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THEOREMS OF BOHR-NEUGEBAUER-TYPE FOR 
ALMOST-PERIODIC DIFFERENTIAL EQUATIONS 

LENKA R A D O V Á 

(Communicated by Milan Medvěd') 

ABSTRACT. The aim of this paper is to present Bohr-Neugebauer theorems 
(every bounded solution is almost-periodic) for linear nonhomogeneous differen
tial systems, where the nonhomogenity is assumed to be essentially bounded and 
almost-periodic in various metrics (in the sense of Bohr, Stepanov, Weyl, Besi-
covitch). 

1. Introduction 

Almost-periodic solutions of ordinary linear differential equations with con
stant coefficients and a uniformly almost-periodic nonhomogenity were studied 
first by H. B o h r and O. N e u g e b a u e r in [BN]. They proved the following 
result: 

Any bounded solution on the whole real axis is almost-periodic. 

The proof can be found (as well as the above quoted paper) in other mono
graphs or textbooks, for example, [CI], [Fi], [KBK]. Their result was extended 
to systems by C. C o r d u n e a n u [CI], (cf. also [De]). 

Following B o h r and N e u g e b a u e r ' s initiation of this research field, many 
results were obtained in the next decades. Later on [AP], L. A m e r i o extended 
the results to the case of almost-periodic (finite-dimensional) nonlinear systems. 
He has provided a criterion for the existence of almost-periodic solutions under 
the assumption of the existence of a semitrajectory that belongs to a compact 
set in Rn . Now, the author's interest is not only related to linear ordinary equa
tions, but also to nonlinear ones, to partial differential equations, to differential 
inclusions and to differential equations in abstract spaces (see e.g. [An], [AB1], 
[ABL], [DK], [Za]). 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 34C27, 42A75, 34C11. 
Keywords : almost-periodic differential equation, bounded and almost-periodic solution, 
(Bohr, Stepanov, Weyl, Besicovitch) metric, Bohr-Neugebauer-type theorem. 
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The problem of the existence of almost-periodic solutions to linear equations 
in a Banach space, with constant or almost-periodic operators, has been investi
gated by several authors. For example, Yu. L. D a 1 e c k i i and M. K r e i n [DK] 
considered the equation x' — Ax + f(t) where A is a linear stationary operator 
on a Banach space and / is an almost-periodic map with values in the given 
Banach space. They established spectral conditions, under which the existence 
of almost-periodic solutions is assured. In their book [MS], J .L . M a s s e r a and 
J. J. S c h a e f f e r obtained criteria for linear equations with a nonstationary 
operator A. For more recent related monographs, see [NG], [Za]. 

M. A. K r a s n o s e 1 s k i i et al. have used the method of integral equations in 
[KBK]. The main idea relies on the use of Green functions. Using these functions, 
the case of nonlinear almost-periodic equations can be reduced to the problem 
of nonlinear integral equations. 

Another method in the study of almost-periodic differential equations is 
the method of Liapunov functions. The main contributor to the topic was 
T. Y o s h i z a w a . Some of the results obtained by this method are included 
in [Yo]. For further results, see e.g. [C2], [Fi], [De], [Fa], [LZ]. 

In this paper, we will concentrate only on linear systems of the form x' — 
Ax + f(t), where A is a constant real matrix and / is measurable, essentially 
bounded and almost-periodic in various metrics. 

2. Definitions and elementary properties 

In this part, we define different types of almost-periodicity and fundamental 
relations among functions almost-periodic (a.p.) in given senses (cf. [Be], [Le]). 

DEFINITION 1. Let us introduce the metrics: 

(Bohr) 
^ u ( / ,g ) : - sup | | /W~gW|| , 

teR 
(Stepanov) 

a+l 

£>S |(/ ,5):--supy [ \\f(t)~g(t)\\dt, 
a£R l J 

a 

(Weyl) 

Dw(f, g) := lim sup - / \\f(t) - g(t)\\ fa = l im n ft q\ 
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(Besicovitch) 

T 

DB(f,g) :=limsup-!= f \\f(t) - g(t)\\ dt, 
T->oo --I J 

- T 

where / , g are measurable functions from R into W1. Denote by DG any of 
the above (pseudo-) metrics. The metric space (G, DG) we understand the re
lated quotient space in the sense that we identify such elements fvf2 for which 
DG(fvf2) = 0. 

