice generates a lattice uniformity which makes 
the orthocomplementation uniformly continuous ([W4; 1.1]) and every measure 
on a A -^-semigroup or on a Vitali space generates a lattice uniformity which 
makes uniformly continuous the operations of these structure ([B-W; 3.1.2], and 
[G; 5.3]). 

It is known (see, for example, [D]) that, in a Boolean algebra, every Frechet-
Nikodym topology is generated by a family of subadditive functions. In the first 
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part of the present paper, we prove that a similar result also holds for lattice 
uniformities on orthomodular lattices: we introduce a class of weakly subadditive 
functions — the k-submeasures — and we prove that, for every k-submeasure rj, 
there exists the weakest lattice uniformity which makes 77 uniformly continuous 
(see 2.6) and, conversely, every lattice uniformity is generated by a family of 
fc-submeasures (see 2.8). In particular, every lattice uniformity with a countable 
base coincides with the uniformity generated by a fc-submeasure. 

In the second part, we prove that it is possible to use topological methods 
also in the study of modular measures on difference-lattices (D-lattices), since 
every modular measure on a D-lattice L generates a lattice uniformity which 
makes the difference operation of L uniformly continuous (see 3.2.2). 

As example of consequence of this result, we derive by standard topological 
methods the equivalence in any D-lattice between Vitali-Hahn-Saks and Brooks-
Jewett theorems for modular measures (see 3.6). In particular, as consequence 
of [D-P] — in which the Brooks-Jewett theorem has been proved for measures 
on quasi-(j-complete D-posets — we obtain the Vitali-Hahn-Saks theorem for 
modular measures on quasi- a -complete D-lattices (see 3.7). 

We recall that D-posets and D-lattices have been introduced in [C-KJ as a 
generalization of many structures as orthomodular lattices, MV-algebras, ortho-
algebras, weakly complemented posets and others. For a study, see for example 
[B-F], [C-KJ, [C-K2], [D-D-P], [F-G-P], [P2], [P3], [R]. 

1. Preliminaries 

Let L be a lattice. If L has a smallest or a greatest element, we denote these 
elements by 0 and 1, respectively. We set A = {(a, b) G Lx L : a = b} . If {an} 
is an increasing sequence and a = supa n in L (respectively, {an} is decreasing 

n 
and a = inf an in L) , we write an t a (respectively, an I a). If a < 6, we set 
[a, b] = {c G L : a < c < b}. 

A lattice uniformity U on L is a uniformity on L which makes the lattice op­
erations of L uniformly continuous (for a study, see [WJ). U is called exhaustive 
if every monotone sequence in L is Cauchy in (L,U) and a-order continuous 
(cr-o.c.) if an t a or an 4- a imply an —•> a in (L,U). 

If (G, +) is an Abelian group, a function /1: L —> G is called modular if, for 
every a, b G L, fi(a V b) + fi(a A b) = 11(a) + 11(b). If G is a topological group and 
\i: L —> G is a modular function, by [W5; (3.1)] there exists the weakest lattice 
uniformity U(fi) which makes fi uniformly continuous and a base of U(\i) is the 
family consisting of the sets 

{(a, b) G L x L : fi(c) - 11(d) G W for all c, d G [a A b, a V b]} , 
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where W is a 0-neighbourhood in G. 
L is called orthomodular lattice if it has 0 and 1 and there exists a map /: 

a G L —>> a' G L, with the following properties: 

(1) a V a ' = 1 and a A a' = 0 . 
(2) a<b ==> a' >b'. 
(3) (a')' = a. 
(4) a < b => b = aV(bAa'). 

For a study, we refer to [K] or [P-P]. 
A difference-poset (or D-poset) is a non-empty partially ordered set (L, <) 

with a greatest element 1 and a binary partial operation 0 , called difference^ 
such that a © b is defined if and only if b < a and the following properties hold: 

(1) bQa< b. 
(2) be (bQ a) = a. 
(3) If a < b < c, then c © b < c G a. 
(4) If a < b < c, then (c 0 a) © (c© b) = b 0 a. 

If (L, <) is a lattice, a D-poset is called D-lattice. For every a,6 G L, we set 
aAb = (a V 6) 0 (a A 6) and a x = 1 © a. It is easy to see that (a-1)"1 = a 
for every a E L and a < b implies a-1 > 5 1 . If a,6 G L, we say that a _L b 
if a < b1. If a _L 6, we set a © 6 = (a1 © 6)-1. It is easy to see that © is 
commutative and, if b © c and a® (bee) are defined, then a © b and (a © b) © c 
are defined, too, and (a © b) © c = a © (6 © c). More in general, for n > 3 , 
we inductively define ax © • • • © an = (ax © • • • © an_l) © a n if ax © • • • © a n - 1 

and (ax © • • • © an_1) © a n are defined, and the definition is independent on any 
permutation of the elements. 

