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HYPERELLIPTIC MAPS AND SURFACES 

DAVID SlNGERMAN 

(.Communicated by Martin Skoviera) 

ABSTRACT. Hyperellipticity is a classical concept in the theory of Riemann 
surfaces. The object of this note is to begin to explore the relationship between 
hyperelliptic maps and hyperelliptic Riemann surfaces. 

H a r v e y showed tha t underlying any map M on an orientable surface S, 
there is a unique Riemann surface X = X(M) naturally associated with A f̂. It is 
clear from the definition tha t if M. is hyperelliptic, then X(Ad) is is hyperelliptic. 
We shall show tha t in the special case where M is a regular map, the converse 
of this result is also true. 

1. Introduc t ion 

Hyperellipticity is a classical concept in the theory of Riemann surfaces. More 
recently ([1], [2]) this concept has been applied to maps and hypermaps. The 
object of this note is to begin to explore the relationship between hyperelliptic 
maps and hyperelliptic Riemann surfaces. 

In [7], it was shown that underlying any map A4 on an orientable surface <S, 
there is a unique Riemann surface X = X(A4) naturally associated with A4. 
(See §2 for more details.) The same idea was discussed by G r o t h e n d i e c k 
[6] who also pointed out that Belyi's Theorem implies that in the case where S 
is compact, the algebraic curve that is associated with X can be defined over 
the field of algebraic numbers. (See the article by G a r e t h J o n e s in this 
volume.) It is clear from the definition that if A4 is hyperelliptic, then X(A4) is 
hyperelliptic. We shall show that in the special case where At is a regular map, 
the converse of this result is also true. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. 
K e y w o r d s : hyperelliptic map, regular map, orientable surface, Riemann surface. 
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2. Basic ideas 

A compact Riemann surface X of genus g > 2 is said to be hyperelliptic if 
it is a two-sheeted branched covering of the Riemann sphere S . There is then a 
conformal automorphism J of J such that J2 = I and X/(J) = S . Note that 
by the Riemann-Hurwitz formula, J has 2^ + 2 fixed points. It then follows that 
J is unique with this property, and as a consequence, J is central in A u t X . 
(See [5; §3.7.]) 

A map M of genus g > 2 is said to be hyperelliptic if there is a map 
automorphism j of M such that j 2 = I and M/(j) is isomorphic to a map 
on the sphere. For a combinatorial proof of the uniqueness of the hyperelliptic 
involution of a map (or hypermap), see [2; Corollary 5.22]. 

As we shall see below, there is a natural complex structure on the surface S 
underlying M such that every map automorphism becomes a Riemann surface 
automorphism. It follows that if M is hyperelliptic, then so is the Riemann 
surface X associated with M. 

Let M be a map of type (m, n ) . This means that m is the least common 
multiple of the vertex valencies of the map, and n is the least common multiple of 
the face valencies. As described in [8], associated with M there is an "algebraic 
map" which consists of a quadruple (G, fi,£, y) , where G is a permutation 
group acting transitively on fi, and x and y are generators of G obeying the 
relations x2 = y™ = (y~1x)n = 1. Here $7 is the set of darts of M, x is the 
permutation that interchanges the darts of an edge, and y is the permutation 
that cyclically permutes the darts around each vertex, following the orientation 
of the underlying surface. It then follows that y~xx cyclically permutes the 
edges around each face. Let r ( m , n ) be the group with presentation (X,Y | 
X2 =Yrn = (Y^X)71 = l ) . If -L + I < I , then T(m,n) acts as a group of 
conformal automorphisms of the upper-half complex plane 7i. (F(m,n) is then 
called a Fuchsian triangle group.) Also T(m, n) acts as a group of automorphisms 
of the universal map M of type (m,n) that lies on H (see [8]). There is an 
obvious homomorphism from r ( m , n ) onto G, and hence an action of T(m,n) 
on (] . Let M be the stabilizer of a dart in this action. Then, as shown in [8], M 
is isomorphic to the map M/M on the Riemann surface 7i/M. We can thus 
define X(M) to be the Riemann surface 7i/M. 

3. Hyperellipticity 

We shall now assume that M is a regular map in the sense of [4]. Every 
vertex then has valency m , and every face has valency n . As shown in [8], 
M is now a torsion-free normal subgroup of r ( m , n ) . By [10], a necessary and 
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sufficient condition for the Riemann surface H/M to be hyperelliptic is that 
M is a subgroup of index 2 in a Fuchsian group H, where H has signature 
(0; 2 , 2 , . . . , 2), and there are 2#+2 elliptic periods equal to 2. (See [9; Chapter 5] 
for an elementary treatment of Fuchsian groups.) 

LEMMA. M is hyperelliptic if and only if there is a subgroup H of T(m, n) 
with the above signature such that M is a subgroup of index 2 in H. 

P r o o f . By [8], the automorphism group G of M is isomorphic to 
N(M)/My where N(M) is the normalizer of M in T(m,n). Thus there is 
a homomorphism 9: T(m,n) —• G with kernel M. Let H be the inverse image 
of (j) under 6. Then H contains M with index 2, and by the definition of 
j and the fact that there must be 2g + 2 branch points of order 2, H has 
signature (0; 2, 2 , . . . , 2) with 2g + 2 elliptic periods equal to 2. Conversely, if 
such a group H exists, then H/M acts as the hyperelliptic involution on M. 