DEFINITION 2. A function / G Lj^R,! 7 1 ) is said to be G-almost-periodic 
(G-a.p.) if 

(Ve > 0) (3k > 0) (Va G R) (3r G [a, a+k]) (r>G(f(t + r) , /(*)) < e) . 

Then r is called an e -almost-period in the given sense. 
For the sake of simplicity, we call a Du-a.p. or Ds -a.p. or .Dw-a.p. or 

JDB-a.p. function u.a.p. or Sj-a.p. or W-a.p. or B-a.p., respectively. 

The following definition surprisingly uses the Stepanov metric for the a.p. 
notion in the sense of W e y 1. 

DEFINITION 3. A function / G L1
1
0C(R,Rn) is said to be equi-Weyl almost 

periodic (equi-W-a.p.) if 

(Ve > 0) (3 fc, lQ(e) > 0) (Va G R) (3r G [a, a+k]) (V/ > l0(e)) 

(DSi(f(t + r)J(t))<e). 

Remark 1. One can easily check that one can take /0 > 1 without loss of 
generality in Definition 3. 

DEFINITION 4. For an S ra.p. function / , we define the Bochner translation 
as follows (cf. [AP]) 

fb(t)'-=f(t + v), r /G[0,l] , teR. 

PROPERTIES, (cf. [AP]): 
a) A function f is S1-a.p. if and only if fb is u.a.p.. 

b) A function f is bounded in the Stepanov metric if and only if fb is 
bounded in the metric induced by the sup-norm. 

Remark 2. Observe that a vector function / : R -> Rn is G-a.p. or equi-W-a.p. 
if it is G-a.p. or equi-W-a.p. in each of its components, respectively. The reverse 
implication does not need to hold for W-a.p. or B-a.p. vector functions, because 
the spaces of W-a.p. functions and B-a.p. functions do not seem to be linear. 
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DEFINITION 5. (cf. [ABG]) A function / <E L}QC(R, Rn) is said to be G -normal 
if, for every sequence {hn} of real numbers, there corresponds a subsequence 
{hn.} such that the sequence of functions {f(x + hn.)} is fundamental in the 
G-metric. Of course, if (G,DG) is complete, the subsequence {f(x + hn.)} is 
required to be convergent. 

DEFINITION 6. (cf. [ABG]) A function / G L ^ R - J R " ) is said to be equi-
W-normal if the family of functions {f(x + h)}, h G JK, is precompact in 
the JDS -metric for sufficiently large /, i.e. if, for each sequence f(x + h^, 
f(x + h2),... , one can choose a fundamental subsequence in the Ds -metric, for 
sufficiently large /. 

The numbers h{ are called translation numbers. 

Since the spaces of W-a.p. functions and B-a.p. functions do not seem to 
be linear, we must add some further properties of them which will be suitable 
for applications. Following arguments e.g. in [Be] or [Le], one can fortunately 
show that uniform continuity of at least one term is sufficient for the sum of 
two terms to be W-a.p. or B-a.p., respectively, as observed by J. A n d r e s and 
A. M. B e r s a n i [AB2]. 

Let f(t) be a real (or a complex) function, defined for all real values of t and 
belonging to the space of W-a.p. functions or to the space of B-a.p. functions 
(for the sake of simplicity, we will indifferently denote either of the two spaces 
by G* ). Let E{e,f(t)} be the set of e-almost-periods of f(t). Let us recall 
that if rx and r2 are almost-periods respectively related to ex and to e2, then 
rx ± r2 is an (ex + e2)-almost period. 

DEFINITION 7. f(t) is called uniformly G -continuous if, 

(Ve>0)(3S = S(s)>0)(\h\<5 =-> ||/(* + h) - f(t)\\G < e) . 

If, in particular, G = Du, then we simply speak about uniform continuity of / . 
We will denote by G the space of G-a.p. functions which are uniformly 

G -continuous. 

R e m a r k 3 . Every G-normal function is G-a.p.. On the other hand, it is possi
ble to find W-a.p. or B-a.p. functions which are not W-normal or B-normal 
(see [ABG] and the references therein). Under the assumption of uniform 
G-continuity, the spaces of G-normal and G-a.p. functions are equivalent. The 
spaces of equi-W-a.p. functions and equi-W-normal functions are equivalent 
(see [ABG]). 