We say that a family { a x , . . . , an} in L is orthogonal if 0 ai = ax © • • • © a n 

is defined. We say that {an} is orthogonal if, for every finite M C jV, {an : 
n G M } is orthogonal. 

We use the following properties of D-lattices. 

PROPOSITION (1.1). ([R; 1.3, 1.4, 1.7, 2.2, 2.4, 2.6]) Let L be a D-lattice. 
Then: 

(1) If c<a and c<b, then (oV b) © c = (aec)\/ (be c) and ( a A b ) © c = 
(a © c) A (b © c). 

(2) If a<b, then b = a © (b © a ) . 
(3) If a <b < c, then be a < c 0 a. 
(4) If a ±.b, then a < a © b and (a © 6) © a = 6. 
(5) If a<b< c, then (c© a) 0 (b © a) = c 0 6. 
(6) If c> a and c>b, then c 0 ( a V6) = (c©a) A (c© 6) ana1 c 0 ( a A b) = 

(c 0 a) V (c © 6). 
(7) If a <b< c, then (ceb)®>a exists and (c © 6) © a = c © (b 0 a). 
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If G is an Abelian group, a function \i: L —> G is called a measure if, for 
every a, 6 G L with a JL 6, /i(a © 6) = /i(a) + /z(6). By (1.1) (2) and (4), it is 
easy to see that \i is a measure if and only if, for every a, b G L, with b < a, 
/x(a © 6) = /z(a) — /i(b). Moreover, by induction, we obtain that, if { a 1 ? . . . , an} 

is orthogonal, then /if 0 a iJ = ]T} M a i ) • 

Many structures are examples of D-lattices (see [P2; Chapter 12]). In particu­
lar, every orthomodular lattice is a D-lattice if we define, for b < a, a©b = aAb ' . 
In this case, a1- = a' and, if a JL b, then a © 6 - - a V 5 . 

In the following, we denote by M the set of the positive integer numbers. 
Moreover, for x,y G [0,oo], we set d^x^y) = |x - y|, where oo — co = 0 and 
oo— x = x — co = oo for every x G [0, +oo[. 

2. Lattice uniformities on orthomodular lattices 

In this section, L is an orthomodular lattice, and rj: L —> [0, +oo]. 

DEFINITION (2.1). If k > 1, we say that rj is k-subadditive if, for every 
a, 6 G L, rj(a V 6) < k7y(a) + 77(6). 

If rj is 1-subadditive, we say that rj is subadditive. 

DEFINITION (2.2). We say that 77 is a k-submeasure if 77(0) = 0, 77 is mono­
tone and k-subadditive and, for every a,b £ L, rj[(a V b) A 6') < k77(a). 

A 1-submeasure is called submeasure. 

Every k-submeasure is k-triangular and null-additive in the sense of [P2]. 
If L is a Boolean algebra, every monotone and k-subadditive function 77, 

with rj(0) = 0, is a k-submeasure. 

EXAMPLES (2.3). 
(1) Every positive real-valued modular function \i with \i(0) = 0, is a 

submeasure, since /i is monotone and subadditive and, for every a, b G L, 
a V 6 = b V ((a V b) A V), where 6 _L (a V 6) A b', from which 

//((a V b) A 6') = //(a V 6) - /i(6). (*) 

(2) A positive real-valued measure \i is a k-submeasure if and only if \i is 
k-subadditive, because (*) of (1) holds. 

(3) Let [i be a positive real-valued modular function with \i(0) = 0, k > 1, 
and 0: [0,+oo[ —> [0,+oo[ an increasing function such that 0(0) = 0 and, 
for every x,y G [0,+oo[, |</>(x) — <Ky)| -̂  k<j)(\x — y\). Then the function 
A: L —> [0, +oo[ defined by A(a) = </>(/L(a)) for a G L is a k-submeasure. 

The following result generalizes the equivalence for a real-valued measure on 
L between modularity and subadditivity (see [R]). 
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PROPOSITION (2.4). Let ji: L -> [0,+oo[ be a measure and k > 1. Then \i 
is a k-submeasure if and only if, for every a, b G L, 

\i(a V b) + k/x(a A b) < kfi(a) + fj,(b) < kfi(a V b) + ji(a A b). 

P r o o f . The proof of « = is trivial by (2.3) (2), since/i(aVb) < / i ( aVb ) + 
kfi(a A b) < kfx(a) + /x(b). 

