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CLASSIFICATЮN OF S-CUBES 
IN THE DIMENSЮN nłěЗ 

JOZEF TVAROŽEK 

Introduction 

Let In be the rc-dimensional cube. In [2] some special factor spaces of the cube In 

called s-cubes were introduced and a necessary and sufficient condition (called the 
property "M") was given for an s-cube X to be a manifold. 

In the present paper the full topological classification of those s-cubes of 
dimension n^3, which are manifolds, is given. 

1. Notation and basic definitions 

Let n ̂  1 be an integer. According to [2] we shall use the following notation: 
N„ = {1,2, ..., n} 
In ={xeRn: | J C , | ^ 1 , ieNn} is the n-dimensional cube 
dln is the boundary of I" 

Bn = {xeRn; Vx? + x\ +. . . + x\^ 1} is the n-dimensional ball 
Sn =3Bn+1 is the n-dimensional sphere, n^O 
Jn ={xedln; \xi\ = 1} is the i-th double face of I" 
5,: In-+In, x\-+(xu ..., Xi-i, —Xi, xi+1, ..., xn) is the symmetry of In with respect to 
the hyperplane JC,=0, ieNn. 

Let G be a subgroup of the group of all tranformations of In generated by the set 
{si; ieNn}. Since sioSj = sjoSi for every i,jeNn, the group G is abelian and 
G = Z2. Each seG, s^id, is a product of mutually different transformations 
s,., ..., sik and it can be uniquely written in the form 

Sill2...tk = sho Si-o . . . o sik, where ix<i2<...<ik. 

Further, the map rn: G—>2Nn, Tn(sili2„.ik) = {h, i2, ..., ik}, Tn(id) = 0, isabijection. 
Definition 1.1. Let u1, ..., u"eG. An s-cube X=Inl(u1, ..., un) is a factor 

space In/T, where T is the equivalence relation on In defined as follows: 
k 

x T yox = y or there are integers iu ..., ikeNn such that x, yef] Jn and 
/--

x = uil o u^o ...o uik(y). 
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The integer n is called the dimension of the s-cube X. The s-cube X can be 
alternately written in the form X=In/(Uu ..., Un), where Ui = xn(ui), ieNn. 

Definition 1.2. An s-cube X=In/(u1, ..., un) is called regular if for every 
i, j e Nnu

l = Sj implies u' = s}. Regular cubes are called briefly r-cubes. 
Definition 1.3. An r-cube X=In/(u1, ..., u") has the property "M" if for each 

nonempty subset PaNn such that 

i) Vi,jeP: i^j^u'^u*, 
ii) VieP: card Tn(ul)i=l 

we have 

Pnrn(riwM^0 (Д"> 
According to [2], Proposition 2.10, every s-cube is homeomorphic to some 

r-cube. Further, an r-cube is a manifold if and only if it has the property "M" ([2], 
Theorem 3.18). 

Definition 1.4. An r-cube In/(UU ..., Un) is called cube-fibrable 
(briefly c-fibrable) if there is a set Q, 0^Q^Nn, such that 

i) Oni U U\ = 0, 
\jeNn-Q / 

ii) if Ut = Uj for some i, jeNn, then i, jeQor i, jeNn — Q. An r-cube which is 
not c-fibrable is called c-nonfibrable. 

2. Homeomorphism Theorem 

Let X be a topological space, /: X—>X a homeomorphism. The symbol 
Xxl/Ef will always denote a quotient space of X x l which arises by the 
identification of the pairs (JC, —1), (f(x), 1), JCGX, in the space X x I. 

Lemma 2.1. Let X be a topological space and let f, g: X—>X be isotopic 
homeomorphisms. Then XxI/Ef^XxI/Eg. 
Proof. LetH: (0, 1) xX^Xbeanisotopysuch thatH0 = f andH1 = g. Denote 

F: XxI^XxI, (x,t)^(gQH^\L(x),t) 
2 

G: XxI^XxI, ( x . O ^ ^ o g - ' W . t ) . 
2 

One easily verifies that F, G are homeomorphisms inverse to each other and 
compatible with the equivalences Ef and Eg. This clearly implies that F and G 
induce a homeomorphism between the spaces Xxl/Ef and XxIIEg. 

Lemma 2.2. Let X = Inl(ul, ..., un) be an r-cube, ueG. Then the 
homeomorphism u: In-+In induces a mapu: X-->X, [*]>->[w(x)] which is 
a homeomorphism. 
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Proof. Let X=InIT. Making use of Definition 1.1 it is not difficult to prove that 

x T you(x)Tu(y) 

for every x, yeln. Since the map u is a homeomorphism, the map u is 
a homeomorphism. 