PROPOSITION 1. If f(t) G G, then, for every e > 0, there corresponds S = 
S(e) > 0 such that E{e, f(t)} contains all numbers in the interval (—5, S). 

P r o o f . The proof is trivial. • 
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LEMMA 1. ([AB2]) For every f(t) G G, and for every e2 > e1 > 0, there exists 
6 = 6(el,e2) > 0 such that E{e2,f(t)} contains every number whose distance 
from __?{£_,/(£)} is less than 6(el,e2). 

P r o o f . Since f(t) G G, according to Proposition 1 there exists 6(e2 — £_) 
> 0 such that E{e2 — s1,f(t)} contains all numbers of the interval (—6,6). 
By the above property of the translation numbers, taking r_ G E{e1, f(t)} and 
r2 G (-6,6) C E{e2 - e1,f(t)}, we obtain 

T1-hT2eE{e2,f(t)}. 

• 
The following Lemma holds for every function belonging to G*p without 

requiring uniform continuity. 

LEMMA 2. ([AB2]) Let /_ , / 2 G G*p. For every e > 0, 5 > 0, the set 
of numbers belonging to E{e,f1(t)} whose distance from E{e,f2(t)} is less 
than 6, is r.d.. 

P r o o f . Consider the sets E {_•£,/_(£)} and E {\e, f2(t)} and let I = k6 
(k G N) be an inclusion interval for both these sets (i.e. in every real interval 
of length / there can be found numbers TX,T2 such that Ti G E {§£./;(£)} for 
i = l ,2). 

Divide R into intervals [(n—l)l,nl], where n G Z. Inside every interval 
[(n—1)1, nl], we can find 

T(n) € £ { _ £ , / _ ( * ) } , r ( n ) G E {Is, f2(t)} . 

We have 
-k6 = - / < r_n) - 4n) <l = k6. 

Denote by Â  the interval (i — 1)6 < x < i6, so that T[U) — T2 G Â  for some 
i — —k -f 1, . . . ,k. Moreover, there exists n0 such that, to any n G Z, there 

corresponds n' G Z (— n0 <n' < n0) for which r} n ' — r2 ^ belongs to the same 
interval Â  

Thus, 
of т(n) Ы) 

Tl ~ T2 ' 

т ( n ) _ т(n) = т ( n ' ) . _ --("') т 2 

i.e. 

т ( n ) _ т ( n ' ) _ (n) _ 
т l т l — т 2 

. т ( n ' ) T 2 

+ _<5 ( - K i K l ) , 

+ 45. 

By the above property, since r[n ' € i? {_•£, /i(<)} and T_n € E {\e, f2{t)} , 

then (r_n) - T!"'5) and (T_n) - T_n'') belong respectively to £{e,/_(<)} and 

JB{£,/2(t)}. 
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Thus, the distance from E{e, f2(t)} of every number (T[U) — r_n ') (n G Z) 
is less than S. 

Let us compute 

\fT(n) _T(n')\ _ fjn+l) _ > + l ) ' ^ , ) - ( т í n + 1 , - т { n + 1 , ) | . 

Since 

and 

| T ( n ) _ _ ( n + l ) | < 2 / 

K ( n ' ) -r 1

( " + 1 ) ' |<(2n 0 + l);, 

then 

{{T^-r^-iT^-T^')] < |r1

( n )-T1

( n + 1 ) |+|T1

( n ' )-T1

( n + 1 ) ' | < (2n0+3)Z. 

Since the distance between two consecutive numbers is less than (2n0 +• 3)/, 
then, taking as inclusion interval the number /' = (2n0 H-3)Z, the set of numbers 
( T M _ T ( " ' ) ) ( n G Z ) i s r . d . . • 

The following theorem requires uniform continuity only for /_. 

PROPOSITION 2. ([AB2]) For every e > 0, /_ e G, f2 e Gl , the set 
E{eJ1(t)}nE{eJ2(t)} is r.d.. 