==>: Let a,b E L. Since 

a V b = (a A b) V (aAb) with a A b _L aAb , 

aAb = [a A (a A b)'] V [b A (a A b)'] , 

a = (a A b) V (a A (a A b)') and b = (a A b) V (b A (a A b)') , 

we get 

fi(a V b) = /x(a A b) + /i(aAb) < /x(a A b) + kfx(a) — fc/x(a A b) + /i(b) — jx(a A b), 

from which /i(a V b) + k/x(a A b) < fc^(a) + /i(b). Moreover, since 

a V b = a V [(a V b) A a'] = b V [(a V b) A b'] , 

aAb < [aA(a V b)] V [(a V b) Ab] = [(a V b) A a1] V [(a V b) A b'] , 

we get 

/i(a V b) = \i(a A b) + \x(aAb) < \x(a A b) + fc//(a V b) - k/i(a) + \i(a V b) - //(b), 

from which k\x(a V b) + //(a A b) > k/i(a) + /x(b). D 

We use the following result of [W3; (1.1)]. 

THEOREM (2.5). Let T be a filter on L with the following properties: 

(1) For every F G T, there exists G G T such that a G L, b, c G G and 
a < b V c zmp/y « G F . 

(2) For ei>en/ F e T, there is G E T such that a e G implies (aVb) Ab' G F1 

/o r eac/i b G F. 
Tlten /liere exists a unique lattice uniformity U on L which has T as base of 
0 -neighbourhoods and a base for U is the family consisting of the sets {(a, b) G 
L x L : aAb G F } wztt F e T. 

PROPOSITION (2.6). If r) is a k-submeasure, there exists the weakest lattice 
uniformity U(rj) which makes rj uniformly continuous. 

P r o o f . By (2.5), the family consisting of the sets {(a, b) G L x L : 
r](aAb) < e], where e > 0, is a base for a lattice uniformity U(r)) on L. 

(i) We prove that 77 is uniformly continuous with respect to U(r}). 
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Let £ > 0 and a,6 G L such that r](aAb) < ejk. Since oV6 = (oA6)V(aA6), 
then 77(0 V 6) < 77(0 A 6) + krj(aAb) < 77(0 A 6) + e. Then, if 77(0 V 6) = +00, we 
get 77(0 A 6) = +00, from which 77(0) = 77(6) = +oo . If 77(0 V 6) < +00, then 
77(a) < +00 and 77(6) < -f-oo, from which 77(0) - 77(6) < 77(0 V 6) - 77(0 A 6) < e 
and 77(6) —77(a) < e. In both the cases, dOG(r](a),r](b)) < e. 

(ii) Let V be a lattice uniformity which makes 77 uniformly continuous. We 
prove that ^(77) < V. 

Let U G U(rj) and e > 0 such that U£ = {(a, 6) G L x L : rj(aAb) < e} CU. 
Since 77 is V-uniformly continuous, we can choose V G V such that 

{a,b)eV ==» doo(r](a),r](b))<e. (*) 

By [Wx; 1.1.2, 1.1.3], we can choose V, V" G V such that V" C V1 C V, 

V ' A A C F a n d 

(a, 6) G V " =[> [0 A 6, 0 V 6] x [a A 6, 0 V 6] C V 7 . (**) 

We prove that V" <ZU. Let (a, 6) G V". By (**), (0 A 6, a V 6) G V . Then 

(0, 0A6) = ((a A 6) A (0 A 6);, (a V 6) A (a A 6)') 

= (a A 6, a V 6) A ((a A 6)', (a A 6)7) G V ' A A C V . 

By (*), we get r](aAb) < e, from which (a, 6) G U£ C U. D 

COROLLARY (2.7). Le^ rj be a k-submeasure and U a lattice uniformity. Then 
77 is U -uniformly continuous if and only if U(rj) < U. 

We say that a fc-submeasure 77 is a uniform k-submeasure if the following 
conditions hold: 

(1) There exists M > 0 such that, for every a, 6, c G L with b A c = 0, 
77((aV6) Ac) < Mkr](a). 

(2) There exist M 1 } M 2 > 0 such that, for every o, 6, cG F, 77((aVc)A(6Vc)) 
< Mxkr](aAb) and ^((o A c)A(6 A c)) < M2krj(aAb). 

We want to prove the following result. 

THEOREM (2.8). Let U be a lattice uniformity on L. Then: 

(1) For every k > 1, there exists a family {fja} of uniform k-submeasures 
such that U = suipU(r]a). 

a 
(2) If U has a countable base, for every k > 1 there exists a uniform 

k -submeasure fj such that U = ^(77). 
(3) If U is generated by a modular function ]i\ L —> G where G is a topo­

logical Abelian group, then there exists a family {fia} of uniform sub-
measures such that U = s\iipU(ft,a). 

a 

To prove (2.8), essential tools are the following two results, which hold in any 
lattice. 
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THEOREM (2.9). ([W3; 1.4]) Let k > 1 and U a lattice uniformity. Then U 
is generated by a family {da : a € A} of pseudometrics with the following 
properties: 

(i) For every a,b,c G L, da(aV c, b V c) < da(a, b). 
(ii) For every a,b,c G L, da (a A c, b A c) < kda (a, b). 

Moreover, if U has a countable base, we can choose \A\ = 1. 