Now we are going to prove that in some special cases an n -dimensional r-cube X 
can be represented as a space Yx I/Ef, where Y is an (n — l)-dimensional r-cube 
and /: Y—> Y is a homeomorphism. 

Lemma 2.3. Let X=In/(Uu ..., Un) be an r-cube such that neUn, n^Ut for 
/_Nn__. Denote Y=In'1/(U1, ..., U„__), f=rn

1.1(Un -{n}), /: I"-1-*!"-1. Let 
/: Y-> Y be the map induced by f. Then X « Y x I/Ef. 
Proof: Let X=In/T. We prove that for every x, yeln we have 

x Tyo([(xu ..., *-,__)], xn)E?([(yu ..., y„-_)], y„) (2) 

We shall discus two cases: 

a) x, y^Jn, b) x,yeJn
n. 

In the case a) and in the case b) for xn = yn the condition (2) is satisfied. Now we 
prove (2) in the case b) for xn = yn. Denote x = (xu ..., *„__), y = (y_, ..., y„-_). 

Let x Ty. Then there are integers /_, ..., ikeNn, h<i2<...<ik-n such that 

k 

x, y eP| J.> * = uh o ui2o ...o uik(y). 
/ - i 

Since T„(wn
 0 8„)n{n} =0, we have 

x = w'1 o ... o u1*-1
 Q(un o sn)(y) = uix o ... o u1"-1 o / (y) . 

Hence f(x) = u(l o ... o " ^ ( y ) , because G is commutative and s2 = id for every 
5 6 G. Then we have [f(x)] = [y], f[x] = [y] and finally ([*], xn)E,([y], yn). 

Let now ([*], xn)E?([y], yn). Since *„=£y„, we can suppose f[x] = y. Then 
k 

[f(x)] = [y] and there are integers .',, ..., J*eN„_, such that /(*), y e f l J?"1 a n d 

f(x) = u'1 o ... o wHy). Then 

i = u''o ...» u'* o / (y) = u'> o ...o u'k o (u" o *„)()'). 

Since |x,| = |y„| = l, x„±yn, we have x, y eJ"nn(f]Jn\ and * = 

u'' o ... o u'»o W(y). Hence x T y . 

Homeomorphism Theorem. Let XV = I"I(UU ..., Un), Xv = r7(V., ..., V„) be 
such r-cubes that neU„nVn and for every i e N„_, there is U = V, aod n$U. Let 
fv,fv: I-1-!--, fu = r-ii(Un_{n})t fv = t:Ll(V>.-{n)) and let fv, fv: r->/ 
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/(IJi, ..., Un_i) —> Y 1/(UU ..., Un_i) be the isotopic homeomorphisms induced 
byfU9fv. ThenXu^Xv. 
Proof. Let Y=In~1/(U1, ..., Un__). With regard to Lemma 2.3 we get 
X u « Y x I /E^ , X v ^ Y x I/__>v. Then by Lemma 2.1 we have X_,«XV . 

3. Classification in dimension 1 and 2 

In the classification we can limit ourselves only to r-cubes because every s-cube is 
homeomorphic to some r-cube. 

There is only one r-cube with the property "M" in dimension 1, it is the r-cube 
I/(__)« S1. 

Let Pl(ux, u2) be the 2-dimensional r-cube with the property "M". There are 
only three possibilities for u1, u2; namely su s2, s12, and only 6 possibilities for 
X: Pl(su sO, P/(s2, s2), Pl(su s2), P/(su s12), P/(s12, s2), P/(s12, s12). Making use 
of [2], Proposition 1.3, we obtain 

Pl(su Sl)~P/(s2, s2), P/(su s12)~Pl(s12, s2). 
Let 

X1 = Pl(s1,s1), X2 = P/(sus2), X3 = Pl(sus12), 

X4 = Pl(s12,s12). (3) 

It is not difficult to see that 

X . ^ S 2 , X2~S1xS1, X3~Kb, X4~RP2 (4) 

where Kb is the Klein bottle and RP2 is the real projective plane. 
Classification Theorem A. Let X be the n-dimensional s-cube which is 

a manifold. 
1) If n = l, then X«I / (s_) . 
2) If n = 2, then X is homeomorphic to one of the r-cubes Xu ..., X4 (see (3), 
(4)). The r-cubes X_, ..., X4 are mutually nonhomeomorphic. 