P r o o f . Let us take e > £_ > 0. By Lemma 1, there exists S > 0 such that 
the set of all numbers whose distance from E{e1, /_(£)} is less than S belongs 
to E{e, /_(£)}. By Lemma 2, the set of all numbers belonging to E{ex, f2(t)} 
whose distance from _5{e,/_(t)} is less than 5, which we denote by E and 
which belongs to E{e, /_(£)}, is r.d.. Consequently, since E C E{s, /_(t)} and 
EcE{el,f2(t)}, 

E c £{-,/,.(-)} nE{evf2(t)} C E{e,f1(t)}nE{e,f2(t)} . 

Thus also E{e, f^t)} n £{e, /2(t)} is r.d.. D 

Finally, we state an important result about summability of the space of 
G* -functions and G -functions . 

PROPOSITION 3 . ([AB2]) The sum of a function f1 € G and a function 
f2eGlp belongs to G*ap. 

P r o o f . For every e > 0, take r € E {\e, ft(t)} n E {\e, f2(t)} . Thus, 

IKA +/2)(» + ' • ) " ( / ! +/2)(»)llG<e-
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Consequently, r G #{£,/-_(£) + f2(t)} , and 

£{i £ , / 1 ( t ) }n£{| £ , / 2 ( t ) }c% / 1 ( t ) + /2(«)}, 
from which E{e, f1 + f2} is r.d.. D 

Remark 4. In order to guarantee at least one function in the sum to be uni
formly G-a.p., it is sufficient to assume only its continuity in the G-norm (see 
[LZ; p. 2]). Since Caratheodory bounded solutions of differential equations are 
understood to be locally absolutely continuous and so, because of the assump
tions below, (in particular) essential boundedness of nonhomogenities, they be
come uniformly continuous. Consequently, they will be also continuous in the 
G-metric. So, they can be used as those which are uniformly G-continuous. 

Remark 5. In [Le; pp. 206-207] (cf. also [CI]), we can find sufficient and neces
sary conditions for almost periodicity of the integral over R of u.a.p. or Sj-a.p. 
functions, namely the integral of u.a.p. or S-^a.p. function is u.a.p. if and only if 
it is uniformly continuous and bounded on R in the given metric, respectively. 

X 

PROPOSITION 4. If the integral F(x) = / f(t) dt, where F: R -> R, of a 
o 

G-a.p. or equi-W-a.p. function / : R —> R is uniformly continuous and bounded 
on R. then it is G-a.p. or equi-W-a.p., respectively. 

P r o o f . We follow some ideas in [St] (cf. also [De]), where they were however 
used for another goal. Since the integral 

X 

F(x) = / /( í) dt 

is bounded, for every e > 0 there exist numbers x15 x2 for which F(x1) < g + e 
and F(x2) > G — £, where g = infF(x) and G = supF(.r). Let us put £ = 
min{.r1,x2}, 77 = max{x1,x2} and d = \xx — x2\ > 0. Since / is G-a.p., so 
in every interval of length k > 0 there exists at least one £-almost period of / 
(in the given sense). 

Let us choose r , the £-almost period of the function / such that the number 
i + T lies in an interval (a, a+k). Then the numbers z1 = x1 + r , z2 = x2 + r 
are contained in the interval (a, a+K), K = k + d > 0 and we obtain 

x2 

F(z2) - F(Zl) = F(x2) - F(Xl) + J [f(t) - f(t + T)] dt 
X\ 

X2 

>G-g-2e + J[f(t)-f(t + T)] dt. 
Xl 

197 



LENKA RADOVA 

So, we proved that in every interval of length K, there exist numbers z1, z2 

such that 
X2 X2 

F(Zl) < g+2e-J[f(t)-f(t+T)} dt, F{z2) > G-2e+J[f(t)-f(t+T)] dt. 
Xi XI 

Let us choose in the interval (x,x+K), where x is an arbitrary real number, 
X2 

some z1 such that F(zx) < g + 2e — J [f(t) — f(t + T)] dt. We can write 
x1 

zi 

F(x + T) - F(x) = F(Zl + T) - F(Zl) + j[f(t) - f(t + T)] d* 
X 

X2 Zi 

> -2e + J [f{t) - fit + T)] dt + J [f(t) - fit + T)] dt. 
XI 

And again, choosing in the interval (x,x+K), where x is an arbitrary real 
X2 

number, a z2 such that F(z2) > G — 2e — J [f(t) — f(t + r)] dt we obtain in 

the same way the following estimate: 
XI 

X2 Z2 

Fix + т) - Fix) < 2є + I [/(*) - /(ť + т)] dt + I [/(ť) - /(* + т)] dť ; 

Xl 

l .Є . 