THEOREM (2.10). ([F-T2; Theorem 3]) Let \x be a modular function with 
values in a topological Abelian group G. Then U(\x) is generated by a family of 
pseudometrics da defined by 

d a(a, b) = snp{pa(/L(c)—/i(d)) : c, d G [aAb, aVb], c < d} , a,beL, cYG^4, 

where {pa : a E A} is a family of group seminorms which generate the topology 
of G. and da have the properties (i) and (ii) of (2.9) with k = 1. 

LEMMA (2.11). Let k > 1 and d a pseudometric with the following properties: 

(i) d(a V c,b\/ c) < d(a, b) for every a,b,c G L. 

(ii) d(a A c, b A c) < kd(a, b) for every a,b,c G L. 

Then d has the following properties: 

(1) I/ c < a < b < d ; then d(a, b) < kd(c, d). 
(2) d(a A b, a) < kd(b, a V b). 
(3) d(b, a V b) < d(a A b, a ) . 
(4) d(b, a V b) < d(a, b) < 2kd(a A b, a V b). 
(5) d ( a A b , a V b ) < 2kd(a,b) . 
(6) d(aAb,0) < kd(aAb,aVb). 
(7) d ( a A b , a V b ) < d(aAb ,0 ) . 
(8) IfbAc= 0, then d ( (aVb ) Ac,0) < kd(aAb,a) < fc2d(a,0). 

P r o o f . The proof of (1) - (5) can be obtained in similar way as in [W3; 1.7]. 
(6): By (ii) and (5), we get 

d(aAb, 0) = d((a V b) A (a A b)', (a A b) A (a A b)') 

< kd(aAb,aVb). 

(7): By (i), d(a A b, a V b) = d((a A b) V 0, (a A b) V (aAb)) < d(aAb, 0 ) . 
(8): By (ii), (1), (3) and (7), we get 

d((a V b) A c, 0) = d((a V b) A c, b A c) 

< kd(a V b, b) < kd(a A b, a) 

= kd(a A (a A b), a V (a A b)) < kd(aA(a A b), 0) 

= kd(a A (a A 6)', 0) < k2d(a, 0 ) . 

D 
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PROPOSITION (2.12). Let k>\ and d be as in (2.11). For a G L, let 

77(a) = sup{d(6,0) : be [0,o]}. 

Then f) is a uniform k2 -submeasure and U(f)) coincides with the uniformity 
generated by d. 

P r o o f . 
(i) First we prove that, for every a e L, 

77(a) = sup {d(6, c) : 6, c G [0, a ] , 6 < c} . (*) 

Let a e L and denote by 77(a) the right side of (*). The inequality 77(a) < 77(a) 
is trivial. Let 6, c G [0,o] with 6 < c, and set d = c A 6'. Since c = 6 V d and 
6 A d = 0, by (3) of (2.11) we get 

d(6, c) = d(6,6 V d) < d(b A d, d) = d(0, d) < 77(a), 

since d < c < a. Hence 77(a) < 77(a). 
(ii) We prove that 77 is a uniform fc-submeasure. Trivially 77 is monotone 

and 7/(0) = 0 .Let ce [0,o V 6], By (1) and by (1), (2), (3) of (2.11), we get 

d(c, 0) < d(c, c A a) -f d(c A a, 0) 

< kd(a, a V c) + 77(a) < k2d(a, a V 6) + f)(a) 

< k2d(a A 6,6) + 77(a) < k2f)(b) + 77(a), 

from which 77(0 V 6) < k2f)(b) + 77(a). 
Now let a, 6, c G L with 6 A c = 0 and choose e, / G [0, (a V 6) A c] with 

e < / • By (ii), (1) and (3) of (2.11), we get 

d(e, / ) < fcd(0, (a V 6) A c) = fcd(6 A c, (a V 6) A c) 

< fc2d(6, a V 6) < k2d(a A 6, a) < fc277(a). 

Hence fj((a V 6) A c) < fc277(a). 
Let a,6,c G L and d < ( o V c ) A ( 6 V c ) . By (i), (1), (4), (5), (6) and (7) of 

(2.11), we get 

d(0, d) < fcd(0, (a V c) A(6 V c)) 

< 2fc3d(a V c, 6 V c) < 2fc3d(a, 6) 

< 4fc4d(a A 6, a V 6) < 4fc4d(aA6,0) < 4k4f)(aAb) , 

from which 77((a V c) A(6 V c)) < 4fc477(aA6). 
Now let d < (aAc)A(6 Ac) . By (ii), (1), (4), (5), (6) and (7) of (2.11), we 

get 

d(0, d) < fcd(0, (o A c) A(6 A c)) 

< 2fc3d(a A c, 6 A c) < 2fc4d(a, 6) 