• 
THEOREM. Let M be a regular map with underlying Riemann surface X. 
Then M is hyperelliptic if and only if X is hyperelliptic. 

P r o o f . If M is hyperelliptic, then, with the above notation, M <\H with 
index 2, so that X(M) = H/M is a hyperelliptic Riemann surface. Conversely, 
let X(M) be hyperelliptic, and suppose that M is not hyperelliptic. We then 
have M<H with index 2, and M<T := T(m, n ) , but H <£ T. Let H = H/M and 
G = T/M. Both G and H_ are automorphism groups of the Riemann surface 
X , and as J is central and J 2 = 1, G* := (H,G) =" C2 x G. Let T* be the 
lift of G* to H. Then T* is a Fuchsian group containing the triangle group 
T(m, n) with index 2. By [10], we see that m = n and T* = T(4,n) . By the 
first isomorphism theorem, T/M = T* /H which is a group of automorphisms of 
H/H, i.e., the Riemann sphere. The only such groups are the rotation groups 
of the sphere, which are either cyclic, dihedral, or isomorphic to A4, S4 or 
A5. We thus need to examine homomorphisms from T(n, n) onto these rotation 
groups. Using the condition that ^ + ^ < \ we see that n > 4. As A4 and S4 

have no elements of order greater than 4, none of these groups can occur as an 
image of T(n,n) with a torsion-free kernel. Similarly, a dihedral group cannot 
be generated by two elements of order n > 4. The group A5 is an image of 
T(5, 5), but C2 x A5 is not an image of T(4, 5), so this case cannot occur. The 
only remaining possibility is the cyclic group Cn as a homomorphic image of 
r ( n , n ) with kernel a torsion-free subgroup of genus g, which is possible if n is 
divisible by 4. (By the Riemann-Hurwitz formula, we find that n = 4g.) Now, 
as above, Cn is also isomorphic to T*/H, so that Cn is a homomorphic image 
of T* = r ( 4 , n ) . Thus Cn is generated by elements of order 2 and 4, which is 
a contradiction as n > 4. • 
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EXAMPLES . 

(1) It is well-known that every Riemann surface of genus g = 2 is hyperelliptic 
([5; §3.7]). Hence all the regular maps on an orient able surface of genus 2 are 
hyperelliptic. According to [4], there are 10 such regular maps and many of them 
are drawn there (see Table 9 and Chapter 8). 

(2) For a simple family of examples valid for each genus g > 2, consider a 
regular 4#-sided hyperbolic polygon, and label the sides a1? a 2 , . . . , a2 , a^1 ,a2

l, 
. . . , a2 . We obtain a surface of genus g by identifying the opposite edges of this 
polygon, and the rotation about the centre of the polygon through 180 degrees 
induces an involution whose fixed points correspond to the midpoints of the 
2g edges, the unique vertex and the unique face centre. Thus the quotient is a 
hyperelliptic map. This map has type (4r/,4r/) and has a cyclic automorphism 
group of order Ag corresponding to the normal subgroup of index Ag in r(4#,4a) 
considered in the proof of the Theorem. 

(3) Another example of a hyperelliptic map with a cyclic automorphism group 
is the map of type (2g + 1,4a + 2) formed by identifying opposite edges of a 
regular 4g+2-gon. This map has automorphism group isomorphic to C4 + 2 ; this 
is the largest order for a cyclic group of automorphisms of both a map and a 
Riemann surface of genus g, the second largest order being 4g ([2], [7]). In fact, 
one can easily show (using the results of [7]) that any regular map with cyclic 
automorphism group must be one of the maps with automorphism group of order 
4g or 4g + 2, and these are both hyperelliptic. 

(4) An example of an infinite family of hyperelliptic regular maps with non-
cyclic automorphism group is given by C o r i and M a c h i on page 462 of [2]. 

We note that the Theorem above is not true if we omit the hypothesis that 
the map is regular. To construct an example of a non-hyperelliptic map on a 
hyperelliptic surface, take the map in Example 2 above with g = 2. Construct 
a new map by drawing a geodesic from the vertex to the face centre. This map 
has no non-trivial automorphisms and thus is not hyperelliptic. However, the 
Riemann surface, being of genus 2, is hyperelliptic. 

The definition of hyperellipticity extends in an obvious way to hypermaps (see 
[2], [3]). Regular hypermaps correspond to normal subgroups K of r ( l , r a , n ) := 
(X, Y,Z \Xl = Yrn = Zn = XYZ = 1) , and H/K is hyperelliptic if and only 
if K < H with index 2 in the same way as above. Now let n be an odd integer. 
Then H jt T(n, n, n ) . We can define a homomorphism from T(n, n, n) onto Cn , 
and then the kernel K corresponds to a regular non-hyperelliptic hypermap. 
However, r ( n , n , n ) < T(2,n, 2n) with index 2 ([11]). Now K is also the ker­
nel of a homomorphism from T(2,n,2n) onto C2n. By using Proposition 4 of 
[11], we calculate that the unique element of order 2 in C 2 n is the hyperellip­
tic involution of the Riemann surface n/K. Thus we have a non-hyperelliptic 
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regular hypermap on a hyperelliptic Riemann surface. In fact, by [3], we have a 
non-hyperelliptic hypermap whose Walsh map is hyperelliptic. 
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