4. Classification in dimension 3 

Let X = Pl(Uu U2, U3) be an r-cube with the property "M". In the case when X 
is c-nonfibrable, there is X^X1 = Pl(su su si) or X ~ X 2 = ry(s123, s123, s123), see 
[2], Proposition 3.13. 

Now let us suppose that X is c-fibrable and consider the following two cases: 
I. If X is c-fibrable with regard to a subset Q<zN3, then card 0 = 2. 

II. X is c-fibrable with regard to a subset Q<=N3 with card Q = 1. 
First we shall discuss the case I, supposing without loss of generality 

card [Ji__card U2__card U3. (5) 
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Our assumptions imply that X can be c-fibrable only with regard to 0 = {1, 2}, 
{1,3} or {2,3}. If there were 0 = {1, 2}, there would be, by Definition 1.4, 
t/3 = {3}, and therefore, by (5), card t/j = card t/2. This and the definitions 
1.2—1.4 would, however, imply 3^ UtuU2, and thus X would be c-fibrable with 
regard to Q' = {3}, which would be contrary to our assumption. Similarly for 
O = {1, 3} we would obtain a contrary by showing X to be c-fibrable with regard to 
Q' = {3} or {2}. Hence X is c-fibrable with regard to Q = {2, 3} and, clearly, 
t/1 = {l}. 

Lemma 4.1. Under the assumptions I and (5) we have card t/2 > 1 and card 
t / 3>l. 
Proof. Supposing card t/2 = card l/3 = 1 we obtain that X is c-fibrable with regard 
to O' = {1}. Similarly the assumption card l/2 = 1 and card t/3 > 1 yields that X is 
c-fibrable with regard to Q' = {3}. 

Lemma 4.2. Under the assumptions I and (5) we have X=P/(su s123, s123). 
Proof. By virtue of Lemma 4.1 we only need to show that there can be neither 
card t/2 = card l/3 = 2 nor 2 = card l/2<card l/3 = 3. This is, however easily done 
by considering all the possibilities and showing that each of them leads to a contrary 
either to the assumption I or to the property "M". 

Now we shall continue with the case II. With regard to [2], Proposition 1.3, we 
can take 0 = {3}. Since X has the property "M", Y=PI(UUU2) is the 
2-dimensional r-cube with the property "M" ([2], Lemma 3.16). Hence there are 
only four possibilities for the r-cube Y, namely Pl(su sx), Pl(su s2), Pl(su s12), 
Pl(s12, s12). 

Proposition 4.3. In the case II the r-cube X is homeomorphic to one of the 
following r-cubes: X* = Pl(su su s3), X5 = P/(su su s13), ?Q = P/(su s2, s3), 
X7 = P/(su s2, s13), X8 = P/(su s2, s123), X9 = P/(su s12, s23), X10 = P/(s12, s12, s3). 

To prove Proposition 4.3, we shall need some lemmas. 
Lemma 4.4. a) P/(su su s3)^P/(su su s123), b) P/(su su s13)^P/(su su s23). 

Proof. Let Xu=
zP/(su su s3), Xv = P/(su su s123). Making use of the 

Homeomorphism Theorem it is sufficient to prove that the maps fv, fv> induced by 
the maps /tr = id, fv = s12, are isotopic. It is easy to see that identifying Pl(su S\) 
with S2 in a suitable way, we can view fv, fv as the homeomorphisms fv, fv: S2-» 
S2 defined by fu(x) = x, fv(x) = (—xu-x2,x3). These homeomorphisms are, 
however, wellknown to be isotopic. The assertion b) is proved in a similar way. 

Lemma 4.5. a) P/(su s2, s13)^P/(su s2, s23), 
b) P/(su s2, s13)^P/(su s12, s3). 
Proof. In [2], Proposition 1.3, it is sufficient to take /: N3-> N3, / ( l ) = 2, f(2) = 1, 
/(3) = 3 in the case a) and /(1) = 1, /(2) = 3, /(3) = 2 in the case b). 