< 4fc5d(a A 6, a V 6) < 4fc5d(aA6,0) < 4k5f)(aAb), 
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from which f)((a A c) A(b A c)) < 4k5fj(aAb). 
(iii) Denote by V the uniformity generated by d. Since, for every a G L, 

d(0,a) < 77(a) and, by (1) of (2.11), d(Oya) < £ implies 77(a) < ke, then U(fj) 
and V have the same base of 0-neighbourhoods. Hence, by (2.5), U(fj) = V. • 

P r o o f of (2.8) . By (2.12), if U is generated by a family {da} of pseu-
dometrics with the properties (i) and (ii) of (2.9) with k > 1, then there exists 
a family {fja} of uniform k2-submeasures such that U = s\npU(f]a). Then (1) 
and (2) follow from (2.9), and (3) follows from (2.10). a • 

R e m a r k . By (2.10) and (2.12), we get that the submeasures \xa in (2.8) (3) are 
defined by 

^«( a ) = r f a ( M ) = sup{p a ( / i ( c ) - / i (d ) ) : c , d G [ 0 , a ] , c < d] 

= sui{pa(fi(b) - fi(0)) : 6E[0 , a ]} 

for every a £ L. 

R e m a r k . In [W2] it is proved that, in general, the conclusions of (2.9) fail if 
k = l. 

A consequence of (2.8) is a characterization of lattice uniformities with (a) 
by means of the family of k-submeasures which generate them. 

Property (<r) has been introduced in [W2; (3.1)] for arbitrary lattices and it 
is an essential tool for many results, for example to obtain that a uniform lattice 
is a Baire space ([W2; 3.15)], or to obtain extension theorems (see [W2; 8.2.1] 
and its applications in [A-D]). 

We say that a lattice uniformity U has (a) if, for every U GM, there exists 
a sequence {Un} in U with the following property: if an f a or an I a and 
(avaj) e Un for z, j > n , then (a1,a) e U. 

By [W2; 3.3 ], if U has a countable base, then U has (a) if and only if every 
monotone Cauchy sequence {an} in (L,U), with an t a or an 4- a, converges to 
a in (L,U). 

Property (a) is connected with the a-order continuity by the following result 
of [W2; (8.1.2)], which holds in any lattice. 

PROPOSITION (2.13). 

(1) If U is exhaustive and has (a), then U is a-o.c. 
(2) If U is a-o.c, then U has (a). 
(3) 1/ (L, <) is a-complete, then U is a-o.c. if and only if U is exhaustive 

and has (a). 

If L is a Boolean algebra, the uniformity generated by a submeasure 77 has 
(a) if and only if 77 is a -subadditive. Moreover the uniformity generated by a 
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Frechet-Nikodym topology r has (<J) if and only if r is generated by a family 
of a -subadditive submeasures (see [W2; 3.17]). 

We prove that a similar characterization holds for lattice uniformities on 
orthomodular lattices. 

We need the following definitions. 

We say that a function rj: L —r [0,-f-oo] has (a) if a n t a or an \. a and 
l imry(a n Aa m ) = 0 imply limry(anAa) = 0. 
n,m n,m 

Then, if rj is a fc-submeasure, rj has (a) if and only if U(rj) has (a). 

If fc > 1, we say that a function rj: L -> [0,+co] is a-k-subadditive if, for 

every sequence {an} in L such that V a

n

 e x i s ^ s m L, rj\\J an) < k ]T) rj(an). 
n ^n ' n= l 

A a-fc-subadditive fc-submeasure is called a -k -submeasure. 
The following result has been proved in [A-D; (2.2)] for a-subadditive sub-

measures and the proof is the same for cr-fc-submeasures. 

PROPOSITION (2.14). Every a-k-submeasure has (a). 

LEMMA (2.15). Let fc, d and fj be as in (2.12). Then, if r) has (a), r) is a 
a-k2 -submeasure. 

P r o o f . By (2.12), U(fj) coincides with the uniformity generated by d. Since 
U(rj) has (<T), by [W2; 3.3] we get that, for every sequence {a n } in L such that 

a = \Jan exists in L, d(ax,a) < k Y, ^ n ^ n + i ) - Let { a

n} C L be such that 
n n=l 

n oo 

a = V a n exists in L. Set bn = V a i ? where a 0 = 0. Then a = V bn. If b < a, 
n i=0 n=0 

by (2.11) we get 

d(6,0) <fcd(a,b 0) 

ОО ОО / п п 

п=0 п=0 ^г=0 г=0 

ОО ОО 

<к^<1(0,ап+1)<к^гЦап+1), 
n=0 n=0 

oo 

from which 77(a) < fc2 E r?(an). D 
n=l 

By (2.8) (3) and (2.15), we get: 

COROLLARY (2.16). Let fc > 1. Then every k-submeasure with (a) is equiv­
alent (i.e. generates the same uniformity) to a a -fc-submeasure. 

Now we can give a characterization of lattice uniformities with (a). 
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COROLLARY (2.17). Let k > 1 and U be a lattice uniformity. Then the fol­
lowing conditions are equivalent: 

(1) U has (a). 
(2) There exists a family of a -k-submeasures which generates U. 