\Fix + T) - Fix)\ <2e + 

X2 Z 

J[f(t)-f(t + T)]dt + f\f(t)-f(t + T)\dt 
Xi 

<2e + J\f(t + T)-f(t)\dt + J\f(t + T)-f(t)\dt, 

Z x 

where z = maxj^, z2}. 
Since the cases of u.a.p. and Sj-a.p. functions were pointed out in Remark 5, 

we restrict ourselves to the remaining cases. 
So, if / is equi-W-a.p. (i.e., for given e > 0 there exists Z0 > 1 (cf. Remark 1) 

a+l 
such that, for every / > l0, sup j J \f(t + r) — f(t)\ dt < e), one can estimate 

aGR a 

V 

j\f(t + T)-f(t)\dt< ( ^ " + - ) V 
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and 

a+l , z 

fåЧ(Sw 

a x x 

> + т)- f(t)\ dt\ dx 

< SUp Ţ 
aЄK ' 

a+l / x+K 

• / ( / l / Є + r ) -
a x x 

f(t)\ • dťj dx 

= s u p 7 
aЄR L 

a+l , K 

Jlj\f(t + x + т) 
a x 0 

- / ( * + x)| dí J dx 

K a+l 

= /Y sup j f \f(t + x + T)- f(t + x)\ dxj dt<Ke. 

0 a 

It follows (cf. Remark 1) that 

a+l 

sup j f \F(x + r) - F(x) | da: < 2e + (f- + l\ e + Ke = e U + f- + 1 + K\ 

a 

<e(3 + d + K). 

Clearly, F is equi-W-a.p. 

Using the estimates introduced above, we can deduce the following inequali
ties for a W-a.p. function / : 

a+l 

lim sup y / \F(X + T)~ F(x)\ dx 

a 

K , a+l v 

< 2e + e (f + 1 J lim -f + lim sup j / ( / |/(x + t + r) - / ( a + t)\ dx ) dt 
\l0 ) i->oo l ^->ooaGR l J \ J I 

0 x a / 

K a+l 

= 2e+ / ( l im sup \ \ \f(x + t + r) - f(x + t)\ dx) dt 
J \i->ooaGR I J ) 
0 a 

< 2e + Ke = e(2 + K). 

Thus, a bounded integral of a W-a.p. function is W-a.p. 

199 



LENKA RADOVA 

An analogous result holds when / is B-a.p.: 

T 

l i m s u p — / \F(x + T) — F(x)\ dx 
T-+00 2F J 

-T 

T , v 

è/(/> 
_ Т N C 

< 2 e + l i m s u p — / ( / | / ( í + r ) - / ( í ) | dt ) dx 

-T x £ 

+ limsup - L | f | |/(ť + r ) - / ( t ) | dí J dx 
0 0 -T \ X ' 

<2£ + e ( l i m s u p [ ^ ] + 1 

T . K 

hl(l*> 
-T x 0 

T 

\3e+ íílimsup^; í \f(x+ t+ T) - f(x+ t)\ d x j dí < e(3 + K), 

+ l i m s u p — / ( / |/(a; + í + т ) - / ( a ; + í ) | d ŕ | dx 

-т x 0 

K T 

<r 
0 ' - T 

which implies the B-almost-periodicity o f f . • 

3. Main results for a.p. solutions 

In this section, almost-periodicity results will be proved for almost-periodic 
nonhomogenities in various metrics, on the basis of the integral representation 
of entirely bounded solutions. 

A) A . p . so lu t ions of a scalar e q u a t i o n . 

First, consider the equation 

x' = ax + f(t) (1) 

and assume that a G R and / : R —» R is essentially bounded and G-a.p. or 
equi-W-a.p.. Let x: R —> R solve (1) and let x be bounded. Now, we shall state 
theorems about almost-periodic solutions. 