Lemma 4.6. a) P/(su s12, s3)^P/(su s12, s13), 
b) P/(su s12, s23)^P/(su s12, s123). 
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Proof, a) We shall use the Homeomorphism Theorem. Let Xv = Pl(s1, s12, s3), 
Xv = Pl(su s12, s13). We prove that the maps fUy fv: Pl(su s12)-*Pl(su s12) are 
isotopic. Let 

H: (0,\)xP/(sus12)-+P/(sus12) 

([(xu x2 + 2t)] if \-x2^2t 
Ht[(XuX2)] = \[-(xu2t-2 + x2)] if \-x2^2t 

We see that for every re ( 0 , 1 ) H, is a homeomorphism and H0 = /Lr = id, 

H i = / v = 8i. 
b) It is sufficient to apply [2], Proposition 3.7, for k = 2. 

Lemma 4.7. a) P/(si2 , si2, s3)~P/(s12, s12, s123), 
b) P/(s12, s12, s23)~P/(s12, s12, s123), 
c) P/(s12, s12, s13)~P/(s12, s12, s123). 
Proof. Let Xv = P/(s12, s12, s3), Xv = P/(s12, s12, s123). We shall use the 

Homeomorphism Theorem. We prove that the maps / u = id, fv = s12, fv, fv: 

P/(s12, s12) —> P/(s12, s12) are isotopic. By suitable identification of the spaces 
P/(s12, s12) and B2IQ (Q identifies the antipodal points on dB2) we can view fv, fv 

as the homeomorphisms fv, fv: B2IQ-*B2IQ, fu[(x, y)] = [(x, y)], fv[(x, y)] 
= [(—x, —y)]. It is not difficult to see that the homeomorphisms fv, fv are 
isotopic. To prove assertions b), c) it is sufficient to take k = 2, 1 in [2], 
Proposition 3.7. 
Proof of Proposition 4.3. Since 3eU 3 , we have only four possibilities for U3, 
namely {3}, {1, 3}, {2, 3}, {1, 2, 3}. Then for U, = U2 = {\} we have X~X4 or 
X « X 5 by Lemma 4.4, for Ux = {1}, U2 = {2} we have X « X 6 or X - X 7 or X~X8 

by Lemma 4.5, for Ui = { l } , U2 = {\, 2} we have X ~ X 7 o r X ~ X 9 by Lemma 4.5 
and Lemma 4.6 and finally for Ux = U2 = {1, 2} we have X ~ X i 0 by Lemma 4.7. 

It was proved in [1] that on any given s-cube X it is possible to introduce 
a structure of a CW space. In the case when the s-cube X is a manifold, one can 
sometimes define a CW decomposition of X with a smaller number of cells than in 
the general case (see [3]). 

Let X be an r-cube from the set Xu ..., X10. By standard computation making 
use of the CW decomposition of X introduced in [1] or [3] one can compute the 
following table of homology groups (over Z) of the r-cubes Xi, ..., Xi0. 

With regard to the classification procedure, Lemma 4.2, Proposition 4.3 and 
Table 1 we get 

Classification Theorem B. Let Xbea 3-dimensional s-cube which is a manifold. 
Then X is homeomorphic to one of the r-cubes Xu ..., Xi0 listed in Table 2. The 
r-cubes Xu ..., Xi0 are mutually nonhomeomorphic. 
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Table 1 

X Я n (X) 
n>3 

Яз(X) Я 2(X) Яi(X) Я 0(X) 

xt«s3 
0 z 0 0 z 

X2«jRP3 0 z 0 Z 2 z 
X3 0 z 0 Zf z 
Xt^S^xS1 0 z z z z 
x5 

0 0 Z, z z 
X б ^ S ^ x S ^ x S 1 0 z z3 z3 z 
Xy^KbxS1 0 0 Z + Z z Z? + Zг z 
x8 

0 z z Z + Z\ z 
x9 

0 0 z* z+z\ z 
X ю ^ K P ^ x S 1 0 0 Zг z+z, z 

Table 2 

Xi = Г/(s i ,s ь Si) Xв = Г / ( s ь Í2 , S3) 

X 2 = Г / ( S i 2 3 , $123, S i 2 3 ) X7 = Г / ( s ь $2, Siз) 

X 3 = I / ( S i , S123, Jl2з) X8 = Г / ( s ь $2, í l 2 з ) 

X4 = Г/(si,Si,s3) X9 = Г / ( s ь $12, Í2з) 

X5 = Г/(s ь s ь Siз) X ю = I /(Si2 , S12, Sз) 
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КЛАССИФИКАЦИЯ 8-КУБОВ РАЗМЕРНОСТИ пйЪ 

1о2е1 Туагогек 

Резюме 

В статье дана полная топологическая классификация тех 8-кубов размерности п й 3, которые 
являются многообразиями. 
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