P r o o f . 
(1) => (2): By [W2; 3.2], there exists a family {Ua : a e A) of 

pseudometrizable lattice uniformities with (cr) such that U = sup Ua. By (2.8) 
a£A 

and (2.15), for each a e A we can choose a cr-fc-submeasure Aa such that 
ua=u(AJ. 

(2) =>* (1): By (2.14), U is the supremum of a family of lattice uniformities 
with (a). Hence U has (a) by [W2; 3.2]. • 

3. Uniform D-lattices 

In this section, L is a D-lattice and G is a topological Abelian group. 
A measure \i\ L —> G is called modular measure if it is a modular function. 
We prove that the lattice uniformity generated by every modular measure on 

L makes uniformly continuous the difference operation of L. As an example of 
consequence of this result, we obtain the equivalence between Vitali-Hahn-Saks 
and Brooks-Jewett theorems for modular measures on D-lattices. 

Following the terminology of [P-J, a lattice uniformity on L is called D-lattice 
uniformity if © is uniformly continuous. By the definition of 0 , it is clear that 
a D-lattice uniformity makes 0 uniformly continuous, too. 

For [/, V C L x L, we set 

UeV = {(a 0 c, bed) : c<a, d<b, (a,b)eU, (c,d)eV), 

UeV = { ( a 0 c , b 0 d ) : a_Lc , bid, (a,b)eU, (c,d)eV). 

Then 0 is uniformly continuous if and only if, for every U eU, there exists 
V e U such that V eV CU, and 0 is uniformly continuous if and only if, for 
every U GW, there exists V eU such that V 0 V C U. 

PROPOSITION (3.1). Let U be a lattice uniformity. Then U is a D-lattice 
uniformity if and only if, for every U eU, there exists V eU such that V © A 
C U and AeV CU. 

P r o o f . It is clear that the condition is necessary. We prove that it is suffi­
cient, too. Let U eU and choose V,V1,V2 eU such that 

VoVoV cu, V ; © A C V , A e vi c v , V2AV2CV1. 
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We prove that V2 © V2 C U. Let (a, 6), (c, d) G V2 such that c < a and d < 6. 
By (c, c A d) E Vj, we get 

(a 0 c, a 0 (c A d)) G A 0 Vi C V . (1) 

By (c A d, d) G Vj, we get 

( 6 © ( c A d ) , 6 © d ) G A e V i CV. (2) 

Moreover, since (a, 6) G V2 C Vx, we have 

( a © ( c A d ) , 6 © ( c A d ) ) G Vx © A C V . (3) 

By (1), (2) and (3), we get 

(a © c, 6 0 d) G V o V o 17 C U. 

In similar way, we can prove that, if U is a lattice uniformity, then 0 is uniformly 
continuous if and only if, for every U G W, there exists V G W such that 
V0ACU. • 

THEOREM (3.2). If \i\ L -+ G is a modular measure, then U(\i) is a D-lattice 
uniformity and a base of U(\i) is the family consisting of the sets Aw = 
{(a, 6) G L x L : fi(c) G W for all c < aA6} , where W is a 0-neighbourhood 
in G. 

P r o o f . For every 0-neighbourhood W in G, set 

[/^ ={(a , b) e Lx L: fi(c) - /i(d) G W for all c, d G [a A 6, a V 6], c > d] . 

(i) First we prove that Aw = Uw. 
Let (a, 6) G Aw and c,rfG [a A 6, a V 6], with c > d. By the definition of © and 
(1.1)(3), we get cG d < (a V 6) © (a A 6) = aA6, from which \i(c © d) G W. 
Since, by (1.1)(2), c = d 0 (c © d), we get ji(c) - /x(d) = \x(c © d) G TV, from 
which (a, 6) G U^ . 

Now let (a, 6) G Uw and c < aA6. By (1.1) (2), we can find d G L such 
that aA6 = c 0 d and therefore a V 6 = (a A 6) 0 (aA6) = (a A 6) 0 c 0 d. By 
(1.1) (4), we get c = (a V 6) © ((a A 6) 0 d ) . Then (a A 6) 0 d G [a A 6, a V 6] and 
lx(c) = \i(aVb) - \i((aNb) 0 d) G W , from which (a, 6) G A ^ . 

(ii) Now we prove that aA6 = (a © c) A(6 © c) for every a, 6 > c. 
Set d = a © c and e = 6 © c. By (1.1)(1), we get d V e = (a V 6) © c and 
d A e = (a A 6) © c. Then (a © c) A(6 © c) = dAe = ((a V 6) © c) © ((a A 6) © c) . 
Since c < aA6 < aV6, by (1.1) (5), we get (a©c)A(6©c) = (aV6)©(aA6) = aA6. 