THEOREM 1. Every bounded solution x: R —> R of the differential equation (1) 
with a G R is G-normal (and subsequently, G-a.p.) or equi-W-a.p. (and subse
quently, equi-W-normal), provided f(t) is essentially bounded and G-a.p., where 
G can be any of the given metrics, or equi-W-a.p., respectively. 
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P r o o f . A general solution of the equation takes the form (cf. [CI], 
[De], [NG]) 

t 

x(t) = eat(x(0) + í f(s)e~as ds) 

We can distinguish three possibilities according to the sign of the constant a. 

a) If a > 0, in order to have a bounded solution for t —>> +00, we must take 
+00 

x(0) — — f /(r) e aT dr, i.e. a particular solution of the equation (1) is 
0 

+00 

c(t) = -eat í f(s) e~as ds. 
t 

(2) 

Let / be G-a.p. Suppose x(t) is a solution of the equation (1) and x(t) is 
bounded on R ( = > x(t) is bounded in the G-metric). First, we would like to 
prove its G-almost-periodicity. Obviously, 

+00 

:(ť + r) = e a(<+ r ) í f(s)e~as ds. 

t+т 

Thus, 

\x(t + T) - x(t)\ = a(t+T) í f^e-as ds_eat f f ^ e~as ^ 

ť + r t 
+ 00 +00 

= La(t+r) f f(s + T)e-a(s+r) ds_eat í /(5) e " ^ d5 

t 
+ 00 

= \eat f(f(s + r)-f(s))e-asds 

Furthermore, for applying the G-metric, we need the following estimate: 
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P +00 

f \x(t + T)- x(t)\ dt = f eat f (f(s + T)- f(s)) e~as ds 
a a t 

P +00 

= / e°' í (f(s + t + T)-f(s + t)) e~
a( 5 + t) ds 

a 0 

P +00 

= f\ f (f(s + t + T)-f(s + t))e~asds 
a 0 

P +00 

< / [\(f(s + t + T)-f(s + t))e~as\dsdt 
a 0 

+00 P 

= f f\(f(s + t + T)-f(s + t))e~as\dtds 
0 a 

+ OO , P v 

= f \e-as\íf\f(s + t + T)-f(s + t)\dt) ds 
O ^ a ' 

Using the Štěpánov metric, we get (a := u, (3 := u + 1): 

u+l 

sup / \x(t + T) -x(ť)\ dt 
u£R J 

u 

+ 0 0 • i t + 1 \ 

<sup [ \e~as\[ [\f(s + t + T)-f(s + t)\dt)ds 
ueR J V J / 

0 x u 7 

+ 00 u + l 

= / | e " a 5 | f s u p / \f(s + t + T)-f(s + t)\dt] ds 
J \u€R J ) 
O u 

+ 00 

/ 

dť 

< £ / Є"aS ds = -- = £ . 

Hence, every ^-almost period of function / (in the sense of Stepanov) corre
sponds to an £-almost period of solution x (in the sense of Stepanov). 
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For the equi-Weyl case, one can obtain (a := u, (3 := u +1): 

u+l 

SUpy / \x(t + T) -X(t)\ dt 
ueR*1 J 

u 
+ 00 , U + l v 

< s u p | I \e~as\[ f \f(s + t + T)-f(s + t)\dt) ds 

0 ^ u ' 

+ 0 0 u+l 

j I e'as I ( sup } f |/(S + t + T)-f(s + t)\ d t ) ds 

1 

+ OC 

/ 

0 

+ 00 

<e I e~as ds - ^ 

0 

If one uses the estimate introduced above, one obtains the following inequal
ities for the W-almost-periodicity: 

u+l 

l m j s u p y f \f(t + r)-f(t)\dt] 
.ueR l J J 

u 

+ 0 0 _ u+l 

/->oo 

u+l 

SUPy f \f(s + t + T)-f(s + t)\dt ) ds 
uER l J \J 

<Є 

+00 

í e~aз ds = | 

which implies the W-almost-periodicity of the solution x. 
The proof for B-almost-periodicity is again based on the application of the 

inequality which was derived above. Consequently, (a := —T, (3 := T): 

T 

l i m s u p — / \x(t + T) - x(t)\ dt 
T-+00 --I J 

-T 
T +00 

- lim sup - ^ f \ eat f e - ^ + O (f(s + t + r)-f(s + t)) ds 
T-^oo --J J I J 

-T 0 

+ 00 T 

= limsup - L j f |e-°' (f(s + t + T)-f(s + t)) \ dt ds 

dí 

0 - г 
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+00 T 

= I \e-as\\[msnp^ j\(f(s + t + r)-f(s + t))\dtds 

0 - T 

+00 

< r / , 
0 

e -as | ds = є 

R 
= є 

b) If a < 0, we take the initial condition 

0 

x(0)= f f(s)e'as ds. 