(iii) We prove that aA6 = (c © a)A(c © 6) for every a, 6 < c. 
By (1.1) (1),(6) and by the definition of ©, we get ( c © a ) A ( c © 6 ) = ((cQa) V 
(c©6))©((c©a)A(c©6)) = (c©(aA6)) © (c©(aV6)) = (aV6)©(aA6) = aA6. 
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(iv) By (ii) and (iii), we get Aw 0 A C Aw and A 0 Aw C Aw. Then, by 
(i), U(\i) is a D-lattice uniformity and {Aw : W is a 0-neighbourhood in G} 
is a base of U(\x). • 

As consequence of (3.2), we obtain — in a similar way as in [A-L] for modular 
functions on orthomodular lattices — the equivalence in any D-lattice between 
Brooks-Jewett and Vitali-Hahn-Saks theorems for modular measures. 

First we recall the definitions which we need. 
We say that a family K of G-valued measures on L is uniformly exhaustive 

if, for every orthogonal sequence {an} in L, /i(an) —> 0 in G uniformly for 
\x £ K. If G' is another topological Abelian group and A: L -> G! is a measure, 
we say that K is X-equicontinuous if, for every 0-neighbourhood W in (7, 
there exists a 0-neighbourhood W! in G! such that, if a E L and X(b) E W! for 
every b < a, then /i(a) E TV for every /z E if . In particular, if /L: L -» (7 is a 
measure, we say that lz is exhaustive or A-continuous if K = {/z} is exhaustive 
or A-equicontinuous, respectively. 

If A is a modular measure, by (3.2), a base of 0-neighbourhoods in U(X) is 
the family consisting of the sets {a E L : X(b) E W for all b < a} , where W is 
a 0-neighbourhood in G. Then, in this case, if we denote by T ^ the topology 
of the uniform convergence in GK, we have that K is A-equicontinuous if and 
only if the function v = ( / i )^^- : (L,U(X)) -> (GK,TQO) is continuous and K is 
uniformly exhaustive if and only if v: L —r (GK

Jroo) is exhaustive. 

The notion of exhaustive measure given here is a particular case of the notion 
of x0 -exhaustive measure given in [D-P] and we need it in the proof of (3.7). The 
following result allows to prove in a standard way (see (3.4)) that this notion is 
equivalent to that of H. W e b e r in [W5], which we need in the proof of (3.6). 

LEMMA (3.3). Let a0ialy... , a n be in L such that aQ < ax < • • • < an and 
set bi = a{ Oai_l for every i E { 1 , . . . , n } . Then {bli... ,6 n } is orthogonal and 
bx 9 • • • © bn = an 0 a0 . 

P r o o f . Since axOa0 < ax < a2 , by (1.1)(9), 6X ©62 = (ax Ga0)^(a2Qa1) 
exists and it is equal to a2 0 (ax 0 (ax 0 a0)) = a2 Q a0. Then the assertion 
is true for n = 2. Now suppose that the assertion is true for n — 1. Since 
b10---0bri_1 = a n _ i e a 0 < an_l < a n , by (1.1)(7), we get that 6 1 ©-- -©6 n = 
(bx 0 • • • 0 6n_i) © (an 0 « n _i) exists and it is equal to an 0 (an_1 0 (o n _ 1 0 
K i © a o ) ) = « n © a o - D 

PROPOSITION (3.4). Let /x: L —r G 6e a measure. Then the following condi­
tions are equivalent: 

(1) /i is exhaustive. 
(2) For e-venl monotone sequence {an} in L, {n>(an)} is a Cauchy sequence 

in G. 
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(3) For every increasing sequence {an} in L, {/i(aj} is a Cauchy sequence 
in G. 

P r o o f . 

(1) => (2): 
(i) Let {an} be an increasing sequence in L and, for each n G JV, set 

bn = an 9 an__1, where a0 = 0. By (3.3), {bn} is orthogonal. Then /x(aj -
MK~I) = M U - > ° -

(ii) Now let {aj be a decreasing sequence in L and set bn = an . Then 
{bn} is an increasing sequence. By (i), /x(aj -/x(an_x) = /x(bn_x) -/Ah

n) ~> °-
(2) -=> (3) is trivial. 
(3) => (1): Let {an} be an orthogonal sequence in L and set bx = 0, 

^n = ® ai f° r e v e r Y rc > 2. Then {bn} is increasing and an © bn = bn+1. 
i_n — 1 

Therefore M (a n ) =-- / i(bn + 1) - M b J -> 0. D 

PROPOSITION (3.5). Let /x: L -» G be a measure and U a D-lattice unifor­
mity on L. Then /x is continuous in 0 if and only if /x is uniformly continuous. 