Instead of (2), the particular solution of the equation (1) can be written as 
follows: 

ъ 

z(t) = eat í f(s)e~as ds. 

The procedure and the conclusion are similar to the proof of the case a). 

c) For a = 0, the equation (1) simplifies to 

*'(<) = / ( * ) . 

For arbitrary t G H5, we obtain the solution 

t 

x(t) = x(0)+ J f(s) ds. 

0 

Therefore, 
t + T t 

x(t + T) - x(t) = I f(s) ds- f f(s) ds . 

0 0 

By Proposition 4 and Remark 4, G-a. periodicity or equi-W-a. periodicity of the 
solution x follows now from the boundedness of x and from the G-a. periodicity 
or equi-W-a. periodicity of the function / , respectively. 

The G-normality of the above G-a.p. solutions follows from Remarks 3 and 4. 
The equi-W-normality of the above equi-W-a.p. solutions follows from Remark 3. 

a 
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B) A.p. solutions of a system. 
Now consider the system 

x' = Ax + f(t), (3) 

where A = {a- • ;)
n ,_ , is a real constant matrix of the type n x n and the 

function f: R -> Rn is measurable and essentially bounded. We can also write 
the system (3) in the vector form: 

/*ì(*)\ 

\<(t)J 

ían 

\ a n l 

Чn (Ш 

\ш. 
+ 

/ / l ( * ) \ 

\ШJ 
THEOREM 2. Every bounded solution x: R -> Rn of system (3) is G-normal 
or equi-W-normal, provided f is essentially bounded and G-a.p. or equi-W-a.p., 
respectively. 

P r o o f . We follow the ideas in [CI], [De]. For our constant matrix A, there 
exists a matrix B such that putting 

then 

where 

Bx 

y' = Cy + gf(í) (4) 

C = BAB-1 = [l(?i(A1),...,lqp(Ap)] 

is the constant matrix, A •, j = 1,.. .p, are the eigenvalues of A and 

g(t) = Bf(t) 

is a vector of G-a.p. functions or equi-W-a.p. functions. Here the indices q{ 
v 

satisfy the equality ^2 q{ = n and L.(AJ denotes the matrix (of type ^ x g j 
i=i 

'<..(*.) = 

(\ i 
0 A, 

0 
1 

V o o o 
Using the transformation y = Bx, we obtain system (4). Starting from the 

scalar equation in the last line of (4), which satisfies the assumptions of The
orem 1, we have its G-normal solution or its equi-W-normal solution, i.e. also 
a G-a.p. solution or equi-W-a.p. solution, respectively. Substituting this solu
tion to the equation on the line above, we get again the scalar equation whose 
nonhomogenity consists of a G -function (the one after the substitution) and a 
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G -function or two equi-W-a.p. functions, respectively. Thus, (see also Propo
sition 3 and Remarks 4 and 5), the same conclusion follows. Repeating this 
procedure, we obtain a solution y of (4) which is G -normal (and subsequently, 
G-a.p.) or equi-W-normal (and subsequently, equi-W-a.p.). By applying the in
verse transformation and according to Proposition 3, Remarks 4 and 5, we obtain 
that x is the G-normal (and subsequently, G-a.p.) or equi-W-normal (and sub
sequently, equi-W-a.p.) solution of the system (3), respectively. This completes 
the proof. • 

4 Concluding remarks 

Some of the assertions in Theorem 2 can be proved alternatively by means 
of different methods (cf. [AP], [C2], [Fa]). A part of the results can also be 
extended to differential equations in Banach spaces (cf. [AB1], [BT], [DK], [MS], 
[NG], [Za]). We will treat Bohr-Neugebauer-type theorems for linear systems 
with a time dependent matrix A(t) or for nonlinear perturbations of systems of 
the form (3) elsewhere. 
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