P r o o f . Let TV, W be 0-neighbourhoods in G with W - W C VV, and 
choose U eU such that 

( a , 0 ) G U = * L<a)GlV'. (*) 

Let V,V GU such that V e A C U and, for every (a, b) G V, [a A b, a V b] x 
[aAb,aVb] C V (see[W2; 1.1.3]). Let (a,b) G V'. We prove that /x(a)-/x(b) G TV. 
Set c = a 0 (a A b) and d = bQ(aAb). Then (c, 0) = (a, a A b) 0 (a A b, a A b) G 
V 0 A C [/. By (*), we get /i(c) G W . In similar way we obtain /x(d) G TV7. 
Then /x(a) - /x(b) = /x(c) - /x(d) eW. • 

We say that L has the Vitali-Hahn-Saks property ( VHS-property) if, for every 
topological Abelian group G', for every G"-valued modular measure A on L 
and for every sequence {/xn : n G N} of exhaustive A-continuous G -valued 
modular measures on L which is pointwise convergent on L to a function fi0, 
{/xn : n e Af U {0}} is A-equicontinuous. 

We say that L has the Brooks-Jewett property (BJ-property) if, for every 
sequence {/xn : n G JV} of exhaustive G-valued modular measures on L which 
is pointwise convergent on L to a function /x0 , {/xn : n G AfU {0}} is uniformly 
exhaustive. 

Then, if we denote by c(G) the space of all convergent sequences in G, by 
A the topology of the pointwise convergence in c(G) and by A^ the topol­
ogy of the uniform convergence in c(G), it is clear (see (3.5)) that L has the 
VHS-property if and only if, for every topological Abelian group G' and for 
every modular measure X: L —> G', every exhaustive A-continuous modular 
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measure ii: L —> (c(G), A ) is A-continuous with respect to A ^ , and L has the 
BJ-property if and only if every exhaustive modular measure \x: L —> (c(C?), A ) 
is A^-exhaustive. 

Using (3.4) and (3.5), the equivalence between VHS and BJ properties can 
be proved in a similar way as in [A-L; (1.2.15)]. 

THEOREM (3.6). L has the VHS-property if and only if L has the BJ-property. 

P r o o f . 
<£=: The VHS-property follows from the BJ-property as consequence of the 

following result of [W5; (6.2)], which holds in an arbitrary lattice: if U is a lattice 
uniformity and K is a uniformly exhaustive family of ZY-continuous modular 
functions, then K is ZY-equicontinuous. 

= > : Let \i: L -> (c(G),A ) be an exhaustive modular measure and set 
U — U(\i). By [W5; 3.6], U is exhaustive since ii is exhaustive. Since ii: 
(L,U) —r (c(G),A ) is uniformly continuous, by the VHS-property, ii: 

(L,U) -> {c(G)^oo) i s continuous, too. By (3.5), \x: (L,U) -> ^(G),^) 
is uniformly continuous. Then, since U is exhaustive, by (3.4) we obtain that 
\i: L —> ( ^ G ^ A ^ ) is exhaustive, too. Therefore L has the BJ-property. • 

In [D-P; (12.4)], the Brooks-Jewett theorem has been proved for measures on 
quasi- a -complete D-posets (i.e. on D-posets L such that, for every orthogonal 
sequence {an} in L, there exists a subsequence {an : n £ M} such that 0 a{ 

iei 
exists for every I C M). Then, by [D-P] and (3.6), we obtain the Vitali-Hahn-
Saks theorem for modular measures on quasi-a-complete D-lattices. 

COROLLARY (3.7). If L is a quasi-a -complete D-lattice, then L has BJ and 
VHS properties. 

We conclude remarking that we can derive by [W5; (4.1)] a characterization 
of modular measures with weakly relatively compact range. 

PROPOSITION (3.8). Let G be a complete locally convex linear space and 
/ i : L -> G a modular measure. Then li(L) is weakly relatively compact if and 
only if \i is exhaustive. In particidar, ifG^W1, \x is exhaustive if and only if 
ft is bounded. 

P r o o f . In [W5; (4.1)], it is proved that, if L0 is an arbitrary lattice, the 
equivalence between exhaustivity and relative weak compactness of the range 
holds for any modular function \x: L0 —> G which satisfies the following condi­
tion: for every a0 < • • • < an in L0 and for every I C { 1 , . . . , n } , 

]CNai)~Mai-i)] eM^o)- (*) 
i£l 
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Therefore we have only to observe that (*) holds for any measure on L. For 
every i < n , set bi = at Q a>i-\- By (3.3), for every i < n , {b1,...,bi} is 
orthogonal and bx 0 • • • ® b{ = ai 0 a0. Let I C { 1 , . . . , n}. Then £ [Ma;) "" 

ІЄ/ 

мK-i)] = ENв. o0)-Moi-i ao)] = E H Ф O - / * ! Ь-)1 
ІЄ/ i Є / L V j < i У S<i-1 / J 

E Í Ľ / ^ j - E / ^ ) 1 = E M M = M( 0 Є / І ( L ) . 
iЄІ 3<i j<i-l iЄ1 V i Є 1 7